Part

Shrinking the Language

Shrinking the Language

* We've seen that with is not really necessary when
we have fun...

* ...and rec is not really necessary when we have
fun...

* ... and neither, it turns out, are fancy things like
numbers, +, — or 1£0

This part’s material won’t show up on any homework or
exam

2-3

LC Grammar

<LC> := <id>
| {<LC> <LC>}
| {fun {<id>} <LC>}

Implementing Programs with LC

Can you write a program that produces the identity
function!?

{fun {x} x}

5-

Implementing Programs with LC

Can you write a program that produces zero?

What'’s zero? | only know how to write functions!

Turing Machine programmer: What’s a function? | only
know how to write 0 or I!

We need to encode zero — instead of agreeing to write
zero as 0, let’s agree to write it as

{fun {f} {fun {x} x}}

This encoding is the start of Church numerails...

7-9

Implementing Numbers with LC

Can you write a program that produces zero?

{fun {f} {fun {x} x}}

... which is also the function that takes £ and x and
applies £ to x zero times

From now on, we’ll write zero as shorthand for the
above expression:

ef

I&

z€ero

{fun {f} {fun {x} x}}

10-12

Implementing Numbers with LC

Can you write a program that produces one!

ef

I&

one

{fun {f} {fun {x} {f x}}}

... which is also the function that takes £ and x and
applies £ to x one time

13-14

Implementing Numbers with LC

Can you write a program that produces two!

ef

&

two

{fun {f} {fun {x} {f {f x}}}}

... which is also the function that takes £ and x and
applies £ to x two times

15-16

Implementing Booleans with LC

Can you write a program that produces true!

o

ef

true

{fun {x} {fun {y} x}}

... which is also the function that takes two arguments
and returns the first one

17-18

Implementing Booleans with LC

Can you write a program that produces false?

o

ef

false = {fun {x} {fun {y} y}}

... which is also the function that takes two arguments
and returns the second one

19-20

Implementing Branches with LC

true = {fun
false = {fun
zero = {fun
one = {fun
two = {fun

{x} {fun
{x} {fun
{£f} {fun
{£f} {fun
{£f} {fun

{y}
{y}
{x}
{x}
{x}

{f x}}}
{f {f x}}}}

Can you write a program that produces zero when

given true, one when given false?

{fun {b} {{b zero} one}}

... because true returns its first argument and false

returns its second argument

{{fun {b} {{b zero} one}} true} = {{true zero} one}
=> zero

{{fun {b} {{b zero} one}} false} = {{false zero} one}
= one

21-22

Implementing Pairs

Can you write a program that takes two arguments and
produces a pair!

o

ef

cons {fun {x} {fun {y}

{fun {b} {{b x} y}}}}

Examples:
{{cons zero} one} = {fun {b} {{b zero} one}}

{{cons two} zero} = {fun {b} {{b two} zero}}

23-24

Implementing Pairs

def

cons = {fun {x} {fun {y}
{fun {b} {{b x} yv}}}}

Can you write a program that takes a pair and returns
the first part!

Can you write a program that takes a pair and returns
the rest!

def

first = {fun {p} {p true}}

def

rest = {fun {p} {p false}}

Example:

{first {{cons zero} one}} = {first {fun {b} {{b zero} one}}}
= {{fun {b} {{b zero} one}} true}
= {{true zero} one}
= zero

25-26

Implementing Arithmetic

zero = {fun {f} {fun {x} x}}
one = {fun {f} {fun {x} {f x}}}
two = {fun {f} {fun {x} {f {f x}}}}

Can you write a program that takes a number and adds
one!

o

ef

addl £ {fun {n}

{fun {g} {fun {y}
{g {{n g} y}}}}}

Example:

{addl zero} = {fun {g} {fun {y}

{g {{zero g} y}}}}
= {fun {g} {fun {y}
{g {{{fun {f} {fun {x} x}} g} y}}}}

< {fun {g} {fun {y}
{9 v}}}

— one

27-28

Implementing Arithmetic

Can you write a program that takes a number and adds
two!

o
=

1k

add2 {fun {n} {addl {addl n}}}

29-30

Implementing Arithmetic

Can you write a program that takes a number and adds
three!

