
Shrinking the Language

• We’ve seen that with is not really necessary
when we have fun...

• ... and rec is not really necessary when we have
fun...

• ... and neither, it turns out, are fancy things like
numbers, +, - or if0

The following material won’t show up on any
homework or exam

1-2

LC Grammar

<LC> ::= <id>

| {<LC> <LC>}

| {fun {<id>} <LC>}

3

Implementing Programs with LC

Can you write a program that produces the identity
function?

{fun {x} x}

4-5

Implementing Programs with LC

Can you write a program that produces zero?

What’s zero? I only know how to write functions!

Turing Machine programmer: What’s a function? I
only know how to write 0 or 1!

We need to encode zero — instead of agreeing to
write zero as 0, let’s agree to write it as

{fun {f} {fun {x} x}}

This encoding is the start of Church numerals...

6-8

Implementing Numbers with LC

Can you write a program that produces zero?

{fun {f} {fun {x} x}}

... which is also the function that takes f and x and
applies f to x zero times

From now on, we’ll write zero as shorthand for the
above expression:

zero
def

= {fun {f} {fun {x} x}}

9-11

Implementing Numbers with LC

Can you write a program that produces one?

one
def

= {fun {f} {fun {x} {f x}}}

... which is also the function that takes f and x and
applies f to x one time

12-13

Implementing Numbers with LC

Can you write a program that produces two?

two
def

= {fun {f} {fun {x} {f {f x}}}}

... which is also the function that takes f and x and
applies f to x two times

14-15

Implementing Booleans with LC

Can you write a program that produces true?

true
def

= {fun {x} {fun {y} x}}

... which is also the function that takes two
arguments and returns the first one

16-17

Implementing Booleans with LC

Can you write a program that produces false?

false
def

= {fun {x} {fun {y} y}}

... which is also the function that takes two
arguments and returns the second one

18-19

Implementing Branches with LC

true
def

= {fun {x} {fun {y} x}}

false
def

= {fun {x} {fun {y} y}}

zero
def

= {fun {f} {fun {x} x}}

one
def

= {fun {f} {fun {x} {f x}}}

two
def

= {fun {f} {fun {x} {f {f x}}}}

Can you write a program that produces zero when
given true, one when given false?

{fun {b} {{b zero} one}}

... because true returns its first argument and
false returns its second argument

{{fun {b} {{b zero} one}} true} ⇒ {{true zero} one}

⇒ zero

{{fun {b} {{b zero} one}} false} ⇒ {{false zero} one}

⇒ one
20-21

Implementing Pairs

Can you write a program that takes two arguments
and produces a pair?

cons
def

= {fun {x} {fun {y}
{fun {b} {{b x} y}}}}

Examples:

{{cons zero} one} ⇒ {fun {b} {{b zero} one}}

{{cons two} zero} ⇒ {fun {b} {{b two} zero}}

22-23

Implementing Pairs

cons
def

= {fun {x} {fun {y}
{fun {b} {{b x} y}}}}

Can you write a program that takes a pair and
returns the first part?

Can you write a program that takes a pair and
returns the rest?

first
def

= {fun {p} {p true}}

rest
def

= {fun {p} {p false}}

Example:

{first {{cons zero} one}} ⇒ {first {fun {b} {{b zero} one}}}

⇒ {{fun {b} {{b zero} one}} true}

⇒ {{true zero} one}

⇒ zero 24-25

Implementing Arithmetic

zero
def

= {fun {f} {fun {x} x}}

one
def

= {fun {f} {fun {x} {f x}}}

two
def

= {fun {f} {fun {x} {f {f x}}}}

Can you write a program that takes a number and
adds one?

add1
def

= {fun {n}
{fun {g} {fun {y}

{g {{n g} y}}}}}
Example:

{add1 zero} ⇒ {fun {g} {fun {y}
{g {{zero g} y}}}}

= {fun {g} {fun {y}
{g {{{fun {f} {fun {x} x}} g} y}}}}

⇔ {fun {g} {fun {y}
{g y}}}

= one
26-27

Implementing Arithmetic

Can you write a program that takes a number and
adds two?

add2
def

= {fun {n} {add1 {add1 n}}}

28-29

Implementing Arithmetic

Can you write a program that takes a number and
adds three?

add3
def

= {fun {n} {add1 {add1 {add1 n}}}}

30-31

Implementing Arithmetic

zero
def

= {fun {f} {fun {x} x}}

one
def

= {fun {f} {fun {x} {f x}}}

two
def

= {fun {f} {fun {x} {f {f x}}}}

Can you write a program that takes two numbers
and adds them?

add
def

= {fun {n} {fun {m} {{n add1} m}}}

... because a number n applies some function n
times to an argument

32-33

Implementing Arithmetic

zero
def

= {fun {f} {fun {x} x}}

one
def

= {fun {f} {fun {x} {f x}}}

two
def

= {fun {f} {fun {x} {f {f x}}}}

Can you write a program that takes two numbers
and multiplies them?

mult
def

= {fun {n} {fun {m} {{n {add m}} zero}}}

... because adding number m to zero n times
produces n×m

34-35

Implementing Arithmetic

Can you write a program that tests for zero?

iszero
def

= {fun {n} {{n {fun {x} false}} true}}

because applying {fun {x} false} zero times to
true produces true, and applying it any other
number of times produces false

36-37

Implementing Arithmetic

Can you write a program that takes a number and
produces one less?

shift
def

= {fun {p}
{{cons {rest p}} {add1 {rest p}}}}

sub1
def

= {fun {n}
{first
{{n shift} {{cons zero} zero}}}}

And then subtraction is obvious...

38-40

Implementing Factorial

mk-rec
def

= {fun {body}
{{fun {fX} {fX fX}}
{fun {fX}

{{fun {f} {body f}}
{fun {x} {{fX fX} x}}}}}}

Can you write a program that computes factorial?

{mk-rec
{fun {fac}

{fun {n}
{{{iszero n}

one}
{{mult n} {fac {sub1 n}}}}}}}

... and when you can write factorial, you can
probably write anything.

41-43

