Part |

Lexical Addresses and Compilation (Again)

|dentifier Address

Suppose that

{fun {x} {+ x y}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will x be in the substitution?

Answer: always at the beginning:

x= e o o

2-

3

|dentifier Address

Suppose that

{with {y 1} {+ x y}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will y be in the substitution?

Answer: always at the beginning:

y =1

-5

|dentifier Address

Suppose that

{with {y 1}
{fun {x} {+ x y}}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will y be in the substitution?

Answer: always second:

I
[

X = ... y

-7

|dentifier Address

Suppose that

{with {y 1}
{{fun {x} {- {+ x y} 17}} 88}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will x and y be in the substitution?

Answer: always first and second:

X = ... y =1

8-9

|dentifier Address

Suppose that

{with {y 1}
{{fun {w} {with {z 9}
{fun {x} {+ x y}}}}}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will x and y be in the substitution?

Answer: always first and fourth:

I
=

X = ... z =9 w= ... Y

10-11

|dentifier Address

Suppose that

{with {y {with {r 8} {f {fun {x} r}}}}
{{fun {w} {with {z 9}
{fun {x} {+ x y}}}}}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will x and y be in the substitution?

Answer: always first and fourth:

X = ... z =9 w= ... Y = ...

12-13

Compiling FAE

; compile :

(define-type FAE
[num (n number?)]
[add (1lhs FAE?)
(rhs FAE?)]
[sub (lhs FAE?)
(rhs FAE?)]
[id (name symbol?)]
[fun (param symbol?)
(body FAE?)]
[app (fun-expr FAE?)
(arg-expr FAE?)])

FAE e o o _> CFAE

(define-type CFAE
[cnum (n number?)]
[cadd (lhs CFAE?)
(rhs CFAE?)]
[csub (lhs CFAE?)
(rhs CFAE?)]
[cat (pos number?)]
[cfun (body CFAE?)]
[capp (fun-expr CFAE?)
(arg-expr CFAE?)])

14

(compile
(compile
(compile

(compile

(compile

Compile Examples

1/ ...) = 1

{(+ 12} ...) = {+ 1 2}

X| ...) = compile: free identifier

{fun {x} x}| ...) = {fun {at 0}}

{fun {y} {fun {x} {+ x y}}}| ...)

= {fun {fun {+ {at 0} {at 1}}}}

(compile

{{fun {x} x} 10}| ...)

= {{fun {at 0}} 10}

15-19

Implementing the Compiler

; compile : FAE CSubs -> CFAE
(define (compile a-fae cs)

(type-case FAE a-fae
[num (n) (cnum n)]

[add (1 r) (cadd (compile

(compile

[sub (1 r) (csub (compile

(compile

i B

r

CSs)

cs))l

CSs)

cs))]

[id (name) (cat (locate name cs))]

[fun (param body-expr)

(cfun (compile body-expr
(aCSub param cs)))]

[app (fun-expr arg-expr)

(capp (compile fun-expr cs)
(compile arg-expr cs))]))

20-21

CFAE Values

Values are still numbers or closures, but a closure
doesn’t need a parameter name:

(define-type CFAE-Value
[cnumV (n number?)]
[cclosureV (body CFAE?)

(subs 1list?)])

22

CFAE Interpreter

Almost the same as FAE interp:

; cinterp : CFAE list-of-CFAE-Value -> CFAE-Value
(define (cinterp a-cfae subs)
(type-case CFAE a-cfae
[cnum (n) (cnumV n)]
[cadd (1 r) (cnum+ (cinterp 1 subs) (cinterp r subs))]
[csub (1 r) (cnum- (cinterp 1 subs) (cinterp r subs))]
[cat (pos) (list-ref subs pos)]
[cfun (body-expr)
(cclosureV body-expr subs)]
[capp (fun-expr arg-expr)
(local [(define fun-val
(cinterp fun-expr subs))
(define arg-val
(cinterp arg-expr subs))]
(cinterp (cclosureV-body fun-val)
(cons arg-val
(cclosureV-subs fun-val))))]))

23

Part |l

Dynamic Scope

24

Recursion

What if we want to write a recursive function?

{with {f {fun {x} {f {+ x 1}}}}
{f 0}}

This doesn’t work, because f is not bound in the
right-hand side of the with binding

But by the time that £ is called, £ is available...

25-27

Dynamic Scope

(

{with {f {fun {x} {f {+ x 1}}}}

{f 0}}

J
f = |{fun {x} {f {+ x 1}}}

= | {f 0}

Lexical scope:
X

=0

)
= | {f {+ x 1}}

Dynamic scope:

X

il
o

J
= | {f {+ x 1}}

[,

{fun {x} {f {+ x 1}}}

28-31

Implementing Dynamic Scope

; dinterp : FAE DefrdCache -> FAE-Value
(define (dinterp a-fae ds)
(type-case FAE a-fae
[num (n) (numV n)]
[add (1 r) (num+ (dinterp 1 ds) (dinterp r ds))]
[sub (1 r) (num- (dinterp 1 ds) (dinterp r ds))]
[id (name) (lookup name ds)]
[fun (param body-expr)
(closureV param body-expr (mtSub))]
[app (fun-expr arg-expr)
(local [(define fun-val
(dinterp fun-expr ds))
(define arg-val
(dinterp arg-expr ds))]
(dinterp (closureV-body fun-val)
(aSub (closureV-param fun-val)
arg-val

ds)))1))

32

Benefits of Dynamic Scope

Dynamic scope looks like a good idea:
* Seems to make recursion easier
* Implementation seems simple:
© No closures; change to our interpreter is trivial

© There’s only one binding for any given identifier at
any given time

* Supports optional arguments:

