
cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Relational Query Languages:
Relational Algebra

Juliana Freire

Some slides adapted from J. Ullman, L. Delcambre, R. Ramakrishnan, G. Lindstrom and
Silberschatz, Korth and Sudarshan

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Relational Query Languages

•  Query languages: Allow manipulation and retrieval
of data from a database.

•  Relational model supports simple, powerful QLs:
–  Simple data structure – sets!

•  Easy to understand, easy to manipulate
–  Strong formal foundation based on logic.
–  Allows for much optimization.

•  Query Languages != programming languages!
–  QLs not expected to be “Turing complete”.
–  QLs not intended to be used for complex calculations.
–  QLs support easy, efficient access to large data sets.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Relational Query Languages

•  Query languages: Allow manipulation and retrieval
of data from a database.

•  Relational model supports simple, powerful QLs:
–  Strong formal foundation based on logic.
–  Allows for much optimization.

•  Query Languages != programming languages!
–  QLs not expected to be “Turing complete”.
–  QLs not intended to be used for complex calculations.
–  QLs support easy, efficient access to large data sets.

Some operations
cannot be
expressed

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Formal Relational Query Languages

•  Two mathematical Query Languages form the
basis for “real” relational languages (e.g.,
SQL), and for implementation:
–  Relational Algebra: More operational, very useful

for representing execution plans.
–  Relational Calculus: Lets users describe what

they want, rather than how to compute it. (Non-
operational, declarative.)

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

•  We can describe tables in a relational database as
sets of tuples

•  We can describe query operators using set theory
•  The query language is called relational algebra
•  Normally, not used directly -- foundation for SQL

and query processing
–  SQL adds syntactic sugar

Describing a Relational Database Mathematically:
 Relational Algebra

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

What is an “Algebra”

•  Mathematical system consisting of:
–  Operands --- variables or values from which new

values can be constructed
–  Operators --- symbols denoting procedures that

construct new values from given values
•  Expressions can be constructed by applying operators

to atomic operands and/or other expressions
–  Operations can be composed -- algebra is closed
–  Parentheses are needed to group operators

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Basics of Relational Algebra

•  Algebra of arithmetic: operands are variables and
constants, and operators are the usual arithmetic
operators
–  E.g., (x+y)*2 or ((x+7)/(y-3)) + x

•  Relational algebra: operands are variables that stand
for relations and relations (sets of tuples), and operators
are designed to do the most common things we need to
do with relations in databases, e.g., union, intersection,
selection, projection, Cartesian product, etc
–  E.g., (π c-ownerChecking-account) ∩ (π s-ownerSavings-account)
•  The result is an algebra that can be used as a query

language for relations.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Basics of Relational Algebra (cont.)

•  A query is applied to relation instances, and the result of
a query is also a relation instance

–  Schemas of input relations for a query are fixed (but query will
run regardless of instance!)

–  The schema for the result of a given query is also fixed.
Determined by definition of query language constructs.

•  Operators refer to relation attributes by position or name:
–  E.g., Account(number, owner, balance, type)
PositionalAccount.$1 = Account.number  Named field
PositionalAccount.$3 = Account.balance  Named field
–  Positional notation easier for formal definitions, named-field

notation more readable.
–  Both used in SQL

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

•  The usual set operations: union, intersection,
difference
–  Both operands must have the same relation schema

•  Operations that remove parts of relations:
–  Selection: pick certain rows
–  Projection: pick certain columns

•  Operations that combine tuples from two relations:
Cartesian product, join

•  Renaming of relations and attributes
•  Since each operation returns a relation, operations

can be composed! (Algebra is “closed”.)

Relational Algebra: Operations

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Removing Parts of Relations

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Selection: Example
σc R= select -- produces a new relation with the

subset of the tuples in R that match the
condition C

Sample query: σ Type = “savings” Account

Number Owner Balance Type
101 J. Smith 1000.00 checking
102 W. Wei 2000.00 checking
103 J. Smith 5000.00 savings
104 M. Jones 1000.00 checking
105 H. Martin 10,000.00 checking

Account

Number Owner Balance Type
103 J. Smith 5000.00 savings

σ (sigma)

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Selection: Another Example

σ Balance < 4000 Account

Number Owner Balance Type
101 J. Smith 1000.00 checking
102 W. Wei 2000.00 checking
103 J. Smith 5000.00 savings
104 M. Jones 1000.00 checking
105 H. Martin 10,000.00 checking

Account

Number Owner Balance Type
101 J. Smith 1000.00 checking
102 W. Wei 2000.00 checking
104 M. Jones 1000.00 checking

 Selects rows that
satisfy selection

condition

 Schema of result
identical to schema of

input relation

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Projection: Example

Number Owner Balance Type
101 J. Smith 1000.00 checking
102 W. Wei 2000.00 checking
103 J. Smith 5000.00 savings
104 M. Jones 1000.00 checking
105 H. Martin 10,000.00 checking

Account

π AttributeList R = project -- deletes attributes that
are not in projection list.

