

CS5460: Operating Systems

Lecture: Virtualization 2

Anton Burtsev
March, 2013

Paravirtualization:
Xen

● Complete illusion of
physical hardware
● Trap _all_ sensitive

instructions
● Example: page table

update

Full virtualization

Virtualized OS

Hypervisor

 PTE update (mov)

● Complete illusion of
physical hardware
● Trap _all_ sensitive

instructions
● Example: page table

update

Full virtualization

Virtualized OS

Hypervisor

PTE update (mov)

Trap

● Complete illusion of
physical hardware
● Trap _all_ sensitive

instructions
● Example: page table

update

Full virtualization

Virtualized OS

Hypervisor

 PTE update (mov)

 if (safe) {
 update_pte();
 emulate_mov();
 }

 Next instruction

Trap

● Traps are slow
● Binary translation is

faster, for some events
● Not for PTE updates,

why?

Performance problems

Virtualized OS

Hypervisor

 PTE update (mov)

 if (safe) {
 update_pte();
 emulate_mov();
 }

 Next instruction

Trap

● Traps are slow
● Binary translation is faster

● For some events
● Not for PTE updates, why?

Paravirtualization

● No illusion of hardware
● Instead: paravirtualized interface

● Explicit hypervisor calls to update sensitive state
– Page tables, interrupt flag

● But Guest OS needs porting
● Applications run natively in Ring 3

Paravirtualization
Paravirtualized OS

Hypervisor

PTE update

Batch updates
update 1
update 2

Invoke hypervisor

if (safe)
 update

Xen

Segmentation and paging

Hypervisor protection

Hardware support for virtualization:
KVM

Basic idea

Host instruction stream

Guest instruction stream

VM Entry VM Exit

Host State

Guest State

VMCS

New mode of operation:VMX root

● VMX root operation
● 4 privilege levels

● VMX non-root operation
● 4 privilege levels as well, but unable to invoke

VMX root instructions
● Guest runs until it performs exception causing it

to exit
● Rich set of exit events
● Guest state and exit reason are stored in VMCS

Virtual machine control structure
(VMCS)

● Guest State
● Loaded on entries
● Saved on exits

● Host State
● Saved on entries
● Loaded on exits

● Control fields
● Execution control, exits control, entries control

Guest state

● Register state
● Non-register state

● Activity state:
– active
– inactive (HLT, Shutdown, wait for Startup IPI

interprocessor interrupt))
● Interruptibility state

Host state

● Only register state
● ALU registers,

● also:
● Base page table address (CR3)
● Segment selectors
● Global descriptors table
● Interrupt descriptors table

VM-execution controls
(asynchronous events control)

Reserved

Bit 31 Bit 0

External interrupts (maskable or IRQs) cause
exits(yes/no)
If not, then they delivered through guest
IDT

NMI cause exits (yes/no)
If not, then they are delivered normally through
guest IDT (descriptor 2)

VM-execution controls
(synchronous events control, not all reasons are shown)

Reserved

Bit 31 Bit 0P
A
U
S
E

M
O
N
I
T
O
R

A
ct

iv
at

e
I/

O
 b

it
m

ap
s

U
nc

on
di

ti
on

al
 I

/O

H
L
T

I
N
V
L
P
G

Exception bitmap
(one for each of 32 IA-32 exceptions)

Bit 31 Bit 0

● IA-32 defines 32 exception vectors
(interrupts 0-31)

● Each of them is configured to cause or not
VM-exit

14 – page fault

I/O Bitmaps

● Two addresses on 4KB memory areas (A
and B)

A B

Safe I/O addresses (not causing exits)

Exit information

● Information describing conditions of VM-exit
is saved in VMCS
● It's different for different types of event

KVM

Memory virtualization: brute force.

Hypervisor

HardwareTLB

Guest

PD

CR3

PT

Helper structures describe
actual guest VM layout
 Maintained for each guest. On
 VM-Exit hypervisor adjusts guest
 page accordingly.

Write / read protected
page table area.
 Every access results in VM-Exit and
 passes control to hypervisor

CPU stores pointer on
guest page table directory

Memory virtualization: shadow
page tables

HardwareTLB

Guest

PD

CR3

PT

Active page table hierarchy
 VMM maintains it for each VM
 that it supports

Guest page table hierarchy
 It's writable, but can be inconsistent with
 active page table hierarchy stored by the
 hypervisor

PD PT

CPU stores pointer on active page table hierarchy.
 On Intel CPUs TLB is always refilled from active page table directory

Nested page tables

hPT gPT Host Physical

gPT

VMM Host Virtual

Guest Physical

Guest Virtual
gCR3

hCR3

0

0

0

PT

CR3 used by VMM

Translation can be cached in TLB

paged by CR3

paged by hCR3

paged by gCR3

Page table lookup
● 4-level page table

Nested page table lookup

Efficient I/O

Where is the bottleneck
● What is the bottleneck in case of

virtualization?
● CPU?

– CPU bound workloads execute natively on the real
CPU

– Sometimes JIT compilation (binary translation makes
them even faster [Dynamo]

● Everything what is inside VM is fast!
● What is the most frequent operation

disturbing execution of VM?
● Device I/O!

● Disk, Network, Graphics

Virtual devices in Xen

31

Virtual devices in Xen

32

Virtual devices in Xen

33

Virtual devices in Xen

34

Virtual devices in Xen

35

How to make the I/O fast?
● Take into account specifics of the device-

driver communication
● Bulk

– Large packets (512B – 4K)
● Session oriented

– Connection is established once (during boot)
– No short IPCs, like function calls
– Costs of establishing an IPC channel are irrelevant

● Throughput oriented
– Devices have high delays anyway

● Asynchronous
– Again, no function calls, devices are already

asynchronous

Shared rings and events

Shared rings

Shared rings

Shared rings

Shared rings

Where is a performance bottleneck
here?

Eliminate cache thrashing

GPUs
● Sending frames from the framebuffer

● No hardware acceleration
● Too slow

● OpenGL/DirectX level virtualization
● Send high-level OpenGL commands over rings
● OpenGL operations will be executed on the real

GPU

Devices supporting virtualization

Some VM tricks:
suspend/resume, checkpoints

migration

Suspend

Resume

Checkpoints
● Checkpoints are almost suspend/resume
● Except that a copy of the entire VM’s state

has to be saved
● Memory

– OK, it’s relatively small 128MB-4GB
● Disk

– Problem: disks are huge 100GB-1TB

● How to save storage efficiently?

● How to make it efficient?

Branching storage

Branching storage: snapshot

Branching storage: writes

Branching storage: snapshot

Migration
● Migration is essentially a live checkpoint

between machines
● The goal: minimal downtime

● How to make the checkpoint faster?

Migration: memory

Migration: memory

Migration: memory

Migration: memory

Migration: storage

Migration

References

● Intel® 64 and IA-32 Architectures Software
Developer's Manual. Volume 3C: System
Programming Guide, Part 3

● Ravi Bhargava, Benjamin Serebrin, Francesco
Spadini, and Srilatha Manne. Accelerating two-
dimensional page walks for virtualized systems.
In ASPLOS'08.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Virtual devices in Xen
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	How to make the I/O fast?
	Shared rings and events
	Shared rings
	Slide 39
	Slide 40
	Slide 41
	Where is a performance bug here?
	Eliminate cache thrashing
	GPUs
	Devices supporting virtualization
	Slide 46
	Suspend
	Resume
	Slide 49
	Branching storage
	Branching storage: snapshot
	Branching storage: writes
	Slide 53
	Slide 54
	Migration: memory
	Slide 56
	Slide 57
	Slide 58
	Migration: storage
	Slide 60
	Slide 61

