CS5600 Computer Graphics From Rich Riesenfeld Spring 2013

Ray Tracing

- Classical geometric optics technique
- Extremely versatile
- · Historically viewed as expensive
- · Good for special effects
- · Computationally intensive
- Can do sophisticated graphics

Ray Tracing Implementation -1

- Key computation: Must find
 - $ray \cap object$
- This is equivalent to
 - ray object = 0
- This is essentially root finding

Ray Tracing Implementation

· Ray is often represented parametrically,

$$r(t) = t (P - E)$$
,

so we seek,

$$r(t) \cap F(x, y, z)$$

- Problem requires intersection of parametric ray with some kind of surface
- · Ray Tracing maps easily onto recursion

Ray Tracing Implementation

- RT'ing used for spectacular images
- RT'ing maps naturally to recursion
- · RT'ing is trivially parallelized
- RT'ing has robustness problems
- RT'ing has aliasing problems

Ray Tracing

Three (*nonexclusive*) phenomena follow when ray intersects object:

- 1. Reflect (specularity)
- 2. Pass through (transparency)
- 3. Stop (diffuse look for light vector and calculate proper value)

Ray Tracing

• Forward ray tracing: E(S*)DL

• Backward ray tracing: L(S*)DE

What is the difference?

Ray Tracing (ternary) Tree Often a combination of all three occur at each node to model sophisticated effects Ray impinges Reflect (specular) Transmit (Transparent /translucent)

Ray Tracing Growth

- Tree can grow extremely fast, with high exponential fan out
- Fancy rays can have many crosssection geometries; not necessary a line with 0-cross-section
- Need to bound tree depth & fanout

Algorithm for Computing Barycentric Coords of P

3. Compute all areas using cross products in the following manner,

$$2*Area_{big} = ||AB \times BC||$$

$$2*Area_{\alpha} = ||PB \times BC||$$

$$2*Area_{\beta} = ||PC \times CA||$$

$$2*Area_{\gamma} = ||PA \times AB||$$

Algorithm for Computing Barycentric Coords of P

4. Now compute ratios for α, β, γ

$$\alpha = \frac{2*Area_{\alpha}}{2*Area_{big}} = \begin{vmatrix} PB \times BC \\ AB \times BC \end{vmatrix}$$

$$\beta = \frac{2*Area_{\alpha}}{2*Area_{big}} = \begin{vmatrix} PC \times CA \\ AB \times BC \end{vmatrix}$$

$$\gamma = \frac{2*Area_{\alpha}}{2*Area_{big}} = \begin{vmatrix} PA \times AC \\ AB \times BC \end{vmatrix}$$

Algorithm for Computing Barycentric Coords of *P*

Now compute sign of area. <u>In</u> or <u>out</u>?
 Look at <u>dot product</u> of area vectors! P is <u>in</u> if same <u>sign</u>, i.e., positive; <u>out</u>, outwise.

$$\begin{aligned} &Sign_{\alpha} = sign\left\{ (PB \times BC) \cdot (AB \times BC) \right\} \\ &Sign_{\beta} = sign\left\{ (PC \times CB) \cdot (AB \times BC) \right\} \\ &Sign_{\gamma} = sign\left\{ (PA \times AC) \cdot (AB \times BC) \right\} \end{aligned}$$

Applet

Universität Karlsruhe (TH) Geometrische Datenverarbeitung:

http://i33www.ira.uka.de/applets/mocca/html/noplugin/inhalt.html

Recall Cramer's Rule

Let,
$$\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

That is, Mx = y

and,
$$\|\boldsymbol{M}\| = \begin{vmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{vmatrix} = \det(\boldsymbol{M})$$

Recall Cramer's Rule 2

Then,

$$x_1 = \frac{1}{\|\boldsymbol{M}\|} \begin{vmatrix} y_1 & m_{12} & m_{13} \\ y_2 & m_{22} & m_{23} \\ y_3 & m_{32} & m_{33} \end{vmatrix}; \ x_2 = \frac{1}{\|\boldsymbol{M}\|} \begin{vmatrix} m_{11} & y_1 & m_{13} \\ m_{21} & y_2 & m_{23} \\ m_{31} & y_3 & m_{33} \end{vmatrix};$$

and.

$$x_3 = \frac{1}{\|\boldsymbol{M}\|} \begin{vmatrix} m_{11} & m_{12} & y_1 \\ m_{21} & m_{22} & y_2 \\ m_{31} & m_{32} & y_3 \end{vmatrix}$$

Ray Intersect Parametic Object

Let S(u, v) = (f(u, v), g(u, v), h(u, v))

be a parametrically defined object.