[N

ef

add3 {fun {n} {addl {addl {addl n}}}}

31-32

Implementing Arithmetic

a
o)
2,

zero {fun {f} {fun {x} x}}
one = {fun {f} {fun {x} {f x}}}
two = {fun {f} {fun {x} {f {f x}}}}

Can you write a program that takes two numbers and
adds them!?

In.

add

= {fun {n} {fun {m} {{n addl} m}}}

... because a number n applies some function n times to
an argument

33-34

Implementing Arithmetic

zero = {fun {f} {fun {x} x}}
one = {fun {f} {fun {x} {f x}}}
two = {fun {f} {fun {x} {f {f x}}}}

Can you write a program that takes two numbers and
multiplies them?

o

ef

mult {fun {n} {fun {m} {{n {add m}} zero}}}

... because adding number m to zero n times produces
nxm

35-36

Implementing Arithmetic

Can you write a program that tests for zero!?

def

iszero = {fun {n} {{n {fun {x} false}} true}}

because applying {fun {x} false} zero times to
true produces true, and applying it any other number
of times produces false

37-38

Implementing Arithmetic

Can you write a program that takes a number and
produces one less!

o
=

12

shift {fun {p}

{{cons {rest p}} {addl {rest p}}}}
subl = {fun {n}

{first

{{n shift} {{cons zero} zero}}}}

And then subtraction is obvious...

39-41

Implementing Factorial

def

mk-rec = {fun {body}
{{fun {£fX} {fX £X}}
{fun {fX}
{{fun {f} {body f}}
{fun {x} {{fX £X} x}}}}}}

Can you write a program that computes factorial?

{mk-rec
{fun {fac}
{fun {n}
{{{iszero n}
one}

{{mult n} {fac {subl n}}}}}}}

... and when you can write factorial, you can probably
write anything.

42-44

Part |l

Back to Recursive Binding

45

Recursive Binding

{rec {x x} x}

infinite loop

46-47

Recursive Binding

{with {f {fun {g} {g g}}}
{f £}}

infinite loop

48-49

Recursive Binding

(local [(define x x)]
X)

#<undefined>

50-51

Recursive Binding

{rec {x x} 10}

infinite loop

52-53

Recursive Binding

(local [(define x x)]
10)

10

54-55

Recursive Binding

(local [(define x 10)]
X)

10

56-57

Recursive Binding

(local [(define x (list x))]
X)

(list #<undefined>)

58-59

Recursive Binding

(local [(define (f x) (f x))]
(f 1))

infinite loop

60-61

Recursive Binding

(local [(define f£
(lambda (x) (f x)))]

(£ 1))

infinite loop

62-63

Recursive Binding

(local [(define f
(list
(lambda (x) ((first £f) x))))]
((first £) 1))

infinite loop

64-65

Recursive Binding

(local [(define val
(interp (num 10)
(aSub 'x
val

ds)))]

val)

contract failure

66-67

Recursive Binding

(local [(define val
(interp (num 10)
(aSub 'x
(lambda () val)

ds)))]

val)

could work

68-69

Recursive Binding

(local [(define new-ds
(aSub 'x
(lambda () val)
ds))
(define val
(interp (num 10)
new-ds))]
(interp (id 'x) new-ds))

could work

70-71

Metacircular Recursion

(define-type DefrdSub
[mtSub]
[aSub (name symbol?)
(get-value (-> FAE-Value?))
(rest DefrdSub?)])

(define (lookup name ds)
(type-case DefrdSub ds
[mtSub () (error 'lookup "free variable")]
[aSub (sub-name get-num rest-ds)
(1f (symbol=? sub-name name)
(get-num)
(lookup name rest-ds))]))

72

Metacircular Recursion

(define-type FAE
[rec (name symbol?)
(named-expr FAE?)
(body FAE?)])

(define (interp a-fae ds)
(type-case FAE a-fae
[rec (name named-expr body-expr)
(local [(define new-ds

(aSub name

(lambda () val)
ds))

(define val (interp named-expr
new-ds))]
(interp body-expr new-ds))]))

73

