Bresenham's Midpoint Algorithm

Lecture Set 2

CS5600 Computer Graphics adapted from Rich Riesenfeld's slides Spring 2013

Line Characterizations

• Explicit: y = mx + B

• Implicit: F(x, y) = ax + by + c = 0

• Constant slope: $\frac{\Delta y}{\Delta x} = k$

• Constant derivative: f'(x) = k

Line Characterizations - 2

- Parametric: $P(t) = (1-t) P_0 + t P_1$ where, $P(0) = P_0$; $P(1) = P_1$
- Intersection of 2 planes
- Shortest path between 2 points
- Convex hull of 2 discrete points

Two Line Equations

• Explicit: y = mx + B

• Implicit: F(x,y) = ax + by + c = 0

Define: $dy = y_1 - y_0$ $dx = x_1 - x_0$

Hence, $y = \left(\frac{dy}{dx}\right)x + B$

From previous

We have,
$$y = \left(\frac{dy}{dx}\right)x + B$$

Hence,
$$\frac{dy}{dx}x - y + B = 0$$

Relating Explicit to Implicit Eq's

Recall,
$$\frac{dy}{dx}x - y + B = 0$$

Or,
$$(dy)x + (-dx)y + (dx)B = 0$$

$$\therefore$$
 $F(x, y) = (dy)x + (-dx)y + (dx)B = 0$

where,
$$a = (dy)$$
; $b = -(dx)$; $c = B(dx)$

Discrete Lines

- Lines vs. Line Segments
- What is a discrete line segment?
 - -This is a relatively recent problem
 - -How to generate a discrete line?

"Good" Discrete Line

- · No gaps in adjacent pixels
- · Pixels close to ideal line
- · Consistent choices; same pixels in same situations
- · Smooth looking
- Even brightness in all orientations
- Same line for $P_0 P_1$ as for $P_1 P_0$
- Double pixels stacked up?

How to Draw a Line?

- 1. Compute slope
- 2. Start at on point (x_o, y_o)
- 3. Increment Δx and draw
 - How to figure this out?

Derive from Line Equation

$$Y = mX + b$$

$$Y_i = mX_i + b$$

$$X_{i+1} = X_i + \Delta X$$

$$Y_{i+1} = mX_{i+1} + b$$

$$Y_{i+1} = m(X_i + \Delta X) + b$$

$$= mX_i + m\Delta X + b$$
$$= m\Delta X + mX_i + b$$

$$= m\Delta X + Y_i$$

Derive from Line Equation

$$Y = mX + b$$

 $Y_i = mX_i + b$

 $X_{i+1} = X_i + \Delta X$

$$m = \Delta y / \Delta x$$

$$= (y_1 - y_0) / (x_1 - x_0)$$

$$Y_{i+1} = mX_{i+1} + b$$

$$\Delta y = \Delta x (y_1 - y_0) / (x_1 - x_0)$$

 $Y_{i+1} = Y_i + \Delta Y$

$$Y_{i+1} = m(X_i + \Delta X) + b$$

=
$$Y_i + \Delta x (y_1 - y_0) / (x_1 - x_0)$$

$$= mX_i + m\Delta X + b$$
$$= m\Delta X + mX_i + b$$

$$= m\Delta X + Y_i$$

$$= Y_i + \Delta X(m)$$

increment X

If $|y_1 - y_0| > |x_1 - x_0|$

increment Y

What about slope?

Restricted Form

• Line segment in first octant with

 After we derive this, we'll look at the other cases (other octants)

00

Incremental Fn Eval

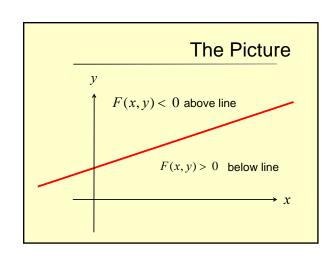
- Recall $f(x_{i+1}) = f(x_i) + \Delta(x_i)$
- Characteristics
 - -Fast
 - -Cumulative Error
- Need to define $f(x_o)$

Investigate Sign of F

Verify that

$$F(x,y) = \begin{cases} + & \text{below line} \\ 0 & \text{on line} \\ - & \text{above line} \end{cases}$$