Sample query: πNumber, Owner, Type Account

π (pi)

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Projection: Example

Number Owner Balance Type
101 J. Smith 1000.00 checking
102 W. Wei 2000.00 checking
103 J. Smith 5000.00 savings
104 M. Jones 1000.00 checking
105 H. Martin 10,000.00 checking

Account

π = project
Sample query: πNumber, Owner, Type Account

Number Owner Type
101 J. Smith checking
102 W. Wei checking
103 J. Smith savings
104 M. Jones checking
105 H. Martin checking

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Projection: Example

Number Owner Balance Type
101 J. Smith 1000.00 checking
102 W. Wei 2000.00 checking
103 J. Smith 5000.00 savings
104 M. Jones 1000.00 checking
105 H. Martin 10,000.00 checking

Account

π = project
Sample query: πNumber, Owner, Type Account

Number Owner Type
101 J. Smith checking
102 W. Wei checking
103 J. Smith savings
104 M. Jones checking
105 H. Martin checking

 Schema of result is a
subset of the schema of

input relation

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Projection: Another Example

Number Owner Balance Type
101 J. Smith 1000.00 checking
102 W. Wei 2000.00 checking
103 J. Smith 5000.00 savings
104 M. Jones 1000.00 checking
105 H. Martin 10,000.00 checking

Account

 πOwner Account

Owner
J. Smith
W. Wei
M. Jones
H. Martin

Note: Projection operator eliminates duplicates,
Why???

In a DBMS products, do you think
duplicates should be eliminated
for every query? Are they?

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Extended (Generalized) Projection

•  Allows arithmetic functions and duplicate occurrences
of the same attribute to be used in the projection list

 ∏ F1, F2, …, Fn(E)
•  E is any relational-algebra expression
•  F1, F2, …, Fn are arithmetic expressions involving

constants and attributes in the schema of E.
•  Given relation credit-info(customer-name, limit, credit-

balance), find how much more each person can spend:
 ∏customer-name, limit – credit-balance (credit-info)

Can use rename to give a name to the column!
∏customer-name, (limit – credit-balance)  credit-available (credit-info)

cs5530/6530 Database Systems – Fall 2008 Juliana Freire
18

Extended Projection: Another Example

R = (A B)
 1 2
 3 4

πA+B->C,A,A (R) = C A1 A2
 3 1 1
 7 3 3

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Projection

•  Deletes attributes that are not in projection list.
•  Schema of result contains exactly the fields in

the projection list, with the same names that
they had in the input relation.

•  Projection operator has to eliminate duplicates
–  duplicates are always eliminated in relational

algebra: relations are sets!
–  Note: real systems typically don’t do duplicate

elimination unless the user explicitly asks for it.
(Why not?)

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Usual Set Operations

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Union of Two Sets

•  C = A U B

2

1
3

4

5
6

7
4

9
4

10
8

U

2

1
3

4

5
6

7
4

8

9

10

4
No duplicates!

A B

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Union: Example
∪ = union Checking-account ∪ Savings-account

c-num c-owner c-balance
101 J. Smith 1000.00
102 W. Wei 2000.00
104 M. Jones 1000.00
105 H. Martin 10,000.00

Checking-account

s-num s-owner s-balance
103 J. Smith 5000.00

Savings-account

c-num c-owner c-balance
101 J. Smith 1000.00
102 W. Wei 2000.00
104 M. Jones 1000.00
105 H. Martin 10,000.00
103 J. Smith 5000.00

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Union Compatible

•  Two relations are union-compatible if they have the
same degree (i.e., the same number of attributes) and
the corresponding attributes are defined on the same
domains.

•  Suppose we have these tables:

•  Union, intersection, & difference require union-
compatible tables

Checking-Account (c-num:str, c-owner:str, c-balance:real)

Savings-Account (s-num:str, s-owner:str, s-balance:real)

These are union-compatible tables.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Intersection

∩ = intersection
Checking-account ∩ Savings-account

What’s the answer to this query?

c-num c-owner c-balance
101 J. Smith 1000.00
102 W. Wei 2000.00
104 M. Jones 1000.00
105 H. Martin 10,000.00

Checking-account

s-num s-owner s-balance
103 J. Smith 5000.00

Savings-account

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Intersection (cont.)

