
Spring 2013

CS5600

Spring 2013 CS 5600 1

Bresenham Circles

CS5600 Intro to Computer Graphics
From Rich Riesenfeld

Spring 2013Le
ct

ur
e

S
et

 3

More Raster Line Issues

• Fat lines with multiple pixel width

• Symmetric lines

• End point geometry – how should it
look?

• Generating curves, e.g., circles, etc.

• Jaggies, staircase effect, aliasing...

Generating Circles Exploit 8-Point Symmetry

),(yx),(yx

),(yx ),(yx 

),(xy),(xy 

),(xy),(xy 

Once More: 8-Pt Symmetry

),(yx),(yx

),(yx ),(yx 

),(xy),(xy 

),(xy),(xy 

Only 1 Octant Needed
We will
generate
2nd Octant

Spring 2013

CS5600

Generating pt (x,y) gives

the following 8 pts by symmetry:

{(x,y), (-x,y), (-x,-y), (x,-y),

(y,x), (-y,x), (-y,-x), (y,-x)}

2nd Octant Is a Good Arc

• It is a function in this domain

– single-valued

– no vertical tangents: |slope|  1

• Lends itself to Bresenham

– only need consider E or SE

Implicit Eq’s for Circle

• Let F(x,y) = x2 + y2 – r 2

• For (x,y) on the circle, F(x,y) = 0

• So, F(x,y) > 0  (x,y) Outside

• And, F(x,y) < 0  (x,y) Inside

Choose E or SE

• Function is x2 + y2 – r 2 = 0

• So, F(M)  0  SE

• And, F(M) < 0  E

E

SE

M
ideal
curve

F(M)  0  SE

E

SE

M

ideal
curve

F(M) < 0  E

Spring 2013

CS5600

Decision Variable d

Again, we let,

d = F(M)

E

SE

M

ideal
curve

Look at Case 1: E

1(1,)2
22 1 2(1) ()2

old p p

p

F yx

yx rp

d   

   

dold < 0  E dold < 0  E

1(2,)2
22 1 2(2) ()2

new p p

p p

F yx

yx r

d   

   

dold < 0  E

(2 3)pnew old xd d  

Since,

32

)12()44()1(2)2(2 22





x p

x px px px px px p

oldnew dd 

dold < 0  E

,

2 3

Enew old

E px

d d  

 

where,

Spring 2013

CS5600

E

SE

M
ideal
curve

Look at Case 2: SE dold  0  SE

Because,…, straightforward manipulation

3(2,)2
22 3 2(2) ()2

(2 2 5)

new

new old p p

p p

p p

F yx

yx r

yd d x

d   

   

   

dold  0  SE





  222222)

2

1
()1()

2

3
()2(ry px pry px p

 dd oldnew











4

1

4

9
3)32(

22 y py py py px p=

dold  0  SE





  222222)

2

1
()1()

2

3
()2(ry px pry px p

 dd oldnew











4

1

4

9
3)32(

22 y py py py px p=

x x

dold  0  SE





  222222)

2

1
()1()

2

3
()2(ry px pry px p

 dd oldnew











4

1

4

9
3)32(

22 y py py py px p=

x x

x x

dold  0  SE

)
44

9 1
()3()32( y py px p

  

From
calculation

From new
y-coordinate

 dd oldnew

E From old
y-coordinate

Spring 2013

CS5600

dold  0  SE

(2 2 5)new old p p

SEold

yd d x

d

   

  

I.e.,

2 2 5SE p pyx  

Note: ∆΄s Not Constant

depend on values of xp and yp

 andE SE

Summary

• ∆΄s are no longer constant over entire line

• Algorithm structure is exactly the same

• Major difference from the line algorithm

–∆ is re-evaluated at each step

– Requires real arithmetic

Initial Condition

• Let r be an integer. Start at

• Next midpoint M lies at

• So,

),0(r

),1(
2

1
r

rrrrF 2)2(1),1(
4

1

2

1


r
4

5

Ellipses

• Evaluation is analogous

• Structure is same

• Have to work out the ∆΄s

Getting to Integers

• Note the previous algorithm

involves real arithmetic

• Can we modify the algorithm to use

integer arithmetic?

