
Part I

Lexical Addresses and Compilation

1

Identifier Address

Suppose that

{fun {x} {+ x y}}

appears in a program...

If the body is eventually evaluated:

{+ x y}

...

where will x be in the substitution?

Answer: always at the beginning:

x =

2-3

Identifier Address

Suppose that

{with {y 1} {+ x y}}

appears in a program...

If the body is eventually evaluated:

{+ x y}

...

where will y be in the substitution?

Answer: always at the beginning:

y = 1 ...

4-5

Identifier Address

Suppose that

{with {y 1}
 {fun {x} {+ x y}}}

appears in a program...

If the body is eventually evaluated:

{+ x y}

...

where will y be in the substitution?

Answer: always second:

x = ... y = 1 ...

6-7

Identifier Address

Suppose that

{with {y 1}
 {{fun {x} {- {+ x y} 17}} 88}}

appears in a program...

If the body is eventually evaluated:

{+ x y}

...

where will x and y be in the substitution?

Answer: always first and second:

x = ... y = 1 ...

8-9

Identifier Address

Suppose that

{with {y 1}
 {{fun {w} {with {z 9}

 {fun {x} {+ x y}}}}}}

appears in a program...

If the body is eventually evaluated:

{+ x y}

...

where will x and y be in the substitution?

Answer: always first and fourth:

x = ... z = 9 w = ... y = 1 ...
10-11

Identifier Address

Suppose that

{with {y {with {r 8} {f {fun {x} r}}}}
 {{fun {w} {with {z 9}

 {fun {x} {+ x y}}}}}}

appears in a program...

If the body is eventually evaluated:

{+ x y}

...

where will x and y be in the substitution?

Answer: always first and fourth:

x = ... z = 9 w = ... y =
12-13

Lexical Scope

Our language is lexically scoped:

• For any expression, we can tell which identifiers
will have substititions at run time

• The order of the substitutions is also predictable

(The value for each substitution is not necessarily predictable)

14

Compiling FAE

A compiler can transform an FAE expression to an
expression without identifiers — only lexical
addresses

; compile : FAE ... -> CFAE

(define-type FAE
 [num (n number?)]
 [add (lhs FAE?)

(rhs FAE?)]
 [sub (lhs FAE?)

(rhs FAE?)]
 [id (name symbol?)]
 [fun (param symbol?)

(body FAE?)]
 [app (fun-expr FAE?)

(arg-expr FAE?)])

(define-type CFAE
 [cnum (n number?)]
 [cadd (lhs CFAE?)

(rhs CFAE?)]
 [csub (lhs CFAE?)

(rhs CFAE?)]
 [cat (pos number?)]
 [cfun (body CFAE?)]
 [capp (fun-expr CFAE?)

(arg-expr CFAE?)])

15-16

Compile Examples

(compile 1 ...) ⇒ 1

(compile {+ 1 2} ...) ⇒ {+ 1 2}

(compile x ...) ⇒ compile: free identifier

(compile {fun {x} x} ...) ⇒ {fun {at 0}}

(compile {fun {y} {fun {x} {+ x y}}} ...)

 ⇒ {fun {fun {+ {at 0} {at 1}}}}

(compile {{fun {x} x} 10} ...)

 ⇒ {{fun {at 0}} 10}
17-21

Implementing the Compiler

; compile : FAE CSubs -> CFAE
(define (compile a-fae cs)
 (type-case FAE a-fae

 [num (n) (cnum n)]
 [add (l r) (cadd (compile l cs)

(compile r cs))]
 [sub (l r) (csub (compile l cs)

(compile r cs))]
 [id (name) (cat (locate name cs))]
 [fun (param body-expr)

(cfun (compile body-expr
(aCSub param cs)))]

 [app (fun-expr arg-expr)
(capp (compile fun-expr cs)

(compile arg-expr cs))]))

22-23

Compile-Time Substitution

Mimics run-time substitutions, but without values:

(define-type CSubs
 [mtCSub]
 [aCSub (name symbol?)

(rest CSubs?)])

; locate : symbol CSubs -> number
(define (locate name cs)
 (type-case CSubs cs
 [mtCSub ()

(error 'compile "free identifier")]
 [aCSub (sub-name rest)

(if (symbol=? name sub-name)
0
(+ 1 (locate name rest)))]))

24

CFAE Values

Values are still numbers or closures, but a closure
doesn’t need a parameter name:

(define-type CFAE-Value
 [cnumV (n number?)]
 [cclosureV (body CFAE?)