Checking-account ∩ Savings-account

What’s the answer to this query?

 It’s empty. There are no tuples that are in both tables.

(π c-ownerChecking-account) ∩ (π s-ownerSavings-account)

What’s the answer to this new query?

c-num c-owner c-balance
101 J. Smith 1000.00
102 W. Wei 2000.00
104 M. Jones 1000.00
105 H. Martin 10,000.00

Checking-account

s-num s-owner s-balance
103 J. Smith 5000.00

Savings-account

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Intersection (cont.)

Checking-account ∩ Savings-account

What’s the answer to this query?

 It’s empty. There are no tuples that are in both tables.

(π c-ownerChecking-account) ∩ (π s-ownerSavings-account)

What’s the answer to this new query?

c-owner
J. Smith

c-num c-owner c-balance
101 J. Smith 1000.00
102 W. Wei 2000.00
104 M. Jones 1000.00
105 H. Martin 10,000.00

Checking-account

s-num s-owner s-balance
103 J. Smith 5000.00

Savings-account

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Difference

⎯ = difference

Find all the customers that own a Checking-account
and do not own a Savings-account.

(π c-ownerChecking-account) ⎯ (π s-ownerSavings-account)

•  What is the schema of result?

c-num c-owner c-balance
101 J. Smith 1000.00
102 W. Wei 2000.00
104 M. Jones 1000.00
105 H. Martin 10,000.00

Checking-account

s-num s-owner s-balance
103 J. Smith 5000.00

Savings-account

c-owner
W. Wei
M. Jones
H. Martin

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Challenge Question

•  How could you express the intersection
operation if you didn’t have an Intersection
operator in relational algebra? [Hint: Can you
express Intersection using only the Difference
operator?]

A ∩ B = ???

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Challenge Question

•  How could you express the intersection
operation if you didn’t have an Intersection
operator in relational algebra? [Hint: Can you
express Intersection using only the Difference
operator?]

A ∩ B = A – (A - B)

A ∩ B

A
B

A - B

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Combining Tuples of Two Relations

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Cross Product: Example

X cross product Teacher X Course
Teacher t-num t-name Course c-num c-name

 101 Smith 514 Intro to DB
 105 Jones 513 Intro to OS

 110 Fong

 t-num t-name c-num c-name
 101 Smith 514 Intro to DB

 105 Jones 514 Intro to DB
 110 Fong 514 Intro to DB

 101 Smith 513 Intro to OS
 105 Jones 513 Intro to OS
 110 Fong 513 Intro to OS

Cross product: combine
information from 2 tables
•  produces:
every possible
combination of
a teacher and a course

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Cross Product

•  R1 X R2
•  Each row of R1 is paired with each row of R2.
•  Result schema has one field per field of R1 and R2,

with field names `inherited’ if possible.
•  What about R1 X R1?

Teacher X Teacher t-num t-name t-num t-name
Conflict!

  Renaming operator:
Teacher X ρT (Teacher) = Teacher X T

ρT(t-num1, t-name1) (Teacher) X Teacher No conflict!

cs5530/6530 Database Systems – Fall 2008 Juliana Freire
33

Renaming

•  The ρ operator gives a new schema to a
relation.

•  R1 := ρR1(A1,…,An)(R2) makes R1 be a relation
with attributes A1,…,An and the same tuples
as R2.

•  Simplified notation: R1(A1,…,An) := R2.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire
34

Example: Renaming

Bookstore(name, addr)
 Joe’s Maple St.
 Sue’s River Rd.

 R(bs, addr)
 Joe’s Maple St.
 Sue’s River Rd.

R(bs, addr) := Bookstore

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Relational Algebra vs. Set Theory
(cross product)

Suppose.. A = {a, b, c} B = {1, 2} C = {x, y} then in

set theory, the cross product is defined as:
A X B = {(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)}

and (A X B) X C =
{((a,1),x), ((b,1),x), ((c,1),x), ((a,2),x), ((b,2),x), ((c,2),x),
 ((a,1),y), ((b,1),y), ((c,1),y), ((a,2),y), ((b,2),y), ((c,2),y)}

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Relational Algebra vs. Set Theory
(cross product) (cont.)

