
Indexing

Juliana Freire

Some slides adapted from L. Delcambre, R. Ramakrishnan, G. Lindstrom, J. Ullman and
Silberschatz, Korth and Sudarshan

Efficient Access to Data

•  Data is transferred between disk and main memory in
blocks

•  Goal: Minimize the number of blocks read/written from
disk

•  Data are stored in a fixed structure
•  A fixed structure is
unlikely to be the best
for all possible access
patterns

–  Good for:
List all accounts in
the Downtown branch
–  What about:
List all accounts
with balance = 350

Indexes: Motivation

Q1: List all accounts with balance = 350
Requires all tuples to be examined – very inefficient

if table is large
•  An index on balance makes it efficient to find tuples

with a specific balance
–  Only accounts with balance = 350 are examined
–  Fewer blocks retrieved from disk!

Indexes and SQL

•  Not part of the standard up to (and including)
SQL99

•  Most commercial systems allow the creation of
indexes

CREATE INDEX balanceIndex on Account(balance);
DROP INDEX balanceIndex;

5

Using Indexes

•  Given a value v, the index takes us to only those
tuples that have v in the attribute(s) of the index.

•  Example:
CREATE INDEX BookInd ON Books(author);

CREATE INDEX SellInd ON Sells(store,
bookId);

•  Use BookInd and SellInd to find the prices of books
authored by Ullman and sold by Joe. (next slide)

6

Using Indexes --- (2)

SELECT price FROM Books, Sells

WHERE author= ’Ullman’ AND

 Books.id= Sells.bookId AND

 store= ’Joe’’s Bookstore’;

1.  Use BookInd to get all the books written by
Ullman.

2.  Then use SellInd to get prices of those
books, with bar = ’Joe’’s Bar’

Database Tuning: Index Selection

•  Selecting the best indexes for a database is a hard
problem

•  Tradeoffs
–  ++Index on an attribute speeds up queries that mention

that attribute (including joins)
–  -- Indexes make insertions, deletions and updates more

complex and time consuming
–  -- Indexes use up space – an extra table

•  Rule of thumb
–  If R is queried more often than updated, create indexes

on attributes most frequently specified in queries
–  If R is updated often, be careful!

Example: Tuning

•  Suppose the only things we did with our Books
database was:

1.  Insert new facts into a relation (10%).
2.  Find the price of a given book at a given store (90%).

•  Then SellInd on Sells(store,bookId) would be
wonderful, but BookInd on Books(author) would
be harmful.

9

Tuning Advisors

•  A major research thrust.
–  Because hand tuning is so hard.

•  An advisor gets a query load, e.g.:
1.  Choose random queries from the history of queries run

on the database, or
2.  Designer provides a sample workload.

10

Tuning Advisors --- (2)

•  The advisor generates candidate indexes and
evaluates each on the workload.
–  Feed each sample query to the query optimizer, which

assumes only this one index is available.
–  Measure the improvement/degradation in the average

running time of the queries.

Index Selection: Example
•  StarsIn is stored in 10 disk

blocks – cost of examining entire
relation = 10

•  On avg, a star has appeared in 3
movies and a movie has 3 stars

•  Tuples for a given star or movie
are likely to be spread over the
10 disk blocks – it takes 3 disk
accesses to find the (avg of) 3
tuples for a star or movie

•  1 block access required to read
index. If index is modified, 2
block accesses are needed

•  Insertion requires 2 block
accesses

StarsIn(title, year, starName)
Q1: SELECT title, year
 FROM StarsIn
 WHERE starName = s;
Q2: SELECT starName
 FROM StarsIn
 WHERE title = t AND year = y;
I: INSERT INTO StarsIn

 VALUES(t,y,s)

Index Selection: Example (cont.)

Now, fill out the table below with
the costs for each scenario.

Action No idx Star idx Movie idx Star+Movie idx
Q1
Q2
I

StarsIn(title, year, starName)
Q1: SELECT title, year
 FROM StarsIn
 WHERE starName = s;
Q2: SELECT starName
 FROM StarsIn
 WHERE title = t AND year = y;
I: INSERT INTO StarsIn VALUES(t,y,s)

Index Selection: Example (cont.)

