Direct Interactive Programs

Good:
(define (num-read prompt)
(begin
(printf "~a\n" prompt)
(read)))

(define (h)
(+ (num-read "First number")
(num-read "Second number'")))

Interactive VWeb Programs

Adequate:

(define (web-read/k prompt cont)
(local [(define key (remember cont))]
" (,prompt
"To continue, call resume/k with" ,key "and value")))

(define (resume/k key val)
(local [(define cont (lookup key))]
(cont wval)))

(define (do-h cont)
(web-read/k "First"
(lambda (v1)
(web-read/k "Second"
(lambda (v2)
(cont (+ vl v2)))))))

(define (h)
(do-h identity))

Interactive VWeb Programs

Better:

(define (web-read prompt)

(local [(define key (remember cont))]
" (,prompt
"To continue, call resume with" ,key "and value"))

..)

(define (resume key val)
(local [(define cont (lookup key))]
(cont wval)))

(define (h)
(+ (web-read "First")
(web-read "Second")))

If we can implement this web-read somehow...

Implicit Continuations

With

(define (h)
(+ (web-read "First")
(web-read "Second")))
(h)

The implicit continuation of the first call to
web-read is

(lambda (°)
(+
(web-read "Second")))

Implicit Continuations

With

(define (h)
(+ (web-read "First")
(web-read '"Second")))
(h)

If the first web-read call produces 7, then the
continuation of the second web-read call is

(lambda (°)
(+ 7
°))

Implicit Continuations

With

(define (do-g total)
(do-g (+ (web-read (format "Total:
total)))
(do-g 0)

The continuation of the first call to web-read is

(lambda ()
(do-g (+ =
0)))

~a" total))

-7

Implicit Continuations

With

(define (do-g total)
(do-g (+ (web-read (format '"Total: ~a" total))
total)))
(do-g 0)

If the first web-read call produces 7, then the continuation of the second
web-read call is

(lambda ()
(do-g (+
7)))

Implicit Continuations

With

(define (do-g total)
(do-g (+ (web-read (format '"Total: ~a" total))
total)))
(do-g 0)

If the second web-read call produces 8, then the continuation of the
second web-read call is

(lambda (e)
(do-g (+ e
15)))

etc.

Implementing web-read

We need an operation to convert the current implicit
continuation into an explicit continuation:

(define (web-read prompt)
(get-current-continuation)

(local [(define key (remember cont))]
" (,prompt
"To continue, call resume with"
ykey "and wvalue"))

-)

This is not quite right, because the continuation of
(get-current-continuation) is some context
that wants a continuation, not the continuation of the
web-read call...

10-11

Implementing web-read

let/cc locally binds a name to the “surrounding”
continuation, and evaluates its body to produce a result:

(define (web-read prompt)
(let/cc cont
(local [(define key (remember cont))]
" (,prompt
"To continue, call resume with"
,key "and value"))))

Closer, but we need to escape instead of returning...

12-13

Implementing web-read

For NOwW, use error to escape:

(define (web-read prompt)
(let/cc cont
(local [(define key (remember cont))]
(exrror 'web-read
"~a; to continue, call resume with

prompt key))))

~a and wvalue"

14

Reusing Direct-Style Web Pages

No more CPS, so re-using h for i is easy:

(define (web-pause prompt)
(let/cc cont
(local [(define key (remember cont))]
(error 'web-pause
"~a; to continue, call p-resume with ~a"

prompt key))))

(define (p-resume key)
(local [(define cont (lookup key))]
(cont (void))))

(define (i)
(web-pause (h))
(h))

15

Reusing Direct-Style Web Pages

No CPS also means that we can use functions like map:

(define (web-read-each prompts)
(map web-read prompts))

(define (m)
(apply format '"my ~a saw a ~a rock"
(web-read-each ' ('"noun" "adjective'"))))

16

Continuations in web-read-all

(define (web-read-each prompts) (define (map £ 1)
(map web-read prompts)) (cond
[(empty? 1) empty]
(define (m) [else (cons (f (first 1))
(apply format (map £
"my ~a saw a ~a rock" (rest 1)))1))

(web-read-each ' ("noun" "adjective"))))

Evaluation:

(m)

= (apply format "my ~a saw a ~a rock"
(web-read-each ' ('"noun" "adjective'")))

17

Continuations in web-read-all

(define (web-read-each prompts) (define (map £ 1)
(map web-read prompts)) (cond
[(empty? 1) empty]
(define (m) [else (cons (f (first 1))
(apply format (map £
"my ~a saw a ~a rock" (rest 1)))1))

(web-read-each ' ("noun" "adjective"))))

Evaluation:

(apply format '"my ~a saw a ~a rock"
(web-read-each ' ("noun" "adjective'")))

= (apply format "my ~a saw a ~a rock"
(map web-read ' ("noun" "adjective")))