Look at extreme values of y



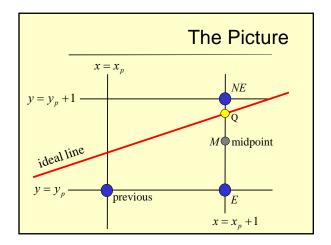
Key to Bresenham Algorithm

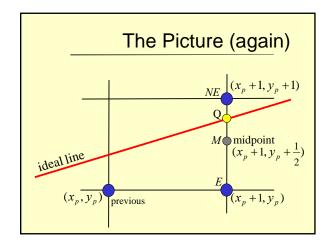
"Reasonable assumptions" have reduced the problem to making a binary choice at each pixel:

Decision Variable d (logical)

Define a logical *decision* variable *d*

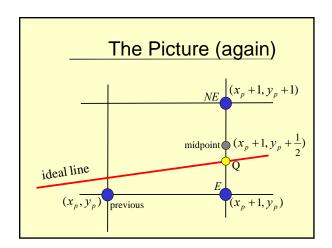
- linear in form
- incrementally updated (with addition)
- tells us whether to go E or NE





Observe the relationships

- Suppose *Q* is above *M*, as before.
- Then F(M) > 0, M is below the line
- So, F(M) > 0 means line is above M,
- Need to move NE, increase y value



Observe the relationships

- Suppose Q is below M, as before.
- Then F(M) < 0 , implies M is above the line
- So, F(M) < 0 , means line is below M,
- Need to move to E; don't increase y

$$M = Midpoint = (x_p + 1, y_p + \frac{1}{2})$$

- Want to evaluate at M
- Will use an incremental decision variable d

$$d = F(x_p + 1, y_p + \frac{1}{2})$$

• Let, $d = a(x_p + 1) + b(y_p + \frac{1}{2}) + c$

How will d be used?

Let,
$$d = a(x_p + 1) + b(y_p + \frac{1}{2}) + c$$

Therefore,

$$d = \begin{cases} >0 \implies NE & \text{(midpoint below ideal line)} \\ <0 \implies E & \text{(midpoint above ideal line)} \\ =0 \implies E & \text{(arbitrary)} \end{cases}$$

Case E: Suppose E is chosen

- Recall $d_{old} = a(x_p + 1) + b(y_p + \frac{1}{2}) + c$
- $E \Rightarrow : x \leftarrow x + 1; y \leftarrow y,$
- $\therefore ...d_{new} = F(x_p + 2, y_p + \frac{1}{2})$ = $a(x_p + 2) + b(y_p + \frac{1}{2}) + c$

Case E: Suppose E is chosen

$$d_{new} - d_{old} = \left(a(x_p + 2) + b(y_p + \frac{1}{2}) + c \right)$$
$$-\left(a(x_p + 1) + b(y_p + \frac{1}{2}) + c \right)$$
$$d_{new} = d_{old} + a$$

Review of Explicit to Implicit

Recall,
$$\frac{dy}{dx}x - y + B = 0$$

Or, $(dy)x + (-dx)y + (dx)B = 0$
 $\therefore F(x,y) = (dy)x + (-dx)y + (dx)B = 0$
where, $a = (dy)$; $b = -(dx)$; $c = B(dx)$

Case E: $d_{new} = d_{old} + a$

 $\Delta_E \equiv$ increment we add if E is chosen. So, $\Delta_E = a$. But remember that a = dy (from line equations). Hence, F(M) is not evaluated explicitly. We simply add $\Delta_E = a$ to update d for E

Case NE: Suppose NE chosen

Recall
$$d_{old} = a(x_p + 1) + b(y_p + \frac{1}{2}) + c$$

and, $NE \Rightarrow : x \leftarrow x + 1; y \leftarrow y + 1,$

$$\therefore d_{new} = F(x_p + 2, y_p + \frac{3}{2})$$

$$= a(x_p + 2) + b(y_p + \frac{3}{2}) + c$$

Case NE: Suppose NE

$$\begin{aligned} d_{new} - d_{old} &= \\ &= \left(a(x_p + 2) + b(y_p + \frac{3}{2}) + c \right) \\ &- \left(a(x_p + 1) + b(y_p + \frac{1}{2}) + c \right) \\ &d_{new} = d_{old} + a + b \end{aligned}$$

Case NE:
$$d_{new} = d_{old} + a + b$$

 $\Delta_{NE} \equiv \text{increment that we add if } NE \text{ is chosen.}$ So, $\Delta_{NE} = a + b$. But remember that a = dy, and b = -dx (from line equations).