Spring 2013

CS5600

Integer Circle Algorithm

• Define a shift decision variable

• In the code, plug in

4

1
 dh

4

1
 hd

Integer Circle Algorithm

• Now, the initialization is h = 1 - r

• So the initial value becomes

r

rrF





1

4

1
)

4

5
(

4

1

2

1
),1(

Integer Circle Algorithm

• Then,

• Since h an integer

1
0 becomes

4
d h  

1
 0

4
hh   

Integer Circle Algorithm

• But,h begins as an integer

• And, h gets incremented by integer

• Hence, we have an integer circle

algorithm

• Note: Sufficient to test for h < 0

End of Bresenham Circles Another Digital Line Issue

• Clipping Bresenham lines

• The integer slope is not the true
slope

• Have to be careful

• More issues to follow

Spring 2013

CS5600

Line Clipping Problem

minyy 

minxx 

Clipping
Rectangle

)0,0(yx

)1,1(yx

maxxx 

Clipped Line

minyy 

minxx 

Clipping
Rectangle)0,0(yx 

)1,1(yx

maxxx 

maxyy 

Drawing Clipped Lines

)0,0(yx

)1,1(yx

Clipped Line Has Different Slope !

3
4m 

1
2m 

Pick Right Slope to Reproduce
Original Line Segment

Zoom of previous situation

Pick Right Slope to Reproduce
Original Line Segment

Zoom of previous situation

Spring 2013

CS5600

Clipping Against x = xmin

E

NE

minyy 

minxx 

  
))(min(,min Bxmx 

Clip RectangleClip Rectangle

  
))(min(,min Bxmx Round 

midpointM

Clipping Against y = ymin

minyy 

minxx 

1min  yy

2
1

min  yy

Line getting
clipped

B A

Clipping Against y = ymin

• Situation is complicated

• Multiple pixels involved at (y = ymin)

• Want all of those pixels as “in”

• Analytic ∩ , rounding x gives A

• We want point B

Clipping Against y = ymin

• Use Line ∩ y = ymin - ½

• Round up to nearest integer x

• This yields point B, the desired result

Jaggies-Manifestation of Aliasing

Added resolution helps, but does not directly
address underlying issue of aliasing

Jaggies and Aliasing

• To represent a line with discrete pixel
values is to sample finitely a continuous
function

• Jaggies are visual manifestation,
artifacts, resulting from information loss

• The term aliasing is a complicated,
unintuitive phenomenon which will be
defined later

Spring 2013

CS5600

Jaggies and Aliasing

• Doubling resolution in x and y
reduces the effect of the problem,
but does not fix it

• Doubling resolution costs 4 times
memory, memory bandwidth and
scan conversion time!

Anti-aliasing

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8 9 10 11

Pixel intensity (darkness, in this case) is
proportional to area covered by line

Pixel
Space

Anti-aliasing

Pixel intensity (darkness, in this case)

is proportional to area covered by line

Pixel
Space

Anti-aliasing

• Set each pixel’s intensity value
proportional to its area of overlap
(i.e. sub-area) covered by primitive

• Not more than 1 pixel/column for
lines with

0 < slope < 1

Gupta-Sproull Algorithm -1

• Standard Bresenham chooses E or NE

• Incrementally compute distance D from

chosen pixel to center of line

• Vary pixel intensity by value of D

• Do this for line above and below

Gupta-Sproull Algorithm -2

• Use coarse (4-bit, say) lookup table for

intensity : Filter (D, t)

• Note, Filter value depends only on D

and t, not the slope of line! (Very clever)

• For line_width t = 1 geometry and

associated calculations greatly simplify

Spring 2013

CS5600

Cone Filter for Weighted
Area Sampling

1r 

1t 



D



 

 
 

 

Unit thickness line intersects no more than 3 pixels

Observations

• Lines are complicated

• Many aspects to consider

• We omitted many

• What about intensity of

y = x vs y = 0 ?

The End

Bresenham Circles

Le
ct

ur
e

S
et

 3