18

Continuations in web-read-all

(define (web-read-each prompts) (define (map £ 1)
(map web-read prompts)) (cond
[(empty? 1) empty]
(define (m) [else (cons (f (first 1))
(apply format (map £
"my ~a saw a ~a rock" (rest 1)))1))

(web-read-each ' ("noun" "adjective"))))

Evaluation:

(apply format '"my ~a saw a ~a rock"
(map web-read ' ("noun" "adjective")))

= (apply format "my ~a saw a ~a rock"
(cond
[(empty? ' ("noun" "adjective")) empty]
[else (cons (web-read (first ' ('"noun" "adjective")))
(map web-read
(rest ' ("noun" "adjective"))))1))

19

Continuations in web-read-all

(define (web-read-each prompts) (define (map £ 1)
(map web-read prompts)) (cond
[(empty? 1) empty]
(define (m) [else (cons (f (first 1))
(apply format (map £
"my ~a saw a ~a rock" (rest 1)))1))

(web-read-each ' ("noun" "adjective"))))

Evaluation:

(apply format '"my ~a saw a ~a rock"
(cond
[(empty? ' ("noun" "adjective'")) empty]
[else (cons (web-read (first ' ("noun" "adjective")))
(map web-read
(rest ' ("noun" "adjective"))))1))

= (apply format "my ~a saw a ~a rock"
(cons (web-read (first ' ("noun" "adjective'")))
(map web-read
(rest ' ("noun" "adjective'")))))

20

Continuations in web-read-all

(define (web-read-each prompts) (define (map £ 1)
(map web-read prompts)) (cond
[(empty? 1) empty]
(define (m) [else (cons (f (first 1))
(apply format (map £
"my ~a saw a ~a rock" (rest 1)))1))

(web-read-each ' ("noun" "adjective"))))

Evaluation:

(apply format '"my ~a saw a ~a rock"
(cons (web-read (first ' ("noun" "adjective")))
(map web-read
(rest ' ("noun" "adjective")))))

= (apply format '"my ~a saw a ~a rock"
(cons (let/cc cont
(local [(define key (remember cont))]
(exror ...)))
(map web-read
(rest ' ("noun" "adjective")))))

21

Continuations in web-read-all

(define (web-read-each prompts) (define (map £ 1)
(map web-read prompts)) (cond
[(empty? 1) empty]
(define (m) [else (cons (f (first 1))
(apply format (map £
"my ~a saw a ~a rock" (rest 1)))1))

(web-read-each ' ("noun" "adjective"))))

Evaluation:

(apply format '"my ~a saw a ~a rock"
(cons (let/cc cont
(local [(define key (remember cont))]
(exror ...)))
(map web-read
(rest ' ("noun" "adjective")))))

= (apply format "my ~a saw a ~a rock"
(cons (local [(define key (remember

(lambda ()
(apply format "my ~a saw a ~a rock"
(cons e
(map web-read
(rest ' ("noun" "adjective"))))))))]1]

(error ...))
(map web-read
(rest ' ("noun" "adjective")))))

22

Escaping
How error escapes (roughly):
(define top-level (let/cc k k))

(define (error ...)
; Write error message:

; Escape:
(top-level top-level))

Applying a continuation throws away the current
continuation!

So let/cc actually creates something like

(lambdafl (¢) ... ¢ ...)

23-24

Direct-Style Interactive VWeb Pages

; mutated, for a kind of dynamic scope:
(define current-start-k #£)

; adjust serve' for to set current-start-k':
(define (serve)

(return-page (let/cc k
(set! current-start-k k)
(dispatch (cadr m)))
in out))

(define (web-read prompt)
(let/cc k
(current-start-k
(web-read/k prompt (lambda (val)
(k val))))))

25

Continuations for Exceptions

; sum-items : list-of-num-and-sym -> num-or-false
; Returns the sum if all numbers, false otherwise
(define (sum-items 1)
(cond
[(empty? 1) O]
[else (if (symbol? (first 1))
false
(1f (number? (sum-items (rest 1l)))
(+ (£first 1) (sum-items (rest 1)))
false))]))

; Better:
(define (sum-items 1)
(let/cc esc
(local [(define (sum-items 1)
(cond
[(empty? 1) O]
[else (i1f (symbol? (first 1))
(esc false)

(+ (£first 1) (sum-items (rest 1))))1))]1]
(sum-items 1))))

26

Continuations for Coroutines

(define tasks empty)

(define (spawn! thunk)
(set! tasks (append tasks (list thunk))))

(define (next!)
(local [(define t (first tasks))]
(set! tasks (rest tasks))

(t)))

(define (swap)
(let/cc k
(begin (spawn! k) (next!))))

(define (loop label cnt)
(begin (printf "~a ~a\n" label cnt)

(swap)
(loop label (addl cnt))))

(spawn! (lambda () (loop "a" 0)))
(spawn! (lambda () (loop "b" 0)))
(next!)

27