(subs list?)])

25

CFAE Interpreter

Almost the same as FAE interp:

; cinterp : CFAE list-of-CFAE-Value -> CFAE-Value
(define (cinterp a-cfae subs)
 (type-case CFAE a-cfae

 [cnum (n) (cnumV n)]
 [cadd (l r) (cnum+ (cinterp l subs) (cinterp r subs))]
 [csub (l r) (cnum- (cinterp l subs) (cinterp r subs))]
 [cat (pos) (list-ref subs pos)]
 [cfun (body-expr)

(cclosureV body-expr subs)]
 [capp (fun-expr arg-expr)

(local [(define fun-val
 (cinterp fun-expr subs))
(define arg-val
 (cinterp arg-expr subs))]

 (cinterp (cclosureV-body fun-val)
(cons arg-val

(cclosureV-subs fun-val))))]))

26

CFAE Versus FAE Interpretation

On my machine,

(cinterp

{{{{{fun {fun {fun {fun {at 3}}}}} 10} 11} 12} 13}

empty)

is 30% faster than

(interp

{{{{{fun {x} {fun {y} {fun {z} {fun {w} x}}}} 10} 11} 12} 13}

(mtSub))

Note: using built-in list-ref simulates machine
array indexing, but don’t take the numbers too
seriously

27

Part II

Dynamic Scope

28

Recursion

What if we want to write a recursive function?

{with {f {fun {x} {f {+ x 1}}}}
 {f 0}}

This doesn’t work, because f is not bound in the
right-hand side of the with binding

But by the time that f is called, f is available...

29-31

Dynamic Scope

{with {f {fun {x} {f {+ x 1}}}}
 {f 0}}

⇒ {f 0}

f = {fun {x} {f {+ x 1}}}

Lexical scope:

⇒ {f {+ x 1}}

x = 0

Dynamic scope:

⇒ {f {+ x 1}}

x = 0 f = {fun {x} {f {+ x 1}}}

32-35

Implementing Dynamic Scope

; dinterp : FAE DefrdCache -> FAE-Value
(define (dinterp a-fae ds)
 (type-case FAE a-fae

 [num (n) (numV n)]
 [add (l r) (num+ (dinterp l ds) (dinterp r ds))]
 [sub (l r) (num- (dinterp l ds) (dinterp r ds))]
 [id (name) (lookup name ds)]
 [fun (param body-expr)

(closureV param body-expr (mtSub))]
 [app (fun-expr arg-expr)

(local [(define fun-val
 (dinterp fun-expr ds))
(define arg-val
 (dinterp arg-expr ds))]

 (dinterp (closureV-body fun-val)
(aSub (closureV-param fun-val)

arg-val
ds)))]))

36

Benefits of Dynamic Scope

Dynamic scope looks like a good idea:

• Seems to make recursion easier

• Implementation seems simple:

No closures; change to our interpreter is trivial

There’s only one binding for any given
identifier at any given time

• Supports optional arguments:

{with {x 0}
 {with {f {fun {y} {+ x y}}}

 {+ {f 1} ; use default x
{with {x 3} ; change x to 3

{f 2}}}}}

37

Drawbacks of Dynamic Scope

There are serious problems:

• lambda doesn’t work right

(define (num-op op op-name)
 (lambda (x y)

 (numV (op (numV-n x) (numV-n y)))))

• It’s easy to accidentally depend on dynamic
bindings

• It’s easy to accidentally override a dynamic
binding

The last two are unacceptable for large systems

⇒ make your language statically scoped

38

A Little Dynamic Scope Goes a Long Way

Sometimes, the programmer really needs dynamic scope:

(define (notify user msg)
 ; Should go to the current output stream,
 ; whatever that is for the current process:
 (printf "Msg from ~a: ~a\n" user msg))

Static scope should be the implicit default, but supporting
explicit dynamic scope is a good idea:

• In Common LISP, variables can be designated as dynamic

• In PLT and other Schemes, special forms can be used to
define and set dynamic bindings:

(define x (make-parameter 0))
(define (f y)
 (+ y (x)))
(+ (f 1) (parameterize ([x 3])

 (f 2)))
39-40

