
CS 5460: Operating Systems

CS5460: Operating Systems
Lecture 9: Implementing

Synchronization
(Chapter 6)

Multiprocessor Memory Models
  Uniprocessor memory is simple

–  Every load from a location retrieves the last value stored to that
location

–  Caches are transparent
–  All processes / threads see the same view of memory

  The straightforward multiprocessor version of this
memory model is “sequential consistency”:

–  “A multiprocessor is sequentially consistent if the result of any
execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of
each individual processor occur in this sequence in the order
specified by its program. Operations performed by each
processor occur in the specified order.”

–  This is Lamport’s definition

CS 5460: Operating Systems

Multiprocessor Memory Models
  Real multiprocessors do not provide sequential

consistency
–  Loads may be reordered after loads (IA64, Alpha)
–  Stores may be reordered after stores (IA64, Alpha)
–  Loads may be reordered after stores (IA64, Alpha)
–  Stores may be reordered after loads (many, including x86 / x64)

  Even on a uniprocessor, compiler can reorder
memory accesses

CS 5460: Operating Systems

x86 / x86-64 Memory Model: TSO
  TSO: “Total store ordering”

CS 5460: Operating Systems

•  CPU 1

• Store
• buffer

•  RAM

•  CPU 2

• Store
• buffer

x86 / x86-64 Memory Model: TSO
  TSO: “Total store ordering”

CS 5460: Operating Systems

•  CPU 1

• Store
• buffer

•  RAM

•  CPU 2

• Store
• buffer

• This breaks Peterson,
Dekker, Bakery, etc.

Weak Memory Example
  (This is the same as the code I sent out last week)
  Initially x and y are 0
  Now run in parallel:

–  CPU 0: x=1 ; print y
–  CPU 1: y=1 ; print x

  What might be printed on a sequentially consistent
machine?

  What might be printed on a TSO machine?

CS 5460: Operating Systems

Memory Fences
  The x86 “mfence” instruction is your weapon

against having your programs broken by TSO
–  Loads and stores cannot be moved before or after the mfence

instruction
–  Basically you can think about it as flushing the store buffer and

preventing the pipeline from reordering around the fence

  mfence is not cheap
–  But see “sfence” and “lfence” which are weaker (and faster) than

mfence

CS 5460: Operating Systems

Weak Memory Example
  Initially x and y are 0
  Now run in parallel:

–  CPU 0: x=1 ; mfence ; print y
–  CPU 1: y=1 ; mfence ; print x

  What might be printed on a sequentially consistent
machine?

  What might be printed on a TSO machine?

CS 5460: Operating Systems

Some good news for programmers…
  If your multithreaded code is free of data races, you

don’t have to worry about the memory model
–  Execution will be “sequentially consistent”
–  Acquire/release of locks include fences

  “Free of data races” means every byte of memory is
–  Not shared between threads
–  Shared, but in a read-only fashion
–  Shared, but consistently protected by locks

  Your goal is to always write programs that are free
of data races!

–  Programs you write for this course will have data races – but
these should be a rare exception

CS 5460: Operating Systems

If You Do Write Data Races

  Accidental data race → Always a serious bug
–  Means you don’t understand your code

  Deliberate data race →
–  Executions no longer sequentially consistent
–  Dealing with the memory system and compiler optimizations is

now your problem
–  Always ask: Why am I writing racy code?

CS 5460: Operating Systems

Writing Correct Racy Code

1.  Mark all racing variables as “volatile”
–  volatile int x[10];

–  This keeps the compiler from optimizing away and reordering
memory references

2.  Use memory fences, atomic instructions, etc. as
needed
–  These keep the memory system from reordering operations and

breaking your code

CS 5460: Operating Systems

Dekker Sync. Algorithm
static int f0, f1, turn;

void lock_p0 (void) {
 f0 = 1;
 while (f1) {
 if (turn != 0) {
 f0 = false;
 while (turn != 0) { }
 f0 = true;
 }
 }
}

CS 5460: Operating Systems

Dekker Sync. Algorithm
static int f0, f1, turn;

void lock_p0 (void) {
 f0 = 1;
 while (f1) {
 if (turn != 0) {
 f0 = false;
 while (turn != 0) { }
 f0 = true;
 }
 }
}

CS 5460: Operating Systems

• GCC turns this into:

• lock_p0:
 movl $1, f0(%rip)

 ret

Reminder
  For any mutual exclusion implementation, we want

to be sure it guarantees:
–  Cannot allow multiple processes in critical section at the same

time (mutual exclusion)
–  Ensure progress (lack of deadlock)
–  Ensure fairness (lack of livelock)

