
CS 5460: Operating Systems Lecture 7

CS5460: Operating Systems
Lecture 7:

Synchronization
(Chapter 6)

CS 5460: Operating Systems Lecture 7

Multi-level Feedback Queues
  Multiple queues with different priorities

–  Alternative: single priority queue

  Round robin schedule processes with equal priorities
–  Low priority jobs can “starve” for a while

  Adjust priorities based on observed behavior:
–  Jobs start with default priority (perhaps modified via “nice”)
–  If time quantum expires, bump job priority down
–  If job blocks before end of time quantum, bump priority up (Why?)

  Effect:
–  The scheduler “figures out” which jobs are interactive and which are

CPU-bound

CS 5460: Operating Systems Lecture 7

Synchronization

CS 5460: Operating Systems Lecture 7

What is Synchronization?
  Question: How do you control the behavior of
“cooperating” processes that share resources?

Time You Your roomate

3:00 Arrive home
3:05 Check fridge à no milk
3:10 Leave for grocery
3:15 Arrive home
3:20 Buy milk Check fridge à no milk
3:25 Arrive home, milk in fridge Leave for grocery
3:30
3:35 Buy milk
3:40 Arrive home, milk in fridge!

CS 5460: Operating Systems Lecture 7

Shared Memory Synchronization
  Threads share memory
  Preemptive thread scheduling is a major problem

–  Context switch can occur at any time, even in the middle of a line
of code (e.g., “X = X + 1;”)

»  Unit of atomicity à Machine instruction
»  Cannot assume anything about how fast processes make progress

–  Individual processes have little control over order in which
processes run

  Need to be paranoid about what scheduler might do
  Preemptive scheduling introduces non-determinism

CS 5460: Operating Systems Lecture 7

Race Condition
  Two (or more) processes run in parallel and output

depends on order in which they are executed
  ATM Example

–  SALLY: balance += $50; BOB: balance -= $50;
–  Question: If initial balance is $500, what will final balance be?

SALLY BOB
r0 ß balance

add r0, r0, $50

balance ß r0

r0 ß balance

sub r0, r0, $50

balance ß r0

Net: $500

This (or reverse) is what you’d
normally expect to happen.

CS 5460: Operating Systems Lecture 7

Race Conditions
  Two (or more) processes run in parallel and output

depends on order in which they are executed
  ATM Example

–  SALLY: balance += $50; BOB: balance -= $50;
–  Question: If initial balance is $500, what will final balance be?

SALLY BOB
r0 ß balance

r0 ß balance

add r0, r0, $50

sub r0, r0, $50

balance ß r0

balance ß r0

Net: $450

However, this (or reverse) can
happen due to a race condition.

Synchronization
  The race condition happened because there were

conflicting accesses to a resource

  Basic idea behind most synchronization:
–  If two threads, processes, interrupt handlers, etc. are going to

have conflicting accesses, force one of them wait until it is safe to
proceed

  Conceptually simple, but difficult in practice
–  The problem is that we need to protect all possible locations

where two (or more) threads or processes might conflict

CS 5460: Operating Systems Lecture 7

CS 5460: Operating Systems Lecture 7

Synchronization Problems
  Synchronization can be required for different

resources
–  Memory: e.g., multithreaded application
–  OS object: e.g., two processes that read/write same system file
–  Hardware device: e.g. two processes that both want to burn a

DVD

  There are different kinds of synchronization
problems

–  Sometimes we just want activities to not interfere with each other
–  Sometimes we care about ordering

Synchronization Problems
  Synchronization may be across machines

–  What if some machines are disconnected or rebooting?

  Sometimes it’s not OK to block a thread or process
–  May have to reserve the “right” do something ahead of time

CS 5460: Operating Systems Lecture 7

CS 5460: Operating Systems Lecture 7

Atomic Operations
  Series of operations that cannot be interrupted

–  Some operations are atomic with respect to everything that
happens on a machine

–  Other atomic operations are atomic only with respect to
conflicting processes, threads, interrupt handlers, etc.

  On typical architectures:
–  Individual word load/stores and ALU instructions
–  Synchronization operations (e.g., fetch_and_add, cmp_and_swap)

  ATM example à Balance updates were NOT atomic
–  Solution: Enforce atomic balance updates
–  Question: How?

More Atomic
  Atomic operations are at the root of most

synchronization solutions
  Processor has to support some atomic operations

–  If not, we’re stuck!

  OS uses low-level primitives to build up more
sophisticated atomic operations

–  For example, locks that support blocking instead of busy-waiting
–  We’ll look at an example soon

CS 5460: Operating Systems Lecture 7

CS 5460: Operating Systems Lecture 7

More Definitions
  Synchronization (or Concurrency Control):

–  Using atomic operations to eliminate race conditions

  Critical section:
–  Piece of code (e.g., ATM balance update) that must run atomically
–  Mutual exclusion: Ensure at most one process at a time

  Lock:
–  Synchronization mechanism that enforces atomicity
–  Semantics:

»  Lock(L): If L is not currently locked à atomically lock it
 If L is currently locked à block until it becomes free
»  Unlock(L): Release control of L

–  You can use a lock to protect data: Lock(L) before accessing data,
Unlock(L) when done

CS 5460: Operating Systems Lecture 7

Fixing the ATM problem

  Problem:
–  Balance update not atomic

  Solution:
–  Introduce atomic operations

  Effect:
+  Eliminates race condition
–  Increases overhead
–  Restricts concurrency

  Open issues:
–  Where do we use locks?