Hence, F(M) is not evaluated explicitly.

We simply add $\Delta_{NE} = a + b$ to update d for NE

Case NE: $d_{new} = d_{old} + a + b$

 $\Delta_{NE} = a + b$, where a = dy, and b = -dx means, we simply add $\Delta_{NE} = a + b$, i.e.,

 $\Delta_{NE} = dy - dx$ to update d for NE.

Summary

- At each step of the procedure, we must choose between moving E or NE based on the sign of the decision variable d
- Then update according to

$$d \leftarrow \begin{cases} d + \Delta_E, & \text{where } \Delta_E = dy, \text{ or} \\ d + \Delta_{NE}, & \text{where } \Delta_{NE} = dy - dx \end{cases}$$

What is initial value of d?

- First point is (x_0, y_0)
- First midpoint is $(x_0 + 1, y_0 + \frac{1}{2})$
- What is initial midpoint value?

$$d(x_0+1, y_0+\frac{1}{2}) = F(x_0+1, y_0+\frac{1}{2})$$

What is initial value of d?

$$F(x_0 + 1, y_0 + \frac{1}{2}) = a(x_0 + 1) + b(y_0 + \frac{1}{2}) + c$$

$$= (ax_0 + by_0 + c) + (a + \frac{b}{2})$$

$$= F(x_0, y_0) + (a + \frac{b}{2})$$

What is initial value of d?

Note, $F(x_0, y_0) = 0$, since (x_0, y_0) is on line.

Hence,
$$F(x_0 + 1, y_0 + \frac{1}{2}) = 0 + a + \frac{b}{2}$$

$$=(dy)-\left(\frac{dx}{2}\right)$$

What Does Factor of 2 x Do?

Has the same 0-set

$$2F(x, y) = 2(ax + by + c) = 0$$

- · Changes the slope of the plane
- · Rotates plane about the 0-set line
- Gets rid of the denominator

What is initial value of d?

Note, we can clear denominator and not change line,

$$2F(x_0 + 1, y_0 + \frac{1}{2}) = 2(dy) - dx$$

What is initial value of d?

$$2F(x, y) = 2(ax + by + c) = 0$$

So, first value of

$$d = 2(dy) - (dx)$$

More Summary

- Initial value 2(dy) (dx)
- Case E: $d \leftarrow d + \Delta_E$, where $\Delta_E = 2(dy)$
- Case NE: $d \leftarrow d + \Delta_{NE}$, where $\Delta_{NE} = 2\{(dy) (dx)\}$
- · Note, all deltas are constants

More Summary

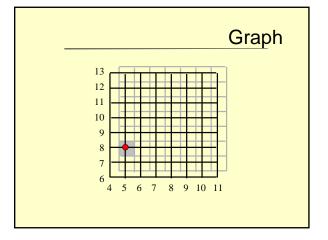
Choose
$$\begin{cases} E & \text{if } d \leq 0 \\ NE & \text{otherwise} \end{cases}$$

Example

• Line end points:

$$(x_0, y_0) = (5,8); (x_1, y_1) = (9,11)$$

• Deltas: dx = 4; dy = 3



Example (dx = 4; dy = 3)

· Initial value of

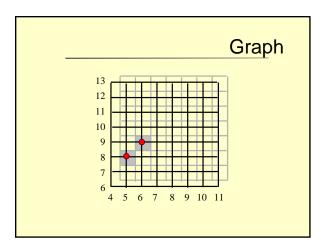
$$d(5,8) = 2(dy) - (dx)$$

$$= 6 - 4 = 2 > 0$$

$$d = 2 \implies NE$$

$$d = 2(dy) - (dx)$$

$$\begin{cases} E & \text{if } d \le 0 \\ NE & \text{otherwise} \end{cases}$$



Example (dx=4; dy=3)

 $d \leftarrow d + \Delta_E$, where $\Delta_E = 2(dy)$

- Update value of d
- $d \leftarrow d + \Delta_{NE}$, where $\Delta_{NE} = 2\{(dy) - (dx)\}$

NE otherwise

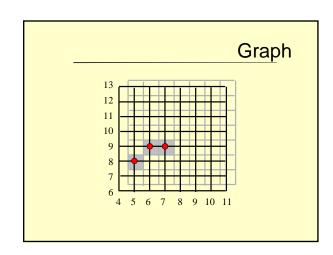
• Last move was NE, so

$$\Delta_{NE} = 2(dy - dx)$$

$$= 2(3 - 4) = -2$$

$$d = 2 - 2 = 0 \implies E$$

$$E \text{ if } d \le 0$$



Example (dx=4; dy=3)