  We also want to know what invariants hold over the
lock’s data structures

CS 5460: Operating Systems

CS 5460: Operating Systems

Implementing Mutual Exclusion
  Option 1: Build on atomicity of loads and stores

–  Peterson, Bakery, Dekker, etc.
–  Loads and stores are weak, tedious to work with
–  Portable solutions do not exist on modern processors

  Option 2: Build on more powerful atomic primitives
–  Disable interrupts à keep scheduler from performing context switch at
“unfortunate” time

–  Atomic synchronization instructions
»  Many processors have some form of atomic: Load-Op-Store
»  Also: Load-linked à Store-conditional (ARM, PPC, MIPS, Alpha)

  Common synchronization primitives:
–  Semaphores and locks (similar)
–  Barriers
–  Condition variables
–  Monitors

CS 5460: Operating Systems

Lock by Disabling Interrupts V.1
Lock::Acquire() {

 disable interrupts;

}

Lock::Release() {

 enable interrupts;

}

class Lock {

 public:

 void Acquire();

 void Release();

}

Lock::Lock {

}

CS 5460: Operating Systems

Lock by Disabling Interrupts V.2
Lock::Acquire(T:Thread) {

 disable interrupts;

 if (locked) {

 add T to Q;

 T à Sleep();

 }

 locked ß 1;

 enable interrupts;

}

Lock::Release() {

 disable interrupts;

 if (Q not empty) {

 remove T from Q;

 put T on readyQ;

 }

 else locked ß 0;

 enable interrupts;

}

class Lock {

 public:

 void Acquire();

 void Release();

 private:

 int locked;

 Queue Q;

}

Lock::Lock {

 locked ß 0; // Lock free

 Q ß 0; // Queue empty

}

CS 5460: Operating Systems

Lock by Disabling Interrupts V.2
Lock::Acquire(T:Thread) {

 disable interrupts;

 if (locked) {

 add T to Q;

 T à Sleep();

 }

 locked ß 1;

 enable interrupts;

}

Lock::Release() {

 disable interrupts;

 if (Q not empty) {

 remove T from Q;

 put T on readyQ;

 }

 else locked ß 0;

 enable interrupts;

}

class Lock {

 public:

 void Acquire();

 void Release();

 private:

 int locked;

 Queue Q;

}

Lock::Lock {

 locked ß 0; // Lock free

 Q ß 0; // Queue empty

}

When do you
enable ints.?

Blocking vs. Not Blocking?
  Option 1: Spinlock
  Option 2: Yielding spinlock
  Option 3: Blocking locks
  Option 4: Hybrid solution – spin for a little while and

then block

  How do we choose among these options
–  On a uniprocessor?
–  On a multiprocessor?

CS 5460: Operating Systems

Problems With Disabling Interrupts
  Disabling interrupts for long is always bad

–  Can result in lost interrupts and dropped data
–  The actual max value depends on what you’re doing

  Disabling interrupts (briefly!) is heavily used on
uniprocessors

  But what about multiprocessors?
–  Disabling interrupts on just the local processor is not very helpful

»  Unless we know that all processes are running on the local processor
–  Disabling interrupts on all processors is expensive
–  In practice, multiprocessor synchronization is usually done

differently

CS 5460: Operating Systems

CS 5460: Operating Systems

Hardware Synchronization Ops
  test-and-set(loc, t)

–  Atomically read original value and replace it with “t”

  compare-and-swap(loc, a, b)
–  Atomically: if (loc == a) { loc = b; }

  fetch-and-add(loc, n)
–  Atomically read the value at loc and replace it with its value

incremented by n

  load-linked / store-conditional
–  load-linked : loads value from specified address
–  store-conditional : if no other thread has touched value à store,

 else return error
–  Typically used in a loop that does “read-modify-write”
–  Loop checks to see if read-modify-write sequence was interrupted

CS 5460: Operating Systems

Using Test&Set (“Spinlock”)
class Lock {

 public:

 void Acquire(), Release();

 private:

 int locked;

}

Lock::Lock() { locked ß 0;}

Lock::Acquire() {

 // Spin atomically until free

 while (test&set(locked,1));

}

Lock::Release() { locked ß 0;}

  test&set(loc, value)
–  Atomically tests old value and

replaces with new value

  Acquire()
–  If free, what happens?
–  If locked, what happens?
–  If more than one at a time trying

to acquire, what happens?

  Busy waiting
–  While testing lock, process runs

in tight loop
–  What issues arise?

CS 5460: Operating Systems

Using Test&Set (Improved V.1)
class Lock {

 public:

 void Acquire(), Release();

 private:

 int locked;

}

Lock::Lock() { locked ß 0;}

Lock::Acquire() {

 for (;;) {

 // Spin non-atomically first;

 while(locked);

 if (!test&set(locked,1)) break;

 }

}

Lock::Release() { locked ß 0;}

  test&set(loc, value)
–  Atomically tests old value and

replaces with new value

  Acquire()
–  If free, what happens?
–  If locked, what happens?
–  If more than one at a time trying

to acquire, what happens?

