Racket vs. Algebra

In Racket, we have a specific order for evaluating sub-expressions:

(+ (* 4 3) (-87)) = (+ 12 (- 8 7)) = (+ 12 1)

In Algebra, order doesn’t matter:
(4-3)+(8-7) = 12+(8-7) = |2+]|
or

(43)+(8-7) = (43)+]1 = [2+]

Algebraic Shortcuts

In Algebra, if we see
f(x, y) = x
g(z) = ..

t(17, g(e(e(g(e(18))))))

then we can go straight to
|7

because the result of all the g calls will not be used

But why would a programmer write something like that?

2-3

Avoiding Unnecessary Work

; layout-text : string w h -> pict
(define (layout-text txt w h)
(local [(define lines
; lots of work to flow a paragraph
e]
(make-pict w
h
(Lambda (dc x y)
; draw paragraph lines

ce2))))

(define speech (layout-text "Four score..."
800
600))

(pict-width speech)

Avoiding Unnecessary Work

; read-all-chars : file -> list-of-char
(define (read-all-chars f)
(Lf (at-eof? £f)
empty
(cons (read-char f) (read-all-chars £f))))

(define content (read-all-chars (open-file user-file)))
(if (equal? (first content) #\#)

(process-file (rest content))

(error 'parser "not a valid file"))

Recursive Definitions

; numbers-from : int -> list-of-int
(define (numbers-from n)
(cons n (numbers-from (addl n))))

(define nonneg (numbers-from 0))
(list-ref nonneg 10675)

Lazy Evaluation

Languages like Racket, Java, and C are called eager

* An expression is evaluated when it is encountered

Languages that avoid unnecessary work are called lazy

* An expression is evaluated only if its result is needed

Lazy Evaluation in DrRacket

plai-lazy.plt adds a PLAI Lazy language to
DrRacket: #lang plai-lazy

In the Choose Language... dialog, click
Show Details and then

Syntactic test suite coverage

(Works for both eager and lazy languages)

. means evaluated at least once
* Red means not yet evaluated

* Normal coloring is the same as all green

RCFAE Interepreter in Lazy Racket

Doesn’t work because result of set-box! is never used:

(define (interp a-rcfae sc)
(type-case RCFAE a-rcfae

[rec (bound-id named-expr body-expr)
(local [(define wvalue-holder (box (numV 42)))
(define new-sc (aRecSub bound-id
value-holder
sc))]
(begin
(set-box! wvalue-holder (interp named-expr new-sc))
(interp body-expr new-sc)))]))

RCFAE Interepreter in Lazy Racket

Working implementation is actually simpler:

(define (interp a-rcfae sc)
(type-case RCFAE a-rcfae

[rec (bound-id named-expr body-expr)
(local [(define new-ds (aSub bound-id
(interp named-expr new-ds)
ds))]
(interp body-expr new-ds))]))

10

CFAL = Lazy FAE

<CFAL> := <num>

{+ <CFAL> <CFAL>}
{- <CFAL> <CFAL>}
<id>

{fun {<id>} <CFAL>}
{<CFAL> <CFAL>}

{{fun {x} 0} {+ 1 {fun {y} 2}}} = O
{{fun {x} x} {+ 1 {fun {y} 2}}} = error

11

Implementing CFAL

Option #1: Run the FAE interpreter in PLAI Lazy!

; interp : CFAL DefrdSub -> CFAL-Value
(define (interp expr ds)

[app (fun-expr arg-expr)
(local [(define fun-val
(interp fun-expr ds))
(define arg-val
(interp arg-expr ds))]
(interp (closureV-body fun-val)
(aSub (closureV-param fun-val)
arg-val
(closureV-ds fun-val))))])

arg-val never used = interp call never evaluated

12-13

Implementing CFAL

Option #2: Use PLAI Racket and explicitly delay
arg-expr interpretation

; interp : CFAL DefrdSub -> CFAL-Value
(define (interp expr ds)

[app (fun-expr arg-expr)
(local [(define fun-val
(interp fun-expr ds))
(define arg-val
(exprV arg-expr ds))]
(interp (closureV-body fun-val)
(aSub (closureV-param fun-val)
arg-val
(closureV-ds fun-val))))])

where exprV is a new kind of CFAL-Value

14-15

CFAL Values

(define-type CFAL-Value
[numV (n number?)]
[closureV (param symbol?)

(body CFAL?)
(ds DefrdSub?)]
[exprV (expr CFAL?)
(ds DefrdSub??)])

16

Forcing Evaluation for Number Operations

(interp |{{fun {x} {+ 1 x}} 10} | (mtSub))

=> error: expected numV, got exprV

(define (num-op op op-name X Yy)
(numV (op (numV-n (strict x))
(numV-n (strict y)))))

(define (num+ x y) (num-op + '+ x y))
(define (num- x y) (num-op - '- x y))

; strict : CFAL-Value -> CFAL-Value
(define (strict v)
(type-case CFAL-Value v
[exprV (expr ds) (strict (interp expr ds))]
[else Vv]))

17-19

Forcing Evaluation for Application

(interp | {{fun {f} {f 1}} {fun {x} {+ x 1}}}
(mtSub))

; interp : CFAL DefrdSub -> CFAL-Value
(define (interp expr ds)

[app (fun-expr arg-expr)
(local [(define fun-val
(strict (interp fun-expr ds)))
(define arg-val
(exprV arg-expr ds))]
(interp (closureV-body fun-val)
(aSub (closureV-param fun-val)
arg-val
(closureV-ds fun-val))))])

20-21

Redundant Evaluation

{{fun {x} {+ {+ x x} {+ x x}}}
{- {+ 4 5} {+ 8 9}}}

How many times is {+ 8 9} evaluated?

Since the result is always the same, we’d like to evaluate
{- {+ 4 5} {+ 8 9}} at most once

22-23

Caching Strict Results

(define-type CFAL-Value
[numV (n number?)]
[closureV (param symbol?)
(body CFAL?)
(ds DefrdSub?)]
[exprV (expr CFAL?)
(ds DefrdSub?)
(value (box/c (or/c false CFAL-Value?)))])

; strict : CFAL-Value -> CFAL-Value
(define (strict wv)
(type-case CFAL-Value v
[exprV (expr ds value-box)
(1f (not (unbox wvalue-box))
(local [(define v (strict (interp expr ds)))]
(begin
(set-box! value-box v)
v))
(unbox wvalue-box))]
[else Vv]))

24

Fix Up Interpreter

(define (interp expr ds)

[app ...
(exprV arg-expr ds (box #f))
...1)

25