Given A = {a, b, c} B = {1, 2} C = {x, y} with the cross
product (A X B) X C in set theory =

{((a,1),x), ((b,1),x), ((c,1),x), ((a,2),x), ((b,2),x), ((c,2),x),
 ((a,1),y), ((b,1),y), ((c,1),y), ((a,2),y), ((b,2),y), ((c,2),y)}

we simplify it in relational algebra to:

{(a,1,x), (b,1,x), (c,1,x), (a,2,x), (b,2,x), (c,2,x),
 (a,1,y), (b,1,y), (c,1,y), (a,2,y), (b,2,y), (c,2,y)}
by eliminating parentheses….”flattening” the tuples.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Join: Example

Number Owner Balance Type
101 J. Smith 1000.00 checking
102 W. Wei 2000.00 checking
103 J. Smith 5000.00 savings
104 M. Jones 1000.00 checking
105 H. Martin 10,000.00 checking

Account

Account Transaction-id Date Amount
102 1 10/22/00 500.00
102 2 10/29/00 200.00
104 3 10/29/00 1000.00
105 4 11/2/00 10,000.00

Deposit

⋈ = join Account ⋈ Number=Account Deposit

Number Owner Balance Type Account Transaction-id Date Amount
 102 W. Wei 2000.00 checking 102 1 10/22/00 500.00
 102 W. Wei 2000.00 checking 102 2 10/29/00 200.00
 104 M. Jones 1000.00 checking 104 3 10/29/00 1000.00
 105 H. Martin 10,000.00 checking 105 4 11/2/00 10000.00

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Join: Example

⋈ join Account ⋈ Number=Account Deposit

Number Owner Balance Type Account Trans-id Date Amount
 102 W. Wei 2000.00 checking 102 1 10/22/00 500.00
 102 W. Wei 2000.00 checking 102 2 10/29/00 200.00
 104 M. Jones 1000.00 checking 104 3 10/29/00 1000.00
 105 H. Martin 10,000.00 checking 105 4 11/2/00 10000.00

Note that when the join is based on equality, then we
have two identical attributes (columns) in the answer.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Join: Example

⋈ join Account ⋈ (Number=Account and Amount>700) Deposit

Number Owner Balance Type Account T-id Date Amount
 104 M. Jones 1000.00 checking 104 3 10/29/00 1000.00
 105 H. Martin 10,000.00 checking 105 4 11/2/00 10000.00

Number Owner Balance Type
101 J. Smith 1000.00 checking
102 W. Wei 2000.00 checking
103 J. Smith 5000.00 savings
104 M. Jones 1000.00 checking
105 H. Martin 10,000.00 checking

Account

Account T-id Date Amount
102 1 10/22/00 500.00
102 2 10/29/00 200.00
104 3 10/29/00 1000.00
105 4 11/2/00 10,000.00

Deposit

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Challenge Question

•  How could you express the “join” operation if
you didn’t have a join operator in relational
algebra? [Hint: are there other operators that
you could use, in combination?]

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Joins

•  Condition Join: R ⋈c S = σ c (R X S)
–  Sometimes called a theta-join

•  Result schema same as that of cross-product
•  Fewer tuples than cross-product, might be

able to compute more efficiently

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Joins
•  Equi-Join: A special case of condition join where

the condition c contains only equalities.
 Student ⋈sid Takes

–  Result schema similar to cross-product, but only one
copy of fields for which equality is specified.

•  Natural Join: Equijoin on all common fields.

r

Joined tuple

s

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Challenge Question

•  How could you express the natural join
operation if you didn’t have a natural join
operator in relational algebra? Consider you
have two relations R(A,B,C) and S(B,C,D).
????

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Challenge Question

•  How could you express the natural join
operation if you didn’t have a natural join
operator in relational algebra? Consider you
have two relations R(A,B,C) and S(B,C,D).

 πR.A,R.B,R.C, S.D (σR.B=S.B and R.C=S.C (R X S))

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

The Divide Operator

Suppose we have this extra table, in the Bank
database:

Account-types Type
 checking
 savings

And that we would like to know which customers have all
types of accounts…

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

We can use the Divide operator

÷ or / divide (π Owner, TypeAccount) ÷ Account-types

Number Owner Balance Type
101 J. Smith 1000.00 checking
102 W. Wei 2000.00 checking
103 J. Smith 5000.00 savings
104 M. Jones 1000.00 checking
105 H. Martin 10,000.00 checking

Account

Account-types Type
 checking
 savings

Owner
J. Smith

Find account owners
who have ALL types of
accounts.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

We can use the Divide operator

÷ or / divide (π Owner, TypeAccount) ÷ Account-types

Number Owner Balance Type
101 J. Smith 1000.00 checking
102 W. Wei 2000.00 checking
103 J. Smith 5000.00 savings
104 M. Jones 1000.00 checking
105 H. Martin 10,000.00 checking

Account

Account-types Type
 checking
 savings

Owner
J. Smith

Find account owners
who have ALL types of
accounts.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Divide Operator

For R ÷ S where R (r1, r2, r3, r4) and S(s1, s2)

Since S has two attributes, there must be two attributes in
R (say r3 and r4) that are defined on the same
domains, respectively, as s1 and s2. We could say that
(r3, r4) is union-compatible with (s1, s2).