 $d \leftarrow d + \Delta_E$, where $\Delta_E = 2(dy)$

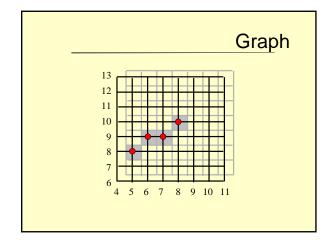
• Previous move was $E_{\text{where } \Delta_{NE} = 2\{(dy) - (dx)\}}^{d \leftarrow d + \Delta_{NE}}$

$$\Delta_{E} = 2(dy)$$

$$= 2(3) = 6$$

$$d = 0 + 6 > 0 \implies NE$$

$$\begin{cases} E & \text{if } d \leq 0 \\ NE & \text{otherwise} \end{cases}$$



Example (dx=4; dy=3)

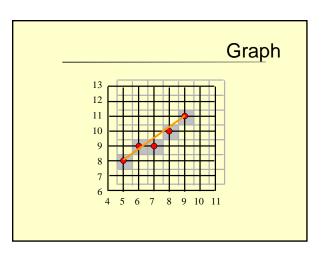
 $d \leftarrow d + \Delta_E$, where $\Delta_E = 2(dy)$

• Previous move was NE $d \leftarrow d + \Delta_{NE}$, where $\Delta_{NE} = 2\{(dy) - (dx)\}$

$$\Delta_{NE} = 2(dy - dx) = 2(3 - 4) = -2$$

$$d = 6 - 2 = 4 \implies NE$$

 $\begin{cases} E & \text{if } d \le 0 \\ NE & \text{otherwise} \end{cases}$



Graph 13 12 11 10 9 8 7 4 5 6 7 8 9 10 11

Meeting Bresenham Criteria

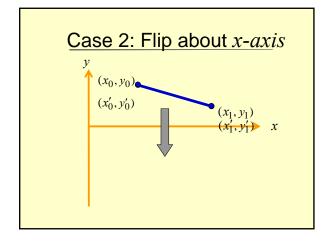
Case 0: m = 0; $m = 1 \implies$ trivial cases

Case 1: $0 > m > -1 \implies \text{flip about } x\text{-axis}$

Case 2: $m > 1 \implies \text{flip about } x = y$

Case 0: Trivial Situations

- $m = 0 \implies$ horizontal line
- $m=1 \implies \text{line } y=x$
- Do not need Bresenham



Case 2: Flip about *x-axis*

- Suppose, 0 > m > -1,
- Flip about *x*-axis (y' = -y):

$$(x'_0, y'_0) = (x_0, -y_0);$$

 $(x'_1, y'_1) = (x_1, -y_1)$

How do slopes relate?

$$m = \frac{y_1 - y_0}{x_1 - x_0};$$

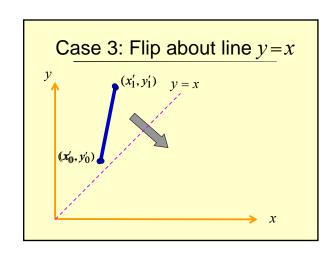
$$m' = \frac{y_1' - y_0'}{x_1 - x_0}$$
 by definition

Since
$$y'_i = -y_i$$
, $m' = \frac{-y_1 - (-y_0)}{x_1 - x_0}$

How do slopes relate?

i.e.,
$$m' = -\frac{(y_1 - y_0)}{x_1 - x_0}$$
$$m' = -m$$

$$\therefore$$
 $0 > m > -1 \implies 0 < m' < 1$



Case 3: Flip about line y=x

$$y = mx + B$$
,
swap $x \leftrightarrow y$ and prime them ,
 $x' = my' + B$,
 $my' = x' - B$

Case 3:
$$m' = ?$$

$$y' = \left(\frac{1}{m}\right)x' - B,$$

$$\therefore m' = \left(\frac{1}{m}\right) \text{ and,}$$

$$m > 1 \implies 0 < m' < 1$$

More Raster Line Issues

- Fat lines with multiple pixel width
- Symmetric lines
- How should end pt geometry look?
- Generating curves, e.g., circles, etc.
- Jaggies, staircase effect, aliasing...

