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Multi-level Feedback Queues 
  Multiple queues with different priorities 

–  Alternative: single priority queue 

  Round robin schedule processes with equal priorities 
–  Low priority jobs can “starve” for a while 

  Adjust priorities based on observed behavior: 
–  Jobs start with default priority (perhaps modified via “nice”) 
–  If time quantum expires, bump job priority down 
–  If job blocks before end of time quantum, bump priority up  (Why?) 

  Effect: 
–  The scheduler “figures out” which jobs are interactive and which are 

CPU-bound 
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Synchronization 
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What is Synchronization? 
  Question: How do you control the behavior of 
“cooperating” processes that share resources? 

Time You Your roomate 

3:00 Arrive home 
3:05 Check fridge à no milk 
3:10 Leave for grocery 
3:15 Arrive home 
3:20 Buy milk Check fridge à no milk 
3:25 Arrive home, milk in fridge Leave for grocery 
3:30 
3:35 Buy milk 
3:40 Arrive home, milk in fridge! 



CS 5460: Operating Systems Lecture 7 

Shared Memory Synchronization 
  Threads share memory 
  Preemptive thread scheduling is a major problem 

–  Context switch can occur at any time, even in the middle of a line 
of code (e.g., “X = X + 1;”) 

»  Unit of atomicity à Machine instruction 
»  Cannot assume anything about how fast processes make progress 

–  Individual processes have little control over order in which 
processes run 

  Need to be paranoid about what scheduler might do 
  Preemptive scheduling introduces non-determinism 
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Race Condition 
  Two (or more) processes run in parallel and output 

depends on order in which they are executed 
  ATM Example 

–  SALLY:  balance += $50;    BOB:  balance -= $50; 
–  Question: If initial balance is $500, what will final balance be? 

SALLY BOB 
r0 ß balance 

add r0, r0, $50 

balance ß r0 

r0 ß balance 

sub r0, r0, $50 

balance ß r0 

Net: $500 

This (or reverse) is what you’d 
normally expect to happen. 
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Race Conditions 
  Two (or more) processes run in parallel and output 

depends on order in which they are executed 
  ATM Example 

–  SALLY:  balance += $50;    BOB:  balance -= $50; 
–  Question: If initial balance is $500, what will final balance be? 

SALLY BOB 
r0 ß balance 

r0 ß balance 

add r0, r0, $50 

sub r0, r0, $50 

balance ß r0 

balance ß r0 

Net: $450 

However, this (or reverse) can 
happen due to a race condition. 



Synchronization 
  The race condition happened because there were 

conflicting accesses to a resource 

  Basic idea behind most synchronization: 
–  If two threads, processes, interrupt handlers, etc. are going to 

have conflicting accesses, force one of them wait until it is safe to 
proceed 

  Conceptually simple, but difficult in practice  
–  The problem is that we need to protect all possible locations 

where two (or more) threads or processes might conflict 

CS 5460: Operating Systems Lecture 7 



CS 5460: Operating Systems Lecture 7 

Synchronization Problems 
  Synchronization can be required for different 

resources 
–  Memory: e.g., multithreaded application 
–  OS object: e.g., two processes that read/write same system file 
–  Hardware device: e.g. two processes that both want to burn a 

DVD 

  There are different kinds of synchronization 
problems 

–  Sometimes we just want activities to not interfere with each other 
–  Sometimes we care about ordering 



Synchronization Problems 
  Synchronization may be across machines 

–  What if some machines are disconnected or rebooting? 

  Sometimes it’s not OK to block a thread or process 
–  May have to reserve the “right” do something ahead of time 
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Atomic Operations 
  Series of operations that cannot be interrupted 

–  Some operations are atomic with respect to everything that 
happens on a machine 

–  Other atomic operations are atomic only with respect to 
conflicting processes, threads, interrupt handlers, etc. 

  On typical architectures: 
–  Individual word load/stores and ALU instructions 
–  Synchronization operations (e.g., fetch_and_add, cmp_and_swap) 

  ATM example à  Balance updates were NOT atomic 
–  Solution: Enforce atomic balance updates 
–  Question: How? 



More Atomic 
  Atomic operations are at the root of most 

synchronization solutions 
  Processor has to support some atomic operations 

–  If not, we’re stuck! 

  OS uses low-level primitives to build up more 
sophisticated atomic operations 

–  For example, locks that support blocking instead of busy-waiting 
–  We’ll look at an example soon 
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More Definitions 
  Synchronization (or Concurrency Control): 

–  Using atomic operations to eliminate race conditions 

  Critical section: 
–  Piece of code (e.g., ATM balance update) that must run atomically 
–  Mutual exclusion:  Ensure at most one process at a time 

  Lock: 
–  Synchronization mechanism that enforces atomicity 
–  Semantics: 

»  Lock(L):  If L is not currently locked à atomically lock it 
                    If L is currently locked à block until it becomes free 
»  Unlock(L):  Release control of L 

–  You can use a lock to protect data:  Lock(L) before accessing data, 
Unlock(L) when done 
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Fixing the ATM problem 

  Problem: 
–  Balance update not atomic 

  Solution: 
–  Introduce atomic operations 

  Effect: 
+  Eliminates race condition 
–  Increases overhead 
–  Restricts concurrency 

  Open issues: 
–  Where do we use locks? 