The query answer has the remaining attributes (r1, r2).
And the answer has a tuple (r1, r2) in the answer if the
(r1, r2) value appears with every S tuple in R.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Division

•  Not supported as a primitive operator, but useful for
expressing queries like:

 Find customers who have all types of accounts.
•  Let A have 2 fields, x and y; B have only field y:

–  A/B =
–  i.e., A/B contains all x tuples (customers) such that for every y

tuple (account type) in B, there is an xy tuple in A.
–  Or: If the set of y values (account types) associated with an x value

(customer) in A contains all y values in B, the x value is in A/B.

•  In general, x and y can be any lists of fields; y is the list of
fields in B, and x ∪ y is the list of fields of A.

{ }x x y A y B| ,∃ ∈ ∀ ∈

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Examples of Division: Suppliers and Parts

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s4 p2
s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Expressing A/B Using Basic Operators

•  Division is not an essential op, but it provides a useful
shorthand
–  (Also true of joins, but joins are so common that systems

implement joins specially.)
•  Idea: For A/B, compute all x values that are not

`disqualified’ by some y value in B.
–  x value is disqualified if by attaching y value from B, we

obtain an xy tuple that is not in A.
Disqualified x values:

 A/B:

π πx x A B A((()))× −

π x A() − all disqualified tuples

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Division: Example

  A = ((s1,p1), (s1,p2),(s2,p1),(s3,p2))
  B = (p1,p2)
  A/B = ???
  πX (A) = (s1,s2,s3) – duplicates are removed!
  πX (A) X B = ((s1,p1),(s1,p2),(s2,p1),(s2,p2),(s3,p1),(s3,p2))
  (πX (A) X B) – A = ((s2,p2),(s3,p1))
  πX((πX (A) X B) – A) = (s2,s3)  disqualified tuples
  A/B = (s1,s2,s3) – (s2,s3) = (s1)

Disqualified x values:

 A/B:

π πx x A B A((()))× −

π x A() − all disqualified tuples

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Building Complex Expressions

•  Combine operators with parentheses and
precedence rules.

•  Three notations, just as in arithmetic:
1.  Sequences of assignment statements.
2.  Expressions with several operators.
3.  Expression trees.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Sequences of Assignments

•  Create temporary relation names.
•  Renaming can be implied by giving relations a

list of attributes.

•  Example: R3 := R1 ⋈C R2 can be written:
R4 := R1 Χ R2

R3 := σC (R4)
•  Example: Write r ÷ s as

 temp1 := ∏R-S (r)
 temp2 := ∏R-S ((temp1 x s) – ∏R-S,S (r))
 result := temp1 – temp2

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Expressions in a Single Assignment

•  Example: the theta-join R3 := R1 ⋈C R2 can be

written: R3 := σC (R1 Χ R2)
•  Precedence of relational operators:

1.  [σ, π, ρ] (highest)
2.  [Χ, ⋈]
3. ∩
4.  [∪, —]

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Expression Trees

•  Leaves are operands --- either variables
standing for relations or particular, constant
relations.

•  Interior nodes are operators, applied to their
child or children.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Example: Tree for a Query

•  Using the relations Bookstore(name, addr) and
Sells(store, book, price), find the names of all
the stores that are either on Maple St. or sell
HTML Primer for less than $3.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

As a Tree:

Bookstore Sells

σaddr = “Maple St.” σprice<3 AND book=“HTML Primer”

πname

ρR(name)

πstore

∪

Bookstore(name, addr) and
Sells(store, book, price), find the
names of all the stores that are
either on Maple St. or sell
HTML Primer for less than $3.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Aggregate Functions
•  Takes a collection of values and returns a single value as a result.
•  Operators:

 avg: average value
 min: minimum value
 max: maximum value
 sum: sum of values
 count: number of values

e.g., sumsalary(Pt-works),
Where Pt-works-scheme = (employee-name, branch-name, salary)
•  Can control whether duplicates are eliminated

 count-distinctbranch-name (Pt-works)

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Aggregation and Grouping
•  Apply aggregation to groups of tuples

–  Example: sum salaries at each branch

•  Sample result:
 branch-name sum of salary
 Downtown 5300
 Austin 3100
 Perryridge 8100

•  Notation

 G1, G2, …, Gn g F1(A1), F2(A2),…, Fn(An) (E)
–  E is any relational-algebra expression
–  G1, G2 …, Gn is a list of attributes on which to group (can be empty)
–  Each Fi is an aggregate function
–  Each Ai is an attribute name

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Aggregate Operation – Example

•  Relation r: A! B!

