
1

Blending

Blending

Learn to use the A component in RGBA
color for

• - Blending for translucent surfaces

• - Compositing images

• - Antialiasing

Opacity and Transparency

Opaque surfaces permit no light to pass through

• Transparent surfaces permit all light to pass

• Translucent surfaces pass some light

translucency = 1 – opacity ()

Physically Correct Translucency
Dealing with translucency in a physically correct manner is

difficult due to

• The complexity of the internal interactions of light and
matter

• Limitations of fixed-pipeline rendering w/ State Machine

Window Transparency

• Look out a window

Window Transparency

• Look out a window

• What’s wrong with that?

2

Window Transparency

• Look out a window

• What’s wrong with that?

Screen Door Transparency

• glEnableGL_POLYGON_STIPPLE(GL_POLYGON_STIPPLE)

Example

• Example 1

• Example 2

• Frame Buffer (assuming 32-bits)
– Simple color model: R, G, B; 8 bits each
– -channel A, another 8 bits

• Alpha determines opacity, pixel-by-pixel
– = 1: opaque
– = 0: transparent
– 0 < < 1: translucent

• Blend translucent objects during rendering
• Achieve other effects (e.g., shadows)

Compositing

• Back to Front

• Front to Back

ccincout CCC)1(

)1(

)1(

incinout

inccinout CCC

3

Blending

• Blending operation
– Source: s = [sr sg sb sa]

– Destination: d = [dr dg db da]

– b = [br bg bb ba] source blending factors

– c = [cr cg cb ca] destination blending factors
– d’ = [brsr + crdr, , bgsg + cgdg ,bbsb + cbdb ,basa + cada]

Blending

OpenGL Blending and Compositing

• Must enable blending and pick source and
destination factors

glEnable(GL_BLEND)

glBlendFunc(source_factor,destination_factor)

• Only certain factors supported
GL_ZERO, GL_ONE

GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA

GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA

See Red Book for complete list

glBlendEquation(…)

GL_FUNC_ADD

GL_FUNC_SUBTRACT

GL_REVERSE_SUBTRACT

GL_MIN

GL_MAX

Blending Errors

• Operations are not commutative (order!)

• Operations are not idempotent

• Limited dynamic range

• Interaction with hidden-surface removal
– Polygon behind opaque one should be hidden

– Translucent in front of others should be composited

– Show Demo of the problem
– Solution?

Blending Errors

• Interaction with hidden-surface
removal
– Draw Opaque geom first, then semi-

transparent

– Use Alpha test:
glAlphaFunc(GL_GREATER, 0.1)

glEnable(GL_ALPHA_TEST)

4

Blending Errors

• Interaction with hidden-surface
removal

– Disable Z-test?

– 2 polys: red (front) and blue (behind) on
green background, 50% transparency
1. Render background

2. Render red poly

3. Render blue poly

What happens (z-test enabled)?

Blending Errors

• Interaction with hidden-surface
removal

– Disable Z-test?

– 2 polys: red (front) and blue (behind) on
green background, 50% transparency
1. Render background

2. Render blue poly

3. Render red poly

What happens (z-test enabled)?

Blending Errors

• Interaction with hidden-surface
removal

– Disable Z-test?

– 2 polys: red (front) and blue (behind) on
green background, 50% transparency
1. Render background

2. Render red poly

3. Render blue poly

What happens (z-test disabled)?

Blending Errors

• Interaction with hidden-surface
removal

– Disable Z-test?

– 2 polys: red (front) and blue (behind) on
green background, 50% transparency
1. Render background

2. Render blue poly

3. Render red poly

What happens (z-test disabled)?

Blending Errors

• Interaction with hidden-surface removal
– Polygon behind opaque one should be hidden

– Translucent in front of others should be composited

– Solution?
• Two passes using alpha testing (glAlphaFunc): 1st pass

• alpha=1 accepted, and 2nd pass alpha<1 accepted

• make z-buffer read-only for translucent polygons (alpha<1)
with glDepthMask(GL_FALSE);

– Demo

Sorting

• General Solution?
– Just sort polygons

• Which Space?

5

Sorting Order Matters

Magenta
Yellow
Gray
Cyan

Correct

Antialiasing Revisited

• Single-polygon case first

• Set value of each pixel to covered
fraction

• Use destination factor of “1 – ”

• Use source factor of “”

• This will blend background with foreground

• Overlaps can lead to blending errors

Antialiasing with Multiple Polygons

• Initially, background color C0, a0 = 0

• Render first polygon; color C1 fraction 1

– Cd = (1 – 1)C0 + 1C1

– d = 1

• Render second polygon; assume fraction 2

• If no overlap (case a), then
– C’d = (1 – 2)Cd + 2C2

– ’d = 1 + 2

Antialiasing with Multiple Polygons

• Now assume overlap (case b)

• Average overlap is a1a2

• So ad = a1 + a2 – a1a2

• Make front/back decision for color as usual

6

Antialiasing in OpenGL

• Avoid explicit -calculation in program
• Enable both smoothing and blending

glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);

• Can also hint about quality vs performance
using glHint(…)

Fog

Fog Tutor

Depth Cue via Fog

7

Example