Now, fill out the table below:

Action No idx Star idx Movie idx Star+Movie idx
Q1 10 4 10 4
Q2 10 10 4 4
I 2 4 4 6

StarsIn(title, year, starName)
Q1: SELECT title, year
 FROM StarsIn
 WHERE starName = s;
Q2: SELECT starName
 FROM StarsIn
 WHERE title = t AND year = y;
I: INSERT INTO StarsIn VALUES(t,y,s)

Index Selection: Estimating Avg Cost

What is the best index configuration?
P1 =fraction of time we do Q1
P2 =fraction of time we do Q2
I = fraction of time we do I = 1 – P1 –P2

Action No idx Star idx Movie idx Star+Movie idx
Q1 10 4 10 4
Q2 10 10 4 4
I 2 4 4 6
cost 2+8p1+8p2 4+6p2 4+6p1 6-2p1-2p2

StarsIn(title, year, starName)
Q1: SELECT title, year
 FROM StarsIn
 WHERE starName = s;
Q2: SELECT starName
 FROM StarsIn
 WHERE title = t AND year = y;
I: INSERT INTO StarsIn VALUES(t,y,s)

Selecting the Indexes

What is the best configuration if
1.  P1=P2=0.1
2.  P1=P2=0.4
3.  P1=0.5 and P2=0.1

Action No idx Star idx Movie idx Star+Movie idx
Q1 10 4 10 4
Q2 10 10 4 4
I 2 4 4 6
cost 2+8p1+8p2 4+6p2 4+6p1 6-2p1-2p2
Mostly ins, few
queries, no
index

Many queries,
few ins  both
indexes

Mostly Q1, best
to index
starName

Q1: SELECT title, year
 FROM StarsIn
 WHERE starName = s;
Q2: SELECT starName
 FROM StarsIn
 WHERE title = t AND year = y;
I: INSERT INTO StarsIn VALUES(t,y,s)

Index: Examples and Concepts

•  Some examples:
–  Internet directories, e.g., yahoo, google, dmoz
–  Search engines, e.g., google, altavista

•  And many other applications, including databases!
•  Basic concepts:

–  Search key: attribute to set of attributes used to look up
records in a file.

–  An index file consists of records (called index entries) of
the form (search key, pointer)

•  Index speeds up selections on the search key field
(s)

Index

•  Any data structure that takes as input a property of
records and quickly finds records with that property
–  Simple indexes on sorted files
–  Secondary indexes on unsorted files
–  B-trees
–  Hash tables
–  Bitmaps

Blocks
holding
records

Index
value

Matching
records

Index Evaluation Metrics

•  Access types supported efficiently -- which queries
will benefit from the index
–  records with a specified value in the attribute
–  or records with an attribute value falling in a specified

range of values.
•  Access time
•  Insertion time
•  Deletion time
•  Space overhead

Index: Some notes

•  Indexes usually help for queries where an attribute
is compared against a constant, e.g., A=3; A<=3

•  Indexes can greatly speed up queries, both for
selections and joins

•  Every index makes insertions, deletions and
updates more costly

•  Index selection is one of the hardest part of
database design
–  Need to estimate query mix and db operations
–  Tradeoff between query speed-up and update cost

•  If modifications are the predominant action, you
should be very conservative about creating indexes

Index: Some more notes

•  Indexes are often (automatically) created to enforce
key constraints

•  Indexes can speed up constraint checking!
•  When inserting or updating new tuple, check in

index if there is already a tuple with the unique
value
–  This is much faster than scanning the whole relation!

•  Some DB systems provide index advisors
–  http://www.redbooks.ibm.com/abstracts/tips0624.html

Tips on Using Indexes

•  http://www.dba-oracle.com/art_9i_indexing.htm

Bonus Material

Indexes on Sequential Files

•  File is sorted on the search key of the index
–  search key is usually but not necessarily the primary key.

•  AKA Primary/Clustered Index

Smith, 44, 3000

Ashby, 25, 3000

Bristow, 30, 2007
Basu, 33, 4003

Tracy, 44, 5004

Cass, 50, 5004
Daniels, 22, 6003
Jones, 40, 6003

Ashby
Cass
Smith

Search key is “Name”
Records
are sorted
by “Name”
in the file

Index

Data file

Example: Search key is not the primary key

Search key is “Branch name”

Records
are sorted
by “Branch name”
in the file

Dense vs. Sparse Indexes

•  Dense: Index record appears for every search-key
value in the file
–  One per record in sequential file

•  Index records for only some search-key values
–  Applicable when records are sequentially ordered on

search-key

Smith, 44, 3000

Ashby, 25, 3000

Bristow, 30, 2007
Basu, 33, 4003

Tracy, 44, 5004

Cass, 50, 5004
Daniels, 22, 6003
Jones, 40, 6003

Ashby
Basu
Bristow

Example: Dense Index
Search key is “Name” Records

are sorted
by “Name”
in the file

To find tuple with Name = Daniels
– Search index blocks for Daniels
– Follow associated pointer

Cass

…

Daniels
Jones

Smith, 44, 3000

Ashby, 25, 3000

Bristow, 30, 2007
Basu, 33, 4003

Tracy, 44, 5004

Cass, 50, 5004
Daniels, 22, 6003
Jones, 40, 6003

Ashby
Basu
Bristow

Example: Dense Index
Search key is “Name” Records

are sorted
by “Name”
in the file

Since the search keys are in the same sorted order as
the file, what are the benefits of using a dense index?