α!
α!
β!
β!

α!
β!
β!
β!

C!

7"
7"
3"
10"

g sum(c) (r)

or

sumc(r)

sum-C"

27"

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Aggregate Operation – Example

•  Relation account grouped by branch-name:

branch-name g sum(balance) (account)

branch-name! account-number" balance!
Perryridge"
Perryridge"
Brighton"
Brighton"
Redwood"

A-102"
A-201"
A-217"
A-215"
A-222"

400"
900"
750"
750"
700!

branch-name! balance!
Perryridge"
Brighton"
Redwood"

1300"
1500"
700!

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Aggregate Functions (Cont.)

•  Result of aggregation does not have a name
–  Can use rename operation to give it a name
–  For convenience, we permit renaming as part of

aggregate operation

branch-name g sum(balance) as sum-balance (account)

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Outer Join

•  An extension of the join operation that avoids
loss of information.

•  Computes the join and then adds tuples from
one relation that do not match tuples in the
other relation to the result of the join.

•  Uses null values:
–  null signifies that the value is unknown or does not

exist
–  All comparisons involving null are (roughly speaking)

false by definition.
•  Will study precise meaning of comparisons with nulls later

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Outer Join – Example
  Relation loan"

  Relation borrower"
customer-name" loan-number"
Jones"
Smith"
Hayes"

L-170"
L-230"
L-155"

3000"
4000"
1700"

loan-number" amount"
L-170"
L-230"
L-260"

branch-name"
Downtown"
Redwood"
Perryridge"

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Outer Join – Example

  Inner Join
loan Borrower

loan-number" amount"
L-170"
L-230"

3000"
4000"

customer-name"
Jones"
Smith"

branch-name"
Downtown"
Redwood"

Jones"
Smith"
null"

loan-number" amount"
L-170"
L-230"
L-260"

3000"
4000"
1700"

customer-name"branch-name"
Downtown"
Redwood"
Perryridge"

  Left Outer Join!
 loan Borrower

 How would you represent an outer join using the
basic relational algebra operations?

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Outer Join – Example
  Right Outer Join!

loan borrower
  Full Outer Join!

loan-number" amount"
L-170"
L-230"
L-155"

3000"
4000"
null!

customer-name"
Jones"
Smith"
Hayes"

branch-name"
Downtown"
Redwood"
null"

loan-number" amount"
L-170"
L-230"
L-260"
L-155"

3000"
4000"
1700"
null!

customer-name"
Jones"
Smith"
null"
Hayes"

branch-name"
Downtown"
Redwood"
Perryridge"
null"

 loan borrower

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Modifying the Database

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Modification of the Database

•  The content of the database may be modified
using the following operations:
–  Deletion
–  Insertion
–  Updating

•  All these operations are expressed using the
assignment operator.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Deletion

•  Remove tuples from a relation
•  Can delete only whole tuples; cannot delete

values on only particular attributes
•  A deletion is expressed in relational algebra by:

 r ← r – E
 where r is a relation and E is a relational
algebra expression.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

r1 ← σ branch-city = “Needham” (account ⋈ branch)!
r2 ← ∏branch-name, account-number, balance (r1)"
account ← account – r2"

Deletion Examples
!Account(acc_number, branch_name, balance)!
!Depositor(cust_name, acc_number)!

 Branch(branch_name, city)!
!Loan(loan_number,branch_name,amount)!

• Delete all accounts at branches located in Needham."

• Delete all loan records with amount in the range of 0 to 50"
loan ← loan – σ amount ≥ 0 and amount ≤ 50 (loan)"

account ← account – σ branch-name = “Perryridge” (account)"

• Delete all account records in the Perryridge branch."

r3 ← ∏ customer-name, account-number (r2 ⋈ depositor)"
depositor ← depositor – r3"

Is this correct?

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Insertion

•  Insert tuples (rows) into a relation
–  specify a tuple to be inserted
–  write a query whose result is a set of tuples to be

inserted
•  Insertion is expressed in relational algebra by:

 r ← r ∪ E
 where r is a relation and E is a relational
algebra expression.

•  The insertion of a single tuple is expressed by
letting E be a constant relation containing one
tuple.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Insertion Examples

•  Insert information in the database specifying that Smith
has $1200 in account A-973 at the Perryridge branch.