»  Avoid deadlocks or livelocks
»  Ensure fairness

–  How do we implement locks?
–  What other synch ops are there

besides locks?

SALLY BOB
Lock(L);

r0 ß balance

add r0, r0, $50

balance ß r0

Unlock(L);

Lock(L);

r0 ß balance

sub r0, r0, $50

balance ß r0

Unlock(L);

Critical
Section

CS 5460: Operating Systems Lecture 7

Lock Requirements
1.  Must guarantee that only one process / thread is in

the critical section at a time
–  This is obvious

2.  Must guarantee progress
–  Processes or threads don’t have to wait for an available lock

3.  Must guarantee bounded waiting
–  No process or thread needs to wait forever to enter the critical

section
–  Figuring out the bound can be interesting

CS 5460: Operating Systems Lecture 7

Implementing Critical Sections
  Goal:

–  If milk needed, somebody buys
–  Only one person buys milk

  Idea: Wait while note is up
–  “Busy wait” loop

  Does this work?
–  Is milk bought?
–  Can both buy?

P0:

while (Note) { }

Note ß 1; // leave Note

Milk ß Milk + 1; // CritSect

Note ß 0; // remove Note

P1:

while (Note) { }

Note ß 1; // leave Note

Milk ß Milk + 1; // CritSect

Note ß 0; // remove Note

Milk V.1

FAILS: Can both buy milk
(How?)

CS 5460: Operating Systems Lecture 7

Implementing Critical Sections
  Goal:

–  If milk needed, somebody buys
–  Only one person buys milk

  Idea: Add per-process flag
–  Set flag while in critical section
–  Explicit check on other process

  Does this work?
–  Is milk bought?
–  Can both buy?

flag[2] = {0,0};

P0:

while (flag[1]) { }

flag[0] ß 1;

Milk ß Milk + 1; // Crit sect

flag[0] ß 0;

P1:

while (flag[0]) { }

flag[1] = 1;

Milk ß Milk + 1; // Crit sect

flag[1] = 0;

Milk V.2

FAILS: Can both buy milk
(How?)

CS 5460: Operating Systems Lecture 7

Implementing Critical Sections
  Goal:

–  If milk needed, somebody buys
–  Only one person buys milk

  Reverse order in which you
set and test flag

–  Set flag before testing this time

  Does this work?
–  Is milk bought?
–  Can both buy?

flag[2] = {0,0};

P0:

flag[0] ß 1;

while (flag[1]) { }

Milk ß Milk + 1; // Crit sect

flag[0] ß 0;;

P1:

flag[1] ß 1;

while (flag[0]) { }

Milk ß Milk + 1; // Crit sect

flag[1] ß 0;

Milk V.3

FAILS: Violates progress and
bounded wait

CS 5460: Operating Systems Lecture 7

Implementing Critical Sections
  Goal:

–  If milk needed, somebody buys
–  Only one person buys milk

  Idea: Alternating turns
–  Let one in at a time
–  Wait your turn

  Does this work?
–  Is milk bought?
–  Can both buy?

turn ß 0;

P0:

while (turn == 1) { }

Milk ß Milk + 1; // Crit sect

turn ß 1;

P1:

while (turn == 0) { }

Milk ß Milk + 1; // Crit sect

turn ß 0;

Milk V.4

FAILS: Violates progress and
bounded waiting

CS 5460: Operating Systems Lecture 7

Implementing Critical Sections
  Goal:

–  If milk needed, somebody buys
–  Only one person buys milk

  Idea: Combine approaches
–  Use flag[] to denote interest
–  Use turn to break ties

  Does this work?
–  Is milk bought?
–  Can both buy?

flag[2] ß {0,0}; turn ß 0;

P0:

flag[0] ß 1; turn ß 1;

while (flag[1] && turn == 1) { }

Milk ß Milk + 1; // Crit sect

flag[0] ß 0;

P1:

flag[1] ß 1; turn ß 0;

while (flag[0] && turn == 0) { }

Milk ß Milk + 1; // Crit sect

flag[1] ß 0;

Milk V.5

SUCCEEDS:
Meets all three criteria

for locks

Peterson’s Algorithm
  Algorithm on previous slide was published by

Peterson in 1981
–  Should work on any uniprocessor

»  Relies only on atomicity of memory operations
–  Can be extended to more than 2 threads

  Peterson’s algorithm does not work on any modern
multicore machine

–  It depends on certain guarantees provided by the memory
subsystem, such as not reordering stores

–  Fixing the algorithm is not totally trivial
–  These fixes