Cass

…

Daniels
Jones

Dense Indexes: Advantages

There are several factors that make dense indexes
more efficient than it seems:

–  Number of index blocks usually small compared
with the number of data blocks – if index is too
large, use sparse index instead

–  Since keys are sorted, binary search can be used
–  Index may fit in memory

–  Queries asking only for search key can be evaluated in
memory

–  Queries asking for other attributes require only 1 disk I/O

Dense Indexes: Down to the Numbers

•  R has 1,000,000 tuples
•  10 tuples per 4096 byte block -- >

 4096*100,000 blocks = 400MB
•  Key field: 30 bytes; Pointer: 8 bytes
•  How big is a dense index for R?

 1,000,000 * 38 bytes = 40MB = 10,000 blocks
•  How many block accesses are required to find a

search key?
–  log2(10000) =~13 – need 13-14 block accesses

Dense Index: Another Example

Smith, 44, 3000

Ashby, 25, 3000

Bristow, 30, 2007
Basu, 33, 4003

Tracy, 44, 5004

Cass, 50, 5004
Daniels, 22, 6003
Jones, 40, 6003

Ashby
Cass
Smith

Example: Sparse Index

Search key is “Name”

Records
are sorted
by “Name”
in the file

If dense index is too large use sparse index
instead

– One search key per data block
How to locate a record with search-key value K?

Smith, 44, 3000

Ashby, 25, 3000

Bristow, 30, 2007
Basu, 33, 4003

Tracy, 44, 5004

Cass, 50, 5004
Daniels, 22, 6003
Jones, 40, 6003

Ashby
Cass
Smith

Sparse Index: Locating a Record

Search key is “Name”

Records
are sorted
by “Name”
in the file

K = Jones
Find largest search key <= K
Use binary search within that block

Sparse Indexes: Down to the Numbers

•  R has 1,000,000 tuples
•  10 tuples per 4096 byte block – 100,000 data blocks
•  100 key-pointer pairs in one index block
•  How big is a sparse index for R?

 100,000/100 = 1,000 blocks = 4MB

More likely to fit in memory

Example of Sparse Index Files

Challenge Exercise

•  Suppose blocks hold either 3 data records, or 10
key-pointer pairs. As a function of the number of
records n, how many blocks do we need to hold

1) The data file

and

2) A dense index?

3) A sparse index?

n/3

n/10

n/30

Total = n/10 + n/3 = 13n/30

Total = n/30 + n/3 = 11n/30

Challenge Exercise

•  Suppose blocks hold either 3 data records, or 10
key-pointer pairs. As a function of the number of
records n, how many blocks do we need to hold

1) The data file
and
2) A dense index?
Should contain one index record per data record, a total of n index records.
Since we can fit 10 of those in a block, we need a total of n/10 blocks

3) A sparse index?
Should contain one index record per data block, a total of n/3 index records.
Since we can fit 10 of those in a block, we need a total of (n/3)/10 blocks

n/3

n/10

n/30

Total = n/10 + n/3 = 13n/30

Total = n/30 + n/3 = 11n/30

Multilevel Index

•  Index can cover many blocks – expensive to locate search
key even using binary search

•  If primary index does not fit in memory, access becomes
expensive.

•  To reduce number of disk accesses, put an index on the
index
–  treat primary index on disk as a sequential file (inner index)
–  construct a sparse index on primary index (outer index)

•  If even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.

•  Indices at all levels must be updated on insertion or deletion
from the file.

Multilevel Index (Cont.)

A Multi-Level Index

10s of
thousands
of pages

Looking on the Web for pages
about Digital Art

Web = billions of pages

A Multi-Level Index (cont.)

•  You can go directly to “Digital” -- no need to scan all
the 10s of thousands pages

341 pages

Multi-Level Indexes: Down to the Numbers

•  R has 1,000,000 tuples
•  10 tuples per 4096 byte block – 100,000 data blocks
•  100 key-pointer pairs in one index block
•  First-level index: 100,000/100 = 1,000 blocks
•  How big is a second-level index for R?