Componentwise, this means,

$$e_{\chi} + td_{\chi} = f(u, v)$$

$$e_y + td_y = g(u, v)$$

$$e_{z} + td_{z} = h(u, v)$$

Ray Tracing

Barycentric Coords: Areas

Then,

$$\alpha, \beta, \gamma \geq 0$$
,

$$\alpha + \beta + \gamma \equiv 1$$
,

and, P =

$$\alpha A + \beta B + \gamma C$$

Ray Intersect Parametic Object

Let S(u,v) = (f(u,v), g(u,v), h(u,v))be a parametrically defined object. Componentwise, this means,

$$e_x + td_x = f(u, v)$$

$$e_y + td_y = g(u, v)$$

$$e_z + td_z = h(u, v)$$

Shirley's $ray \cap \sqcup$ Method⁻¹

We can think of this form as establishing the origin at A, and using basis vectors $\{(B-A), (C-A)\}$ to span the plane of $\Box ABC$:

$$P(\beta, \gamma) = A + \beta(B - A) + \gamma(C - A)$$

Shirley's $ray \cap \sqcup$ Method⁻²

Let p(t) = e + td be a ray, and define the plane as

$$P(\alpha, \beta, \gamma) = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C},$$
or,
$$P(\beta, \gamma) = (1 - \beta - \gamma) \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$$

$$= \mathbf{A} + \beta (\mathbf{B} - \mathbf{A}) + \gamma (\mathbf{C} - \mathbf{A})$$

Shirley's $ray \cap \sqcup$ Method⁻³

Where do ray p(t) = e + td, and plane defined as

$$P(\alpha, \beta, \gamma) = \alpha A + \beta B + \gamma C,$$

intersect?

$$A + \beta(B-A) + \gamma(C-A) = e + td$$

$$A - e = -\beta(B-A) - \gamma(C-A) + td$$

$$\beta(A-B) + \gamma(A-C) + td = A - e$$

Shirley's
$$ray \cap \sqcup$$
 Method⁻⁴

In matrix form

$$\beta(A-B) + \gamma(A-C) + td = A - e$$

$$\begin{bmatrix} (A-B) & (A-C) & d \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = A - e$$

Ray Triangle

$$e + td = a + \beta(b-a) + \gamma(c-a)$$

$$x_e + tx_d = x_a + \beta(x_b - x_a) + \gamma(x_c - x_a)$$

$$y_e + ty_d = y_a + \beta(y_b - y_a) + \gamma(y_c - y_a)$$

$$z_e + tz_d = z_a + \beta(z_b - z_a) + \gamma(z_c - z_a)$$

Ray Triangle

$$\begin{bmatrix} x_a - x_b & x_a - x_c & x_d \\ y_a - y_b & y_a - y_c & y_d \\ z_a - z_b & z_a - z_c & z_d \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} x_a - x_e \\ y_a - y_e \\ z_a - z_e \end{bmatrix}$$

Shirley's $ray \cap \sqcup$ Method⁻⁵

$$\begin{bmatrix} (A-B) & (A-C) & d \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = A - e$$

$$\underbrace{M}_{ (x_a - x_b) \quad (x_a - x_c) \quad x_d }_{ (y_a - y_b) \quad (y_a - y_c) \quad y_d \\ (z_a - z_b) \quad (z_a - z_c) \quad z_d }_{ (z_a - z_b) \quad (z_a - z_c) \quad z_d }_{ (z_a - z_e) }$$