{with {x 0}
{with {f {fun {y} {+ x yv}}}
{+ {f 1} ; use default x
{with {x 3} ; change x to 3

{f 2}}}}})

33

Drawbacks of Dynamic Scope

There are serious problems:

* lambda doesn’t work right

(define (num-op op op-name)
(lambda (x y)
(numV (op (numV-n x) (numV-n y)))))

* It’s easy to accidentally depend on dynamic bindings

* It’s easy to accidentally override a dynamic binding

The last two are unacceptable for large systems

=> make your language statically scoped

34

A Little Dynamic Scope Goes a Long Way

Sometimes, the programmer really needs dynamic scope:

(define (notify user msgq)
; Should go to the current output stream,
; whatever that is for the current process:
(printf "Msg from ~a: ~a\n" user msg))

Static scope should be the implicit default, but supporting explicit
dynamic scope is a good idea:

* In Common LISP, variables can be designated as dynamic

* In Racket, a special form can be used to define and set dynamic
bindings:

(define x (make-parameter 0))
(define (f vy)
(+ v (x)))
(+ (£ 1) (parameterize ([x 3])
(f 2)))

35-36

Part Il

Recursion

37

Factorial

(local [(define fac
(lambda (n)
(1f (zero? n)
1

(* n (fac (- n 1))))))]
(fac 10))

local binds both in the body expression and in the
binding expression

38-39

Factorial

(let ([fac
(lambda (n)
(1f (zero? n)
1

(* n (fac (- n 1)))))1)
(fac 10))

Doesn’t work: let is like with

Still, at the point that we call £ac, obviously we have a
binding for fac...

... SO pass it as an argument!

40-43

Factorial

(let ([facX
(lambda (facX n)
(if (zero? n)
1
(* n (facX facX (- n 1)))))])

(facX facX 10))

Wrap this to get fac back...

44-45

Factorial

(let ([fac
(lambda (n)
(let ([facX
(lambda (facX n)
(1f (zero? n)
1
(* n (facX facX (- n 1)))))1)
(facX facX n)))])
(fac 10))

Try this in the HEDP Intermediate with Lambda
language, click Step

But the language we implement has only single-argument
functions...

46-48

From Multi-Argument to Single-Argument

(define f
(lambda (x y z)
(list z y x)))

(f 1 2 3)

(define f£
(lambda (x)
(lambda (y)
(lambda (z)

(list z y x)))))

(((£ 1) 2) 3)

49

Factorial

(let ([fac
(lambda (n)
(let ([facX
(lambda (facX)
(lambda (n)
(1f (zero? n)
1
(* n ((facX facX) (- n 1))))))1])
((facX facX) n)))1)
(fac 10))

Simplify: (lambda (n) (let ([f ...]) ((f £f) n)))
= (let ([f ...]1) (f £))..

50-51

Factorial

(let ([fac
(let ([facX
(lambda (facX)
(lambda (n)
(1f (zero? n)
1
(* n ((facX facX) (- n 1))))))1])

(facX facX))])

(fac 10))

52

Factorial

(let ([fac
(let ([facX
(lambda (facX)
; Almost looks like original fac:
(lambda (n)
(1f (zero? n)
1
(* n ((facX facX) (- n 1))))))1)
(facX facX))])
(fac 10))

More like original: introduce a local binding for
(facX facX)..

53-54

Factorial

(let ([fac
(let ([facX
(lambda (facX)
(let ([fac (facX facX)])
; Exactly like original fac:
(lambda (n)
(if (zero? n)
1
(* n (fac (- n 1)))))))1)
(facX facX))])
(fac 10))

Oops! — this is an infinite loop
We used to evaluate (facX facX) only whenn is

Non-Zero

Delay (facX facX)...

55-57

Factorial

(let ([fac
(let ([facX
(lambda (facX)
(let ([fac (lambda (x)
((facX facX) x))1])
; Exactly like original fac:
(lambda (n)
(if (zero? n)
1
(*n (fac (- n 1)))))))1)
(facX facX))])
(fac 10))

Now, what about £ib, sum, etc.?

Abstract over the fac-specific part...

58-59

Make-Recursive and Factorial

(define (mk-rec body-proc)
(let ([£X
(lambda (£fX)
(let ([f (lambda (x)
((£X £X) x))1)
(body-proc £)))1])
(£fX £X)))

(let ([fac (mk-rec
(lambda (fac)
; Exactly like original fac:
(lambda (n)
(if (zero? n)
1

(* n (fac (- n 1)))))))1)
(fac 10))

60

Fibonnaci

(let ([fib
(mk-rec
(lambda (fib)
+ Usual fib:
(lambda (n)
(if (or (= n 0) (=n 1))
1
(+ (fib (- n 1))
(fib (- n 2)))))))1)
(fib 5))

61

Sum

(let ([sum
(mk-rec
(lambda (sum)
s Usual sum:
(lambda (1)
(1f (empty? 1)
0
(+ (first 1)
(sum (rest 1)))))))1])
(sum '(1 2 3 4)))

62

Implementing Recursion

{rec {fac {fun {n}
{ifzero n
1
{* n

{fac {- n 1}}}}}}
{fac 10}}

could be parsed the same as

{with {fac
{mk-rec
{fun {fac}
{fun {n}
{ifzero n
1
{* n

{fac {- n 1}}}}}}}}
{fac 10}}

63

Implementing Recursion

{rec {<id> <FAE>}
<FAE>, }

could be parsed the same as

{with {<id> {mk-rec {fun {<id>} <FAE>}}}
<FAE>;}

which is really

{mk-rec {fun {<id>} <FAE>}}}

64

