NATIONAL BESTSELLER

Funny, charming . . . will steal readers
spare hours as they find themselves
unable to put it down.” !

/_,&.".\..__

X
£ AN Y/
2 RS S

P I\\%

—

Time stops for no one. . . until now, that is

Thief of Time

According to the First Scroll of Wen the Eternally Sur-
prised, Wen stepped out of the cave where he had received
enlightenment and into the dawning light of the first day of
the rest of his life. He stared at the rising sun for some time,
because he had never seen it before.

He prodded with a sandal the dozing form of Clodpool
the Apprentice, and said: “I have seen. Now I understand.”

Then he stopped and looked at the thing next to Clodpool.

“What is that amazing thing?” he said.

“Er...er...it's a tree, master,” said Clodpool, still not
quite awake. “Remember? It was there yesterday.”

“There was no yesterday.”

“Er...er...I think there was, master,” said Clodpool,
struggling to his feet. “Remember? We came up here, and |
cooked a meal, and had the rind off your sklang because you
didn’t want it.”

“I remember yesterday,” said Wen, thoughtfully. “But the
memory is in my head now. Was yesterday real? Or is it only
the memory that is real? Truly, yesterday I was not born.”

Clodpool’s face became a mask of agonized incompre-
hension.

“Dear stupid Clodpool, I have learned everything,” said
Wen. “In the cup of the hand there is no past, no future.
There is only now. There is no time but the present. We have
a great deal to do.”

Wen the Eternally Surprised

The first question they ask is: “Why was he eternally
surprised?”

And they are told: “Wen considered the nature of time and
understood that the universe is, instant by instant, re-created

anew.| Therefore, he understood, there is, in truth, no Past,

only a memory of the Past. Blink your eyes, and the world
you see next did not exist when you closed them. Therefore,
he said, the only appropriate state of the mind is surprise.
The only appropriate state of the heart is joy. The sky you
see now, you have never seen before. The perfect moment is
now. Be glad of it.”

Functional Programs

So far, the language that we’ve implemented is purely
functional

* A function produces the same result every time for
the same arguments

* Also, lazy and eager results are the same

... except that eager evaluation might loop forever or
raise an exception where the lazy version produces a
result

Non-Functional Procedures

(define (f x)
(+ x (read)))

(define counter 0)
(define (f x)
(begin
(set! counter (+ x counter))
counter))

(define f
(local [(define b (box 0))]
(lambda (x)
(begin
(set-box! b (+ x (unbox b)))
(unbox b)))))

<BCFAE>

BCFAE = FAE + Boxes

= <num>

{+ <BCFAE> <BCFAE>}

{- <BCFAE> <BCFAE>}

<id>

{fun {<id>} <BCFAE>}
{<BCFAE> <BCFAE>}
{newbox <BCFAE>}

{setbox <BCFAE> <BCFAE>}
{openbox <BCFAE>}

{seqn <BCFAE> <BCFAE>}

{with {b {newbox 0}}
{seqn
{setbox b 10}
{openbox b}}} — 10

Implementing Boxes with Boxes

(define-type BCFAE-Value
[numV (n number?)]
[closureV (param symbol?)
(body BCFAE?)
(ds DefrdSub?)]
[boxV (container (box-of BCFAE?))])

Implementing Boxes with Boxes

; interp : BCFAE DefrdSub -> BCFAE-Value
(define (interp a-bcfae ds)
(type-case RCFAE a-bcfae
[newbox (val-expr)
(boxV (box (interp val-expr ds)))]
[setbox (box-expr val-expr)
(set-box! (boxV-container
(interp box-expr ds))
(interp val-expr ds))]
[openbox (box-expr)
(unbox (boxV-container
(interp box-expr ds)))]))

But this doesn’t explain anything about boxes!

7-8

Boxes and Memory

{with {b {newbox 7}} =
-}

Memory: Memory:

Boxes and Memory

... {setbox b 10}

Memory:

... {openbox b}

Memory:

10

10

The Store

We represent memory with a store:

(define-type Store

Memory:

[mtSto]

[aSto (address integer?)
(value BCFAE-Value?)
(rest Store?)])

(aSto 13 (numV 10)

10

(mtSto))

11

Implementing Boxes without State

; interp : BCFAE DefrdSub Store -> Value*Store

(define-type BCFAE-Value
[numV (n number?)]
[closureV (param symbol?)

(body BCFAE?)
(ds DefrdSub?)]
[boxV (address integer?)])

(define-type Value*Store
[v*s (value BCFAE-Value?)
(store Store?)])

12

Implementing Boxes without State

; interp : BCFAE DefrdSub Store -> Value*Store
(define (interp expr ds st)

[newbox (expr)

(type-case Value*Store (interp expr ds st)
[v¥s (val st)
(local [(define a (malloc st))]
(v*s (boxV a)
(aSto a val st)))])]
ce)

; malloc : Store -> integer

13-17

Implementing Boxes without State

; malloc : Store -> integer
(define (malloc st)
(+ 1 (max-address st)))

; max-address : Store -> integer
(define (max-address st)
(type-case Store st
[mtSto () O]
[aSto (n v st)
(max n (max-address st))]))

18

Implementing Boxes without State

; interp : BCFAE DefrdSub Store -> Value*Store
(define (interp expr ds st)
[openbox (bx-expr)
(type-case Value*Store (interp bx-expr ds st)
[v¥*s (bx-val st)
(v*s (store-lookup (boxV-address bx-val)
st)
st)])]
ce.)

19-21

Implementing Boxes without State

; interp : BCFAE DefrdSub Store -> Value*Store
(define (interp expr ds st)
[setbox (bx-expr val-expr)
(type-case Value*Store (interp bx-expr ds st)
[v¥s (bx-val st2)
(type-case Value*Store (interp val-expr ds st2)
[v¥s (val st3)
(v*s val
(aSto (boxV-address bx-val)
val

st3))1)1)1
cel)

seqn, add, sub, and app will need the same sort of
sequencing

22-27

Implementing Boxes without State

; interp-two : (BCFAE BCFAE DefrdSub Store
; (Value Value Store -> Value*Store)
’ -> Value*Store)
(define (interp-two exprl expr2 ds st handle)

(type-case Value*Store (interp exprl ds st)

[v¥s (vall st2)
(type-case Value*Store (interp expr2 ds st2)
[v¥s (val2 st3)
(handle vall val2 st3)])]))

28

Implementing Boxes without State

interp : BCFAE DefrdSub Store -> Value*Store

(define (interp expr ds st)

[add (r 1) (interp-two r 1 ds st
(lambda (vl v2 st)
(v¥*s (num+ vl v2) st)))]
[seqn (a b) (interp-two a b ds st
(lambda (vl v2 st)
(v¥*s v2 st)))]
[setbox (bx-expr val-expr)
(interp-two bx-expr val-expr ds st
(lambda (bx-val val st3)
(v*s val
(aSto (boxV-address bx-val)
val

st3))))]
cel)

29

Store-Passing Interpreters

Our BCFAE interpreter explains state by representing the store as
a value:

* Every step in computation produces a new store

the universe is, instant by instant, re-created anew

* The interpreter itself is purely functional

It's a store-passing interpreter

30