  Busy waiting
–  What is new?

CS 5460: Operating Systems

Using Test&Set (Improved V.2)
class Lock {

 public: void Acquire(), Release();

 private: int locked, guard;

}

Lock::Lock() { locked ß guard ß 0;}

Lock::Acquire(t:Thread) {

 while(test&set(guard,1));

 if (locked) {

 put T to sleep, guard ß 0; }

 else { locked ß 1; guard ß 0; }

}

Lock::Release() {

 while(test&set(guard,1));

 if (Q not empty) { wake up T; }

 else {locked ß 0;}

 guard ß 0;

}

  test&set(loc, value)
–  Atomically tests old value and

replaces with new value

  Acquire()
–  If free, what happens?
–  If locked, what happens?
–  If more than one at a time trying

to acquire, what happens?

  Queueing
–  What changes?

CS 5460: Operating Systems

Compare&Swap
class Lock {

 public:

 void Acquire(), Release();

 private:

 int locked;

}

Lock::Lock() { locked ß 0;}

Lock:: Acquire() {

 // Spin atomically until free

 while (cmp&swap(locked,0,1));

}

Lock::Release() { locked ß 0;}

  Cmp&swap(loc, a, b)
–  Atomically tests if loc contains a;

if so, stores b into loc
–  Returns old value from loc

  Acquire()
–  If free, what happens?
–  If locked, what happens?
–  If more than one at a time trying

to acquire, what happens?

  Busy waiting
–  Can improve by:

»  Backing off if compare fails
»  Introducing wait queue

CS 5460: Operating Systems

Fetch&Add
class Lock {

 public:

 void Acquire(), Release();

 private:

 int counter = 0;

 turn = 0;

}

Lock:: Acquire() {

 // Spin atomically until free

 int me;

 me = fetch&add(counter,1);

 while (me != turn);

}

Lock::Release() { fetch&add(turn,1);}

  Fetch&add(loc, val)
–  Atomically reads loc, adds val to

it, and writes new value back

  Acquire()
–  If free, what happens?
–  If locked, what happens?
–  If more than one at a time trying

to acquire, what happens?

  Busy waiting
–  Can improve by:

»  Backing off if compare fails
»  Introducing wait queue

CS 5460: Operating Systems

Load-linked, Store-conditional
  LL(loc)

–  Loads loc and puts address in
special register for snoop HW

  SC(loc)
–  Conditionally stores to loc
–  Must be same addr as last LL()
–  Succeeds iff loc not modified

since LL()
–  Fails if modified, or there has been

a context switch

  Typically used in “try-retry”
loops

  Optimistic concurrency control
–  Optimize for common case
–  Locking à pessimistic c.c.

// increment counter w/ LL-SC (MIPS)

 // r1: &counter

try: ll r2,(r1) // LL counter to r2

 addi r3,r2,1 // r3 ß r2+1

 sc r3,(r1) // SC new counter

 beq r3,0,try // Test if success

void arch_spin_lock (arch_spinlock_t *lock) {
 unsigned long tmp;
 u32 newval;
 arch_spinlock_t lockval;
 __asm__ __volatile__(
"1: ldrex %0, [%3]\n"
" add %1, %0, %4\n"
" strex %2, %1, [%3]\n"
" teq %2, #0\n"
" bne 1b”
 : "=&r" (lockval), "=&r" (newval), "=&r" (tmp)
 : "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
 : "cc");
 while (lockval.tickets.next != lockval.tickets.owner) {
 wfe();
 lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);
 }
 smp_mb();
}

CS 5460: Operating Systems

CS 5460: Operating Systems

Performance Issues
  Spinlocks (busy waiting)

–  Ties up processor while thread continually tests value
–  On an SMP, test&set() on a shared variable crosses network
–  Some possible optimizations:

»  Test and test&set() : Use non-atomic instruction to do initial test
»  Back off (yield/sleep) between each probe (constant? variable?)
»  Implement per-lock queues à extra overhead, but fair

–  When is spinning preferred?

  Consider where lock variable resides:
–  Spinning on local cache versus spinning over the interconnect

  Consider granularity of locking
–  Lock entire data structure versus lock individual elements

CS 5460: Operating Systems

Summary
  The multiprocessor memory model is not your

friend
–  Write race-free programs whenever possible

  Common hardware synchronization primitives
–  test-and-set, compare-and-swap, fetch-and-add, LL/SC

  Implementing spinlocks
  Performance issues:

–  Spinning versus queuing
–  Cache-aware synchronization policies
–  Scheduling-aware synchronization policies

CS 5460: Operating Systems

Questions?