–  1,000/100 = 10 blocks Surely fits in memory!
•  2 disk I/O per lookup

–  1st access to memory
–  1 I/O to access first-level index
–  1 I/O to access data block

Managing Indexes During Data Modifications

•  So far we considered indexes as a packed
sequence of blocks

•  As data is modified, index records are inserted,
deleted and updated

•  Alternatives similar to file organization for sequential
files:
–  Create overflow blocks – extensions of the primary block

without entry in sparse index
–  Insert new block in the sequential order – need entry in

sparse index
–  If there is no space, slide records to adjacent blocks. If

adjacent blocks are too empty, they can be combined

Index Updates: Summary

Action Dense Index Sparse Index
Create empty
overflow block

None None

Delete empty
overflow block

None None

Create empty
sequential block

None Insert

Delete empty
sequential block

None delete

Insert record Insert Update(?)
Delete record Delete Update(?)
Slide record Update Update(?)

no affect on dense
indexes – they point
to records

no affect on sparse
indexes – they point
to primary blocks

Need to create/delete
entry for new block

Typically no effect,
except: adding 1st
record in block;
delete last record in
block or record with
search key

Index Update: Deletion

•  If deleted record was the only record in the file with
its particular search-key value, the search-key is
deleted from the index also.

•  Single-level index deletion:
–  Dense indices – deletion of search-key is similar to file

record deletion.
–  Sparse indices – if an entry for the search key exists in

the index, it is deleted by replacing the entry in the index
with the next search-key value in the file (in search-key
order). If the next search-key value already has an index
entry, the entry is deleted instead of being replaced.

Index Update: Insertion

•  Single-level index insertion:
–  Perform a lookup using the search-key value appearing in

the record to be inserted.
–  Dense indices – if the search-key value does not appear

in the index, insert it.
–  Sparse indices – if index stores an entry for each block of

the file, no change needs to be made to the index unless
a new block is created. In this case, the first search-key
value appearing in the new block is inserted into the
index.

•  Multilevel insertion (as well as deletion) algorithms
are simple extensions of the single-level algorithms

Sparse vs. Dense Index Files

•  Sparse uses less space and incurs less
maintenance overhead for insertions and deletions.

•  Generally slower than dense index for locating
records.

•  Good tradeoff: sparse index with an index entry for
every block in file, corresponding to least search-
key value in the block.

Smith, 44, 3000

Ashby, 25, 3000

Bristow, 30, 2007
Basu, 44, 4003

Tracy, 33, 5004

Cass, 50, 5004
Daniels, 22, 6003
Jones, 40, 6003

22
25
30

40
44
44
50

33

Secondary/Unclustered Indexes

Search key is “Age”

Records
are sorted
by “Name”
in the file

• Useful to have multiple indexes for a table -- can only have
one order for data blocks
• Secondary indexes serve the same purpose as primary
indexes, but search key specifies an order different from
the sequential order of the file

More on Secondary Indexes

•  Secondary indexes are always dense
•  It makes no sense to talk of a sparse secondary

index
–  Can’t use it to predict the location of any record not

mentioned in the index – can’t find the record without
scanning the whole file!

 sparse dense

primary YES YES

secondary NO! YES

Secondary Index on balance field of
account

•  Secondary indices may have duplicate search keys –
several accounts with the same balance

• To avoid space wastage, create another level of
indirection – do not repeat the search key value

Secondary Index on balance field of
account

•  Secondary indices may have duplicate search keys –
several accounts with the same balance

• To avoid space wastage, create another level of
indirection – do not repeat the search key value

Does this extra level really help?

It helps only if:

 search key values are larger than pointers

 the average key appears at least twice

Primary and Secondary Indexes

•  Secondary indices have to be dense.
•  When a file is modified, every index on the file must

be updated: updating indices imposes overhead on
database modification.

•  Sequential scan using primary index is efficient, but
a sequential scan using a secondary index is
expensive
–  each record access may fetch a new block from disk

Answering Queries using the Index

•  When queries have multiple conditions, and each
condition has a secondary index, we can find the
bucket pointers by intersecting the sets of pointers
(in memory) and retrieve only records pointed to by
the intersection

Example

Select title
From movie
Where studioName=‘Disney’ and year=1995

Disney 1995

Composite Search Keys:
Four dense, secondary indices on a table

sue 13 75

bob
cal
joe 12

10

20
80 11

12

name age sal

Index based on
<sal, age>

Index based on
<age, sal> Index based on

<age>

Index based on
<sal>

12,20
12,10

11,80

13,75

20,12

10,12

75,13
80,11

11
12
12
13

10
20
75
80

Data records
sorted by name

Using Composite Search Keys

Which index can you use for
each of these queries?