»  Avoid deadlocks or livelocks 
»  Ensure fairness 

–  How do we implement locks? 
–  What other synch ops are there 

besides locks? 

SALLY BOB 
Lock(L); 

r0 ß balance 

add r0, r0, $50 

balance ß r0 

Unlock(L); 

Lock(L); 

r0 ß balance 

sub r0, r0, $50 

balance ß r0 

Unlock(L); 

Critical 
Section 



CS 5460: Operating Systems Lecture 7 

Lock Requirements 
1.  Must guarantee that only one process / thread is in 

the critical section at a time 
–  This is obvious 

2.  Must guarantee progress 
–  Processes or threads don’t have to wait for an available lock 

3.  Must guarantee bounded waiting 
–  No process or thread needs to wait forever to enter the critical 

section 
–  Figuring out the bound can be interesting 
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Implementing Critical Sections 
  Goal: 

–  If milk needed, somebody buys 
–  Only one person buys milk 

  Idea: Wait while note is up 
–  “Busy wait” loop 

  Does this work? 
–  Is milk bought? 
–  Can both buy? 

P0: 

while (Note) { } 

Note ß 1;  // leave Note 

Milk ß Milk + 1;  // CritSect 

Note ß 0;  // remove Note 

 

 

P1: 

while (Note) { } 

Note ß 1;  // leave Note 

Milk ß Milk + 1;  // CritSect 

Note ß 0;  // remove Note 

 

Milk V.1 

FAILS: Can both buy milk 
(How?) 
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Implementing Critical Sections 
  Goal: 

–  If milk needed, somebody buys 
–  Only one person buys milk 

  Idea: Add per-process flag 
–  Set flag while in critical section 
–  Explicit check on other process 

  Does this work? 
–  Is milk bought? 
–  Can both buy? 

flag[2] = {0,0}; 

 
P0: 

while (flag[1]) { } 

flag[0] ß 1; 

Milk ß Milk + 1; // Crit sect  

flag[0] ß 0; 

 

P1: 

while (flag[0]) { }  

flag[1] = 1;  

Milk ß Milk + 1; // Crit sect  

flag[1] = 0; 

Milk V.2 

FAILS: Can both buy milk 
(How?) 
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Implementing Critical Sections 
  Goal: 

–  If milk needed, somebody buys 
–  Only one person buys milk 

  Reverse order in which you 
set and test flag 

–  Set flag before testing this time 

  Does this work? 
–  Is milk bought? 
–  Can both buy? 

flag[2] = {0,0}; 

 
P0: 

flag[0] ß 1; 

while (flag[1]) { } 

Milk ß Milk + 1; // Crit sect 

flag[0] ß 0;; 

 

P1: 

flag[1] ß 1;  

while (flag[0]) { } 

Milk ß Milk + 1; // Crit sect 

flag[1] ß 0; 

Milk V.3 

FAILS: Violates progress and 
bounded wait 
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Implementing Critical Sections 
  Goal: 

–  If milk needed, somebody buys 
–  Only one person buys milk 

  Idea: Alternating turns 
–  Let one in at a time 
–  Wait your turn 

  Does this work? 
–  Is milk bought? 
–  Can both buy? 

turn ß 0; 

 
P0: 

while (turn == 1) { } 

Milk ß Milk + 1; // Crit sect 

turn ß 1; 

 

P1: 

while (turn == 0) { } 

Milk ß Milk + 1; // Crit sect 

turn ß 0; 

Milk V.4 

FAILS: Violates progress and 
bounded waiting 
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Implementing Critical Sections 
  Goal: 

–  If milk needed, somebody buys 
–  Only one person buys milk 

  Idea: Combine approaches 
–  Use flag[ ] to denote interest 
–  Use turn to break ties 

  Does this work? 
–  Is milk bought? 
–  Can both buy? 

flag[2] ß {0,0};  turn ß 0; 

 
P0: 

flag[0] ß 1;  turn ß 1; 

while (flag[1] && turn == 1) { } 

Milk ß Milk + 1; // Crit sect 

flag[0] ß 0; 

 

P1: 

flag[1] ß 1;  turn ß 0; 

while (flag[0] && turn == 0) { } 

Milk ß Milk + 1; // Crit sect 

flag[1] ß 0; 

Milk V.5 

SUCCEEDS: 
Meets all three criteria 

for locks 



Peterson’s Algorithm 
  Algorithm on previous slide was published by 

Peterson in 1981 
–  Should work on any uniprocessor 

»  Relies only on atomicity of memory operations 
–  Can be extended to more than 2 threads 

 

  Peterson’s algorithm does not work on any modern 
multicore machine 

–  It depends on certain guarantees provided by the memory 
subsystem, such as not reordering stores 

–  Fixing the algorithm is not totally trivial 
–  These fixes are not portable to other architectures 
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Lock Correctness 

  How do I show that a lock implementation is wrong? 

  How do I argue that a lock implementation is right? 
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Summary 
  Critical sections are those that must execute 

atomically 
–  Locks are a way to get atomicity 
–  Locks are implemented using lower-level atomic operations 

  Locks should guarantee mutual exclusion, 
progress, and bounded waiting 

  Implementing locks is tricky 
–  Many published solutions have been wrong for years before 

somebody noticed the problem 
–  Even harder on a modern machine 

  In real life, 99.9% of the time you don’t implement 
synchronization operations yourself 
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Questions? 


