|dentifier Address

Suppose that

{with {x 88} {+ x yv}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will x be in the substitution?

Answer: always at the beginning:

x = 88

1-

2

|dentifier Address

Suppose that

{with {y 1} {+ x y}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will y be in the substitution?

Answer: always at the beginning:

y =1

3-

|dentifier Address

Suppose that

{with {y 1}
{with {x 2} {+ x yv}}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will y be in the substitution?

Answer: always second:

x = 2 y =1

5-

|dentifier Address

Suppose that

{with {y 1}
{with {x 88} {- {+ x y} 17}}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will x and y be in the substitution?

Answer: always first and second:

x = 88 y =1

7-

|dentifier Address

Suppose that

{with {y 1}
{with {w 10} {with {z 9}
{with {x O} {+ x y}}}}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will x and y be in the substitution?

Answer: always first and fourth:

x =0 z =9 w = 10 y =1

9-

10

|dentifier Address

Suppose that

{with {y {with {r 9} {- r 8}}}
{with {w 10} {with {z {with {q 9} q}}
{with {x 0} {+ x y}}}}}

appears in a program; the body is eventually evaluated:

{+xyﬂ

where will x and y be in the substitution?

Answer: always first and fourth:

x =0 z =9 w = 10 y =1

11-12

Lexical Scope

Our language is lexically scoped:

* For any expression, we can tell which identifiers will
have substititions at run time

* The order of the substitutions is also predictable

13

Compiling FIVWAE

A compiler can transform an FW1AE expression to an
expression without identifiers — only lexical addresses

; compile : F1IWAE ... -> CFlWAE

(define-type F1WAE (define-type CF1WAE
[Aum (n number?)] [chnum (n number?)]
[add (lhs F1WAE?) [cadd (lhs CF1WAE?)
(rhs F1WAE?)] (rhs CF1WAE?)]
[sub (lhs F1WAE?) [csub (lhs CF1WAE?)
(rhs F1WAE?)] (rhs CF1WAE?)]
[with (name symbol?) [cwith (named-expr CF1lWAE?)
(named-expr F1WAE?) (body CF1WAE?)]
(body F1WAE?)] [cat (pos number?)]
[id (name symbol?)] [capp (fun-name symbol?)
[app (fun-name symbol?) (arg-expr CF1WAE?)])

(arg-expr F1WAE?)])

14-15

(compile
(compile

(compile

Compile Examples

1/ ...) = 1

{(+ 12} ...) = {+ 1 2}

X| ...) = compile: free identifier

(compile

{with {x 8} x}| ...) = {with 8 {at 0}}

(compile

{with {y 1} {with {x 2} {+ x v}}}| ...)

— {with 1 {with 2 {+ {at 0} {at 1}}}}

(compile

{deffun {f x} x}| ...)

= {deffun f {at 0}}

16-20

Implementing the Compiler

; compile : F1WAE CSub -> CF1WAE
(define (compile a-wae cs)
(type-case F1WAE a-wae
[num (n) (cnum n)]

[add (1 r) (cadd (compile 1 cs)
(compile r cs))]
[sub (1 r) (csub (compile 1 cs)

(compile r cs))]
[with (named named-expr body-expr)
(cwith (compile named-expr cs)
(compile body-expr
(aCSub named cs)))]
[id (name) (cat (locate name cs))]
[app (fun-name arg-expr)
(capp fun-name
(compile arg-expr cs))]))

21-23

Compile-Time Substitution

Mimics run-time substitutions, but without values:

(define-type CSub
[mtCSub]
[aCSub (name symbol?)
(rest CSub?)])

; locate : symbol CSub -> number
(define (locate name cs)
(type-case CSub cs
[mtCSub ()
(error 'compile "free identifier")]
[aCSub (sub-name rest)
(1f (symbol=? name sub-name)
0
(+ 1 (locate name rest)))]))

CFIWAE Interpreter

Almost the same as F1WAE interp:

; cinterp : CF1WAE list-of-num -> num
(define (cinterp a-cwae s)
(type-case CF1WAE a-cwae
[cnum (n) n]
[cadd (1 r) (+ (cinterp 1 s) (cinterp r s))]
[csub (1 r) (- (cinterp 1 s) (cinterp r s))]
[cwith (named-expr body-expr)
(cinterp body-expr
cfundefs
(cons (cinterp named-expr cfundefs s)
s))]
[cat (pos) (list-ref s pos)]
[capp (fun-name arg)
(local [(define fun (lookup-cfundef fun-name cfundefs))
(define arg-val (cinterp arg cfundefs s))]
(cinterp (cfundef-body fun)
cfundefs
(cons arg-val empty)))]))

25

CFIWAE Versus FIWAE Interpretation

On my machine,

(cinterp
{with {x 1} {with {y 2} {with {z 3} {+ {+ x x} {+ x x}}}}}
empty)

takes about half the time of

(interp

{with {x 1} {with {y 2} {with {z 3} {+ {+ x x} {+ x x}}}}}

(mtSub))

Note: using built-in 1ist-ref simulates machine array
indexing, but don’t take the numbers too seriously

26