•  Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account. Let the loan number
serve as the account number for the new savings account.

account ← account ∪ {(“Perryridge”, A-973, 1200)}"
depositor ← depositor ∪ {(“Smith”, A-973)}!

r1 ← (σbranch-name = “Perryridge” (borrower loan))!
account ← account ∪ ∏branch-name, account-number,200 (r1)"
depositor ← depositor ∪ ∏customer-name, loan-number(r1)!

Can you always insert a new tuple into a relation?

!Account(acc_number, branch_name, balance)!
!Depositor(cust_name, acc_number)!

 Borrower(cust_name,loan_number)!
!Loan(loan_number,branch_name,amount)!

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Updating

•  Change a value in a tuple without changing all
values in the tuple

•  Use the generalized projection operator to do
this task
 r ← ∏ F1, F2, …, FI, (r)

•  Each Fi is either
–  the ith attribute of r, if the ith attribute is not updated,

or,
–  if the attribute is to be updated Fi is an expression,

involving only constants and the attributes of r, which
gives the new value for the attribute

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Update Examples
•  Make interest payments by increasing all balances by 5

percent.

•  Pay all accounts with balances over $10,000 6 percent
interest and pay all others 5 percent !

 account ← ∏ AN, BN, BAL * 1.06 (σ BAL > 10000 (account)) 
 ∪ ∏AN, BN, BAL * 1.05 (σBAL ≤ 10000 (account))"

account ← ∏ AN, BN, BAL * 1.05 (account)!

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.!

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Views
•  Motivation:

–  Protect (hide) information in relations
–  Customize database to better match a user’s need

e.g., it is not necessary for the marketing manager to
know the loan amount
 ∏customer-name, loan-number (borrower ⋈ loan)

•  Any relation that is not part of the logical
model but is made visible to a user as a
“virtual relation” is called a view.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

View Definition

•  A view is defined using the create view statement
which has the form
 create view v as <query expression>

 where <query expression> is any legal relational
algebra query expression. The view name is
represented by v.

•  Once a view is defined, the view name can be used to
refer to the virtual relation that the view generates.

•  View definition is not the same as creating a new
relation by evaluating the query expression
–  Rather, a view definition causes the saving of an expression;

the expression is substituted into queries using the view.
–  Static vs. dynamic

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

View Examples

•  Consider the view (named all-customer) consisting of
branches and their customers.

•  We can find all customers of the Perryridge branch by
writing:!

create view all-customer as!
 ∏branch-name, customer-name (depositor account)!
 ∪ ∏branch-name, customer-name (borrower loan)!

 ∏customer-name "
"(σbranch-name = “Perryridge” (all-customer)) "!

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Updates Through View

•  Database modifications expressed as views must be
translated to modifications of the actual relations in the
database.

•  Consider the person who needs to see all loan data in
the loan relation except amount. The view given to the
person, branch-loan, is defined as:
 create view branch-loan as
 ∏branch-name, loan-number (loan)

•  Since we allow a view name to appear wherever a
relation name is allowed, the person may write:

 branch-loan ← branch-loan ∪ {(“Perryridge”, L-37)}

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Updates Through Views (Cont.)
•  The previous insertion must be represented by an

insertion into the actual relation loan from which the
view branch-loan is constructed.

•  An insertion into loan requires a value for amount. The
insertion can be dealt with by either.
–  rejecting the insertion and returning an error message to the

user.
–  inserting a tuple (“L-37”, “Perryridge”, null) into the loan relation

•  Others cannot be translated uniquely
–  E.g., suppose the all-customer view contains information about

all branches and their customers:
all-customer(branch_name,cust_name)=

 ∏branch_name,c_name(Branch ⋈ Loan) U
 ∏branch_name,c_name(Branch ⋈ Account)
–  all-customer ← all-customer ∪ {(“Perryridge”, “John”)}

•  Have to choose loan or account, and
create a new loan/account number!

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Schema

•  Account(acc-number,branch-name,balance)
•  Branch(branch-name,branch-city,assets)
•  Depositor(cust-name,account-number)
•  Customer(cust-name,cust-street,cust-city)
•  Borrower(cust-name,loan-number)
•  Loan(loan-number,branch-name,amount)

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Views Defined Using Other Views

•  One view may be used in the expression
defining another view

•  A view relation v1 is said to depend directly on a
view relation v2 if v2 is used in the expression
defining v1

•  A view relation v1 is said to depend on view
relation v2 if either v1 depends directly to v2 or
there is a path of dependencies from v1 to v2

•  A view relation v is said to be recursive if it
depends on itself.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

View Expansion

•  A way to define the meaning of views defined in terms
of other views.