By Cramer's Rule

$$\beta = \frac{1}{\|M\|} \begin{vmatrix} (x_a - x_e) & (x_a - x_c) & x_d \\ (y_a - y_e) & (y_a - y_c) & y_d \\ (z_a - z_e) & (z_a - z_c) & z_d \end{vmatrix}$$

$$\gamma = \frac{1}{\|M\|} \begin{vmatrix} (x_a - x_b) & (x_a - x_e) & x_d \\ (y_a - y_b) & (y_a - y_e) & y_d \\ (z_a - z_b) & (z_a - z_a) & z_d \end{vmatrix}$$

By Cramer's Rule⁻²

$$t = \frac{1}{\|M\|} \begin{vmatrix} (x_a - x_b) & (x_a - x_c) & (x_a - x_e) \\ (y_a - y_b) & (y_a - y_c) & (y_a - y_e) \\ (z_a - z_b) & (z_a - z_c) & (z_a - z_e) \end{vmatrix}$$

Shirley's $ray \cap \Box$ Method

Let p(t) = e + td be a ray. For any object defined by f, we are looking for f(p(t)) = f(e+td) = 0,

for intersection points

What about texturing?

We know the intersection point, *p*, what about (*s*,*t*)?

$ray \cap implicit_object$

Let p(t) = e + td be a ray. For any object defined by f(x, y, z) = 0, we are looking for f(p(t)) = f(e + td) = 0, for intersection points

Shirley's $ray \cap Polygon Method$

Let p(t) = e + td be a ray. For any object defined by f, we are looking for f(p(t)) = f(e + td) = 0, for intersection points

Shirley's ray ∩ Polygon Method

 $f(p(t)) = f(e + t\mathbf{d}) = 0$ Equation to test point in plane: $(p - p_1) \text{ dot } n = 0$ Plug ray-equ into plane-equ: $(e + t\mathbf{d} - p_1) \text{ dot } n = 0$

Shirley's $ray \cap Polygon Method$

$$(e + t\mathbf{d} - p_1) \text{ dot } n = 0$$

$$(t\mathbf{d} + e - p_1) \text{ dot } n = 0$$

$$(t\mathbf{d} \text{ dot } n) + (e - p_1) \text{ dot } n = 0$$

$$t\mathbf{d} \text{ dot } n = (p_1 - e) \text{ dot } n$$

$$t = (p_1 - e) \text{ dot } n / \mathbf{d} \text{ dot } n$$
Need to check if p in inside polygon

$$ray \cap implicit_object$$

Let
$$p(t) = e + td$$
 be a ray.
For any object defined by $f(x, y, z) = 0$, we are looking for $f(p(t)) = f(e + td) = 0$, for intersection points

$ray \cap sphere$

For sphere with center $c = (c_x, c_y, c_z)$,

$$(\boldsymbol{p}-\boldsymbol{c}) \bullet (\boldsymbol{p}-\boldsymbol{c}) - R^2 = 0$$

is a vector eq with $\mathbf{p} = (p_x, p_y, p_z)$.

$$(e + td - c) \cdot (e + td - c) - R^2 = 0$$

$$ray \cap sphere$$

Collecting terms,

$$d \cdot d t^2 + 2 d \cdot (e - c) t + (e - c) \cdot (e - c) - R^2 = 0$$

Hence, t =

Lecture Week 12 B

$$\frac{-d\mathbb{Q}(e-c)\pm\sqrt{\left(d\mathbb{Q}(e-c)\right)^2-\left(d\mathbb{Q}d\right)\left((e-c)\mathbb{Q}(e-c)-R^2\right)}}{\left(d\mathbb{Q}d\right)}$$

And, unit normal is
$$n = \frac{(p-c)}{R}$$

$$ray \cap sphere$$

Sign of:
$$(d \cdot (e-c))^2 - (d \cdot d) ((e-c) \cdot (e-c) - R^2)$$

if sign < 0: ray misses sphere sign = 0: ray is tangent to sphere sign > 0: 2 intersections

Which to use?

Ray Tracing B

End

- 2