•  age = 20
•  age = 20 and sal = 20
•  age=20 and sal > 10
•  age > 20 and sal > 30

sue 13 75

bob
cal
joe 12

10

20
80 11

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20
12,10

11,80

13,75

20,12

10,12

75,13
80,11

11
12
12
13

10
20
75
80

Data records
sorted by name

B+-Tree Index Files

•  Disadvantage of indexed-sequential files: performance degrades as file
grows
–  Many overflow blocks are created---periodic reorganization of entire file is

required.
•  Advantage of B+-tree index files:

–  Automatically reorganizes itself with small, local, changes, in the face of
insertions and deletions – no need for overflow blocks!

–  Reorganization of entire file is not required to maintain performance.
–  Supports equality and range-searches efficiently

•  Disadvantage of B+-trees:
–  extra insertion and deletion overhead, space overhead.

•  Advantages of B+-trees outweigh disadvantages, and they are used
extensively.

B+-tree indices are an alternative to indexed-sequential files."

B+-Tree Index Files (Cont.)

•  All paths from root to leaf are of the same
length – a balanced tree (remember from
Algorithms!)

•  Minimum 50% occupancy (except for root)
–  Leaf: ⎡ (n-1)/2 ⎤ <= occupancy <= n-1
–  Non-leaf: ⎡ n/2 ⎤ <= occupancy <= n

•  n is fixed for a given tree

A B+-tree is a rooted tree satisfying the following properties:"

Example B+ Tree

•  n=5
•  Search-keys in a node are ordered
•  Pointers to nodes or records

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

pointers to node

Id name age
987 John Doe 1
123 Jane Doe 2
444 Mary Mary 3
…

pointers to records leaves chained together in
search-key order

Search over B+ Tree

•  Search begins at root, and key comparisons direct it
to a leaf

•  Search for 5*, 15*, all data entries >= 24* ...

  Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

B+ Trees in Practice

•  Typical n: 198. Typical fill-factor: 67%.
–  average fanout = 198*.67 = 133

•  Typical capacities:
–  Height 4: 1334 = 312,900,700 records
–  Height 3: 1333 = 2,352,637 records

•  Can often hold top levels in buffer pool:
–  Level 1 = 1 page = 8 Kbytes
–  Level 2 = 133 pages = 1 Mbyte
–  Level 3 = 17,689 pages = 133 MBytes

Observations about B+-trees

•  Since the inter-node connections are done by
pointers, “logically” close blocks need not be
“physically” close.

•  The non-leaf levels of the B+-tree form a hierarchy
of sparse indices.

•  The B+-tree contains a relatively small number of
levels (logarithmic in the size of the main file), thus
searches can be conducted efficiently.

•  Insertions and deletions to the main file can be
handled efficiently, as the index can be restructured
in logarithmic time (see textbook for details).

B+-Tree File Organization

•  Index file degradation problem is solved by using B+-
Tree indices.

•  Data file degradation problem is solved by using B+-
Tree File Organization.

•  The leaf nodes in a B+-tree file organization store
records, instead of pointers.

•  Since records are larger than pointers, the maximum
number of records that can be stored in a leaf node is
less than the number of pointers in a nonleaf node.

•  Leaf nodes are still required to be half full.
•  Insertion and deletion are handled in the same way as

insertion and deletion of entries in a B+-tree index.

B+-Tree File Organization: Example

Document Retrieval and Inverted Indexes

•  How does Google work?
•  Crawler goes around the Web and retrieves all

documents it can find
•  Retrieved docs are parsed and its words extracted

–  d1: w1,w2,w3
–  d2: w1,w2,w4,w5

•  Index is inverted:
Word/Doc d1 d2 d3 … dn
W1 1 1 0 1
W2 1 1 1 0
W3 1 0 0 0
W4 0 1 0 0
W5 0 1 0 0

How are
queries

evaluated?

Document Retrieval and Inverted Indexes

w1
w2

w3

w4

Index: word is the
search key

d1

d2
dn

d1

d2
d3

Bucket contains
pointers to all
documents where word
can be found

Documents

Index Definition in SQL

•  Create an index
 create index <index-name> on <relation-name>

 (<attribute-list>)
E.g.: create index b-index on branch(branch-name)

•  Use create unique index to indirectly specify and
enforce the condition that the search key is a
candidate key is a candidate key.
–  Not really required if SQL unique integrity constraint is

supported
•  To drop an index

 drop index <index-name>

