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Paravirtualization:
Xen



  

● Complete illusion of 
physical hardware
● Trap _all_ sensitive 

instructions
● Example: page table 

update

Full virtualization

Virtualized OS

Hypervisor

 PTE update (mov)
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● Complete illusion of 
physical hardware
● Trap _all_ sensitive 

instructions
● Example: page table 

update

Full virtualization

Virtualized OS 

Hypervisor

 PTE update (mov)

  if (safe) {
     update_pte();
     emulate_mov();
  }

 Next instruction

Trap

● Traps are slow
● Binary translation is 

faster, for some events
● Not for PTE updates, 

why?



  

Performance problems

Virtualized OS 

Hypervisor

 PTE update (mov)

  if (safe) {
     update_pte();
     emulate_mov();
  }

 Next instruction

Trap

● Traps are slow
● Binary translation is faster

● For some events
● Not for PTE updates, why?



  

Paravirtualization

● No illusion of hardware
● Instead: paravirtualized interface

● Explicit hypervisor calls to update sensitive state
– Page tables, interrupt flag

● But Guest OS needs porting
● Applications run natively in Ring 3



  

Paravirtualization
Paravirtualized OS 

Hypervisor

PTE update

Batch updates
update 1
update 2

Invoke hypervisor

if (safe)
     update



  

Xen



  

Segmentation and paging



  

Hypervisor protection



  

Hardware support for virtualization:
KVM



  

Basic idea

Host instruction stream

Guest instruction stream

VM Entry VM Exit

Host State

Guest State

VMCS



  

New mode of operation:VMX root

● VMX root operation
● 4 privilege levels

● VMX non-root operation
● 4 privilege levels as well, but unable to invoke 

VMX root instructions
● Guest runs until it performs exception causing it 

to exit
● Rich set of exit events
● Guest state and exit reason are stored in VMCS



  

Virtual machine control structure 
(VMCS)

● Guest State
● Loaded on entries
● Saved on exits

● Host State
● Saved on entries
● Loaded on exits

● Control fields
● Execution control, exits control, entries control



  

Guest state

● Register state
● Non-register state

● Activity state: 
– active
– inactive (HLT, Shutdown, wait for Startup IPI 

interprocessor interrupt))
● Interruptibility state



  

Host state

● Only register state
● ALU registers, 

● also:
● Base page table address (CR3)
● Segment selectors
● Global descriptors table 
● Interrupt descriptors table



  

VM-execution controls
(asynchronous events control)

Reserved

Bit 31 Bit 0

External interrupts (maskable or IRQs) cause 
exits(yes/no)
If not, then they delivered through guest
IDT

NMI cause exits (yes/no)
If not, then they are delivered normally through 
guest IDT (descriptor 2)



  

VM-execution controls
(synchronous events control, not all reasons are shown)

Reserved

Bit 31 Bit 0P
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Exception bitmap
(one for each of 32 IA-32 exceptions)

Bit 31 Bit 0

● IA-32 defines 32 exception vectors 
(interrupts 0-31)

● Each of them is configured to cause or not 
VM-exit

14 – page fault



  

I/O Bitmaps

● Two addresses on 4KB memory areas (A 
and B)

A B

Safe I/O addresses (not causing exits)



  

Exit information

● Information describing conditions of VM-exit 
is saved in VMCS
● It's different for different types of event



  

KVM



  

Memory virtualization: brute force.

Hypervisor

HardwareTLB

Guest

PD

CR3

PT

Helper structures describe 
actual guest VM layout
  Maintained for each guest. On 
  VM-Exit hypervisor adjusts guest
  page  accordingly.

Write / read protected
page table area.
   Every access results in VM-Exit and
   passes control to hypervisor

CPU stores pointer on
guest page table directory



  

Memory virtualization: shadow 
page tables

HardwareTLB

Guest

PD

CR3

PT

Active page table hierarchy
  VMM maintains it for each VM
  that it supports

Guest page table hierarchy
   It's writable, but can be inconsistent with 
   active page table hierarchy stored by the
   hypervisor

PD PT

CPU stores pointer on active page table hierarchy.
  On Intel CPUs TLB is always refilled from active page table directory



  

Nested page tables

hPT gPT Host Physical

gPT

VMM Host Virtual

Guest Physical

Guest Virtual
gCR3

hCR3

0

0

0

PT

CR3 used by VMM

Translation can be cached in TLB

paged by CR3

paged by hCR3

paged by gCR3



  

Page table lookup 
● 4-level page table



  

Nested page table lookup



  

Efficient I/O



Where is the bottleneck
● What is the bottleneck in case of 

virtualization?
● CPU? 

– CPU bound workloads execute natively on the real 
CPU 

– Sometimes JIT compilation (binary translation makes 
them even faster [Dynamo]

● Everything what is inside VM is fast!
● What is the most frequent operation 

disturbing execution of VM? 
● Device I/O!

● Disk, Network, Graphics



Virtual devices in Xen
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Virtual devices in Xen
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How to make the I/O fast?
● Take into account specifics of the device-

driver communication
● Bulk

– Large packets (512B – 4K)
● Session oriented 

– Connection is established once (during boot)
– No short IPCs, like function calls
– Costs of establishing an IPC channel are irrelevant

● Throughput oriented
– Devices have high delays anyway

● Asynchronous
– Again, no function calls, devices are already 

asynchronous



Shared rings and events



Shared rings



Shared rings



Shared rings



Shared rings



Where is a performance bottleneck 
here?



Eliminate cache thrashing



GPUs
● Sending frames from the framebuffer

● No hardware acceleration
● Too slow

● OpenGL/DirectX level virtualization
● Send high-level OpenGL commands over rings
● OpenGL operations will be executed on the real 

GPU  



Devices supporting virtualization



  

Some VM tricks:
suspend/resume, checkpoints

migration



Suspend



Resume



Checkpoints
● Checkpoints are almost suspend/resume
● Except that a copy of the entire VM’s state 

has to be saved
● Memory 

– OK, it’s relatively small 128MB-4GB
● Disk

– Problem: disks are huge 100GB-1TB

● How to save storage efficiently?

● How to make it efficient? 



Branching storage



Branching storage: snapshot



Branching storage: writes



Branching storage: snapshot



Migration
● Migration is essentially a live checkpoint 

between machines
● The goal: minimal downtime

● How to make the checkpoint faster? 



Migration: memory



Migration: memory



Migration: memory



Migration: memory



Migration: storage



Migration
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