CS5460: Operating Systems

| ecture: Virtualization

Anton Burtsev
March, 2013

Traditional operating system

Virtual machines

Kernel

Kernel

A bit of history

 Virtual machines were popular in 60s-70s

» Share resources of mainframe computers
|Goldberg 1974]

* Run multiple single-user operating systems
* Interest is lost by 80s-90s

* Development of multi-user OS
* Rapid drop in hardware cost

 Hardware support for virtualizaiton is lost

What Is the
problem?

\

 Hardware Is not
designed to be
multiplexec

Disk
Driver] e Loss of Isolation

_4

EV\
| | (. |
0ooooog
Q

Virtual machine

Efficient duplicate
of a real machine

o Compatibility

e Performance

e |solation

Trap and emulate

e D
Emulate
/ji 51 (D)
/
/ [;ile
x_l_ra 0 System

DDDDDDD

What needs to be emulated?

CPU and memory

* Register state
« Memory state

Memory management unit
* Page tables, segments
Platform

* |nterrupt controller, timer, buses
BIOS

Peripheral devices

 Disk, network interface, serial line

X86 IS not virtualizable

e Some Instructions (sensitive) read or update
the state of virtual machine and don't trap (non-
privileged)

e 17 sensitive, non-privileged instructions [Robin et al
2000]

X86 Is not virtualizable (I1)

Group Instructions

Access to interrupt flag pushf, popf, iret
Visibility into segment descriptors | lar, verr, verw, 1lsl
Segment manipulation instructions | pop <seg>, push <seg>, mov <seg>
Read-only access to privileged state | sgdt, sldt, sidt, smsw
Interrupt and gate instructions fcall, longjump, retfar, str, int <n>

 Examples
* popf doesn't update interrupt flag (IF)

- Impossible to detect when guest disables interrupts

 push %cs can read code segment selector (%cs)
and learn its CPL

- Guest gets confused

Solution space

 Parse the instruction stream and detect all sensitive
Instructions dynamically

 Interpretation (BOCHS, JSLinux)
* Binary translation (VMWare, QEMU)

* Change the operating system
« Paravirtualization (Xen, L4, Denali, Hyper-V)
 Make all sensitive instructions privileged!

« Hardware supported virtualization (Xen, KVM, VMWare)
- Intel VT-x, AMD SVM

Basic blocks of a
virtual machine monitor:
QEMU example

Interpreted execution:
BOCHS, JSLinux

v

HANDLE ASYNCHRONOUS
EXTERNAL EVENTS

PREFETCH

Instruction
cache
lookup

What does it mean to
run guest?

e Bochs internal

emulation loop

FETCH AND DECODE
INSTRUCTION

INSTRUMENT INSTRUCTION
(when needed)

 Similar to non-
pipelined CPU like

RESOLVE MEMORY REFERENCES
(ADDRESS GENERATION UNIT)

'

ACCESS MEMORY AND
EXECUTE

l

COMMIT

8086

 How many cycles per
Instruction?

Binary translation:
VMWare

int isPrime(int a) {
for (int 1 = 2; i < a; i++) {

if (a 7, i == 0) return 0;
}
return 1;
}
isPrime: mov Lack. Redi @ fecx = Yedi (&)
mov sesi, 32 i =2
cmp aosl . fecx @ dp 1 = av
jge prime ; jump if yes
nexti: mov Neax, Jecx ; set Jeax = a
cdg ; sign-extend
idiv Jesi A W A |
test %edx, Jledx ; is remainder zero?
J= notPrime ; jump if yes
inc Jesi ;o i+
cmp %esi,. Jecx ; i i >= a7
jl nexti ; jump 1if no
prime: mov neax. 91 : return value in %eax
ret
notPrime: xor weax, Yeax ; Yeax =0

ret

isPrime: mov %ecx, fedi %hecx = Yedi (a)
mov %esi, $2 i=2
cmp %esi, Yecx is i >= a?
jge prime jump if yes
nexti: mov %eax, lhecx set Jeax = a
cdq sign-extend
idiv Yesi 3% 1
test %edx, Yedx is remainder zero?
jz notPrime jump if yes
inc fesi i++
cmp fasi, JYecx is i >= a?
ji nexti jump if no
prime: mov heax, $1 return value in %eax
ret
notPrime: xor %eax, Yeax %eax = 0
ret
isPrime’ : mov %hecx, jhedi : IDENT
mov %esi, $2
cmp %esi, %ecx
jge [takenAddr] ; JCC
jmp [fallthrAddr]

isPrime’: *mov hecx, Yedi : IDENT

mov jesi, $2

cmp hesi, %ecx

jge [takenAddr] ; JCC

; fall-thru into next CCF

nexti’: *MOV yoax. feex : IDENT

cdq

idiv Y%esi

test Yedx, Yedx

jz notPrime’ - | &
+ fall-thru into next CCF

*inc hesi ; IDENT

cmp Yesi . Jacx

11 nexti’ r JCC

jmp [fallthrAddr3]
notPrime’: x*xor heax, eax : IDENT

pop 4rit ;: RET

mov %gs:0xff39eb8(¥%rip), %rcx ; spill Yrcx
movzx jecx, %Arlib
jmp %gs:0xfc7dde0 (8*%rcx)

VMWare Workstation

.
A
Virtual Machine -
@
=
Q
.
&
=
v
ﬁ —
D
. S
N - Driver 2
N VMM »—] &
D
i) | 3
CPU [(iii) l (1))
idtr :
< > I < >V
Host OS Context . VMM Context

Fig. 2. The VMware Hosted Architecture. VMware Workstation consists of the three shaded components.
The figure is split vertically between host operating system context and VMM context, and horizontally
between system-level and user-level execution. The steps labeled (i)—(v) correspond to the execution that
follows an external interrupt that occurs while the CPU is executing in VMM context.

Address space during the world
switch

Host OS

/ Context
Host OS5-> VMM
Transition

l

VMM
\ Context
VMM-> Host OS

Transition

cross page

%ds, %cs ¢

i

VMX

(driverl)

Host OS. kernel

%as,%cs
1

| VMM
%ds, scs
1

Virtual Machine

| v

. 3ds
1

VMM

>

Linear Address space

The world switch

First, save the old processor state: general-purpose registers,
privileged registers, and segment registers;

Then, restore the new address space by assigning %cr3. All
page table mappings immediately change, except the one of the
Cross page.

Restore the global segment descriptor table register (%gdtr).

With the %gdtr now pointing to the new descriptor table, restore
%ds. From that point on, all data references to the cross page
must use a different virtual address to access the same data
structure. However, because %cs is unchanged, instruction
addresses remain the same.

Restore the other segment registers, %idtr, and the general-
purpose registers.

Finally, restore %cs and %eip through a longjump instruction.

Protecting the VMM

%cs, 3ds, 5gs
I I

CPI=3 | yuserspace (direct execution) I
sds _———___ 3CS,%gS

[7 IS |
cpl=1 . (Ymc)
pl= kernel code/data vmm | TC

%cs %ds, %gs
(N

cpl=0 VMM

- pte.us=1 - pte.us=0-—| >

Linear Address Space
0xffc00000

tl
t2
t3
t4d

Translator continuations

Source Instructions

Translation Cache

mov 12 (%ebp),
inc 8(%eax)
call 0(%ebx)

teax

: mov 12(%ebp), %eax
: inc_8(%eax)

: mov 0(%ebx), %eax
: push #t4

: mov <gs>:bt.tmp eax,
jmp fastDispatch

: mov %eax, <gs>:bt.tmp eax

: mov %eax, <gs>:vcpu.eip

teax

TC Backmap
e <tl> ident
[~ |<t3> | call regind|
| »

Interpreted execution revisited:
Bochs

HANDLE ASYNCHRONOUS
EXTERMAL EVENTS

PREFETCH

Instruction trace cache

* 50% of time In the main loop

k.
FETCH AND DECODE

INSTRUCTION

Store
trace

* Fetch, decode, dispatch

COMMIT TRACE

* Trace cache (Bochs v2.3.6)

INSTRUMENT INSTRUCTION .

{when needed)

-

RESOLVE MEMORY REFERENCES
(ADDRESS GENERATION UNIT)

ACCESS MEMORY AND
EXECUTE

I

COMMIT
ADVANCE TO NEXT INSTRUCTION

!

HANDLE ASYNCHRONOUS
EXTERMAL EVENTS

YES d of the NO
trace?

 Hardware idea (Pentium 4)

* Trace of up to 16 instructions
(32K entries)

e 20% speedup

void BX CPU C::SUB EdGd (bxInstruction c *1)

{

Bi

op

Improve branch prediction

t32u op2Z 32, opl 32, diff 32;

2 32 = BX READ 32BIT REG (i->nnn()):;

1f

(1->modCO0 ()) { // reg/reg format

OpL_ 32 — BX _READ 32BIT REG(1->rm());
diff 32 = opl 32 — _op2 32

BX_WRITE 32BIT REGZ (i->rm(), diff 32);

el

——— e

se | // mem/reg format
read RMW virtual dword(i->seg(),
RMAddr (1), &opl 32);

Writg_RMW_virEual_dwora(diff_32);

SE

T LAZY FLAGS SUB32 (opl 32, op2 32,
diff 32);

» 20 cycles
penalty on
Core 2 Duo

Improve branch prediction

» Split handlers to avoid conditional logic
* Decide the handler at decode time (15% speedup)

Resolve memory references
without misprediction

* Bochs v2.3.5 has 30 possible branch targets for
the effective address computation

e Effective Addr = (Base + Index*Scale + Displacement)
mod (27AddrSize)

* €.0. Effective Addr = Base, Effective Addr = Displacement
* 100% chance of misprediction
* Two techniques to improve prediction:

 Reduce the number of targets: leave only 2 forms
* Replicate indirect branch point

* 40% speedup

Time to boot Windows

1000 MHz 2533 MHz 2666 MHz
Pentium III Pentium 4 Core 2 Duo
Bochs 882 595 180
235
Bochs 609 533 157
2.3.6
Bochs 457 236 81
2.3.7

Cycle costs

Bochs 2.3.5 Bochs 2.3.7 QEMU 0.9.0
Register move 43 15 6
(MOV, MOVSX)
Register arithmetic 64 25 6
(ADD, SBB)
Floating point 1054 351 27
multiply
Memory store of 99 59 5
constant
Pairs of memory 193 08 14
load and store
operations
Non-atomic read- 112 75 10
modify-write
Indirect call 190 109 197
through guest
EAX register
VirtualProtect 126952 63476 22593
system call
Page fault and 88860606 380857 156823
handler
Best case peak 62 177 444

guest execution
rate in MIPS

References

* A Comparison of Software and Hardware Techniques for
x86 Virtualization. Keith Adams, Ole Agesen,
ASPLOS'06

* Bringing Virtualization to the x86 Architecture with the
Original VMware Workstation. Edouard Bugnion, Scott
Devine, Mendel Rosenblum, Jeremy Sugerman, Edward
Y. Wang, ACM TCS"12.

 Virtualization Without Direct Execution or Jitting:
Designing a Portable Virtual Machine Infrastructure.
Darek Mihocka, Stanislav Shwartsman.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