•  Let view v1 be defined by an expression e1 that may
itself contain uses of view relations.

•  View expansion of an expression repeats the following
replacement step:
 repeat

 Find any view relation vi in e1
 Replace the view relation vi by the expression

defining vi
 until no more view relations are present in e1

•  As long as the view definitions are not recursive, this
loop will terminate

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Practice Exercise

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Why do we use Relational Algebra?
Because:
•  It is mathematically defined (where relations are sets)
•  We can prove that two relational algebra expressions

are equivalent. For example:

σ cond1 (σ cond2 R) ≡ σ cond2 (σ cond1 R) ≡ σ cond1 and cond2 R

R1 ⋈cond R2 ≡ σcond (R1 X R2)

R1 ÷ R2 ≡ πx(R1) ⎯ πx((πx R1) X R2) ⎯ R1)

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Uses of Relational Algebra Equivalences

•  To help query writers - they can write queries in
several different ways

•  To help query optimizers - they can choose the
most efficient among different ways to execute
the query

and in both cases we know for sure that the two
queries (the original and the replacement) are
identical…that they will produce the same answer

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Find names of stars and the length of the movies
they have appeared in 1994

Stars(name, address)
AppearIn(star_name,title, year),
Movies(title, year, length, type, studio_name)

•  Information about movie length available in Movies; so need an
extra join:
 πname,length (σyear=1994(Stars ⋈ AppearIn ⋈ Movies))

•  A more efficient solution:
πname,length(Stars ⋈ AppearIn ⋈ (σyear=1994(Movies))
•  An even more efficient solution:
πname,length(Stars ⋈
 πname,length(AppearIn ⋈

 (πtitle,year,lengthσyear=1994(Movies)))

A query optimizer can find this!

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Question

•  Relational Algebra is not Turing complete.
There are operations that cannot be expressed
in relational algebra.

•  What is the advantage of using this language to
query a database?

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Question

•  Relational Algebra is not Turing complete.
There are operations that cannot be expressed
in relational algebra.

•  What is the advantage of using this language to
query a database?

By limiting the scope of the operations, it is
possible to automatically optimize queries

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Summary

•  The relational model has rigorously defined
query languages that are simple and powerful.

•  Relational algebra is more operational; useful
as internal representation for query evaluation
plans.

•  Several ways of expressing a given query; a
query optimizer should choose the most
efficient version.

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

•  More on Views

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Updates Through Views

•  Updates to views must be translated to updates over
the base relations in the database.

•  Consider the person who needs to see all loan data in
the loan relation except amount. The view given to the
person, branch-loan, is defined as:
 create view branch-loan as
 ∏branch-name, loan-number (loan)

•  Since we allow a view name to appear wherever a
relation name is allowed, the person may write:

 branch-loan ← branch-loan ∪ {(“Perryridge”, L-37)}

3000"
4000"
1700"

loan-number" amount"
L-170"
L-230"
L-260"

branch-name"
Downtown"
Redwood"
Perryridge"

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

Updates Through Views
•  How to translate the view update into an update to the

loan relation?
•  An insertion into loan requires a value for amount. The

insertion can be dealt with by either.
–  rejecting the insertion and returning an error message to the

user.
–  inserting a tuple (“L-37”, “Perryridge”, null) into the loan relation

•  Others cannot be translated uniquely
–  all-customer ← all-customer ∪ {(“Perryridge”, “John”)}

•  Have to choose loan or account, and
create a new loan/account number!

3000"
4000"
1700"

loan-number" amount"
L-170"
L-230"
L-260"

branch-name"
Downtown"
Redwood"
Perryridge"

create view all-customer as!

 ∏branch-name, customer-name (depositor ⋈ account)!

 ∪ ∏branch-name, customer-name (borrower ⋈ loan)"

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

branch_name loan_number customer_name amount
 Brighton null null null

customer_name street customer_city
 null null Woodside

Update Through Views: Problem
Can Get Much Worse

•  Example
create view branch_city as
 Π branch_name, customer_city (borrow ⋈ customer)

•  Now, an update
branch_city ← branch_city ∪ { (“Brighton, “Woodside”) }

•  Tuples created

cs5530/6530 Database Systems – Fall 2008 Juliana Freire

But What Happens When We Access
Through This View?

•  Suppose we do:
 Π branch_name, customer_city (branch_city)

•  The result does not include:
 (“Brighton”, “Woodside”)

•  Why?
– Comparisons on null values always yield false
– As they must -- since they mean “no value”

•  Result is anomalous (strange):
– Insert OK, then missing when queried

MORE ON NULLS LATER!

