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Bresenham Circles
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More Raster Line Issues

• Fat lines with multiple pixel width

• Symmetric lines

• End point geometry – how should it 
look?

• Generating curves, e.g., circles, etc.

• Jaggies, staircase effect, aliasing...

Generating Circles Exploit 8-Point Symmetry
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Once More: 8-Pt Symmetry
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Only 1 Octant Needed 
We will 
generate 
2nd Octant
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Generating pt (x,y) gives

the following 8 pts by symmetry:

{(x,y), (-x,y), (-x,-y), (x,-y),

(y,x), (-y,x), (-y,-x), (y,-x)}

2nd Octant Is a Good Arc

• It is a function in this domain

– single-valued

– no vertical tangents:  |slope|  1

• Lends itself to Bresenham

– only need consider E or SE

Implicit Eq’s for Circle 

• Let   F(x,y) = x2 + y2 – r 2

• For (x,y)  on the circle,   F(x,y) = 0

• So,    F(x,y)  >  0    (x,y)  Outside

• And,  F(x,y)  <  0    (x,y)  Inside

Choose E or SE

• Function is  x2 + y2 – r 2 = 0

• So,    F(M)   0   SE

• And,  F(M)  <   0   E

E

SE

M
ideal 
curve

F(M)   0   SE

E

SE

M

ideal 
curve

F(M)  < 0   E
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Decision Variable d

Again, we let,

d = F(M )

E

SE

M

ideal 
curve

Look at Case 1: E
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E

SE

M
ideal 
curve

Look at Case 2: SE dold  0   SE

Because,…, straightforward manipulation
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dold  0   SE

(2 2 5)new old p p

SEold

yd d x

d

   

  

I.e.,

2 2 5SE p pyx  

Note: ∆΄s Not Constant

depend on  values of xp and yp

 andE SE

Summary

• ∆΄s are no longer constant over entire line

• Algorithm structure is exactly the same

• Major difference from the line algorithm

–∆ is re-evaluated at each step

– Requires real arithmetic

Initial Condition

• Let r be an integer.  Start at

• Next midpoint M lies at

• So,   
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Ellipses

• Evaluation is analogous

• Structure is same 

• Have to work out the ∆΄s

Getting to Integers

• Note the previous algorithm 

involves real arithmetic

• Can we modify the algorithm to use 

integer arithmetic?
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Integer Circle Algorithm

• Define a shift decision variable

• In the code, plug in 
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Integer Circle Algorithm

• Now, the initialization is h = 1 - r

• So the initial value becomes

r
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Integer Circle Algorithm

• Then,

• Since h an integer

1
0   becomes   

4
d h  

1
 0    

4
hh   

Integer Circle Algorithm

• But,h begins as an integer

• And, h gets  incremented by integer

• Hence, we have an integer circle 

algorithm

• Note: Sufficient to test for  h < 0

End of Bresenham Circles Another Digital Line Issue

• Clipping Bresenham lines

• The integer slope is not the true 
slope

• Have to be careful

• More issues to follow
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Line Clipping Problem

minyy 

minxx 

Clipping  
Rectangle

)0,0( yx

)1,1( yx

maxxx 

Clipped Line

minyy 
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Clipping  
Rectangle)0,0( yx 

)1,1( yx

maxxx 
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Drawing Clipped Lines

)0,0( yx

)1,1( yx

Clipped Line Has Different Slope !

3
4m 

1
2m 

Pick Right Slope to Reproduce 
Original Line Segment

Zoom of previous situation

Pick Right Slope to Reproduce 
Original Line Segment

Zoom of previous situation
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Clipping Against  x = xmin

E

NE
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Clipping Against y = ymin
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minxx 
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2
1

min  yy

Line getting 
clipped

B A

Clipping Against y = ymin

• Situation is complicated

• Multiple pixels involved at  (y = ymin )

• Want all of those pixels as “in”

• Analytic  ∩ , rounding  x gives A

• We want point B

Clipping Against y = ymin

• Use   Line ∩ y = ymin - ½

• Round up to nearest integer  x

• This yields point B, the desired result

Jaggies-Manifestation of Aliasing

Added resolution helps, but does not directly 
address underlying issue of aliasing

Jaggies and Aliasing

• To represent a line with discrete pixel 
values is to sample finitely a continuous 
function

• Jaggies are visual manifestation, 
artifacts, resulting from information loss 

• The term aliasing is a complicated, 
unintuitive phenomenon which will be 
defined later
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Jaggies and Aliasing

• Doubling resolution in x and y 
reduces the effect of the problem, 
but does not fix it

• Doubling resolution costs 4 times 
memory, memory bandwidth and 
scan conversion time!

Anti-aliasing

5  

4  

3   

2   
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0
0     1      2     3     4     5      6     7     8     9    10 11

Pixel intensity (darkness, in this case) is 
proportional to area covered by line

Pixel 
Space

Anti-aliasing

Pixel intensity (darkness, in this case)

is proportional to area covered by line

Pixel 
Space

Anti-aliasing

• Set each pixel’s intensity value 
proportional to its area of overlap 
(i.e. sub-area) covered by primitive

• Not more than 1 pixel/column for 
lines with

0 < slope < 1

Gupta-Sproull Algorithm -1

• Standard Bresenham chooses E or NE

• Incrementally compute distance D from 

chosen pixel to center of line

• Vary pixel intensity by value of D

• Do this for line above and below 

Gupta-Sproull Algorithm -2

• Use coarse (4-bit, say) lookup table for 

intensity :  Filter (D, t )

• Note,  Filter value depends only on D

and t, not the slope of line!  (Very clever)

• For line_width t = 1 geometry and 

associated calculations greatly simplify
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Cone Filter for Weighted 
Area Sampling

1r 

1t 



D



 

 
 

 

Unit thickness line intersects no more than 3 pixels

Observations

• Lines are complicated

• Many aspects to consider

• We omitted many

• What about intensity of 

y = x vs y = 0   ?

The End

Bresenham Circles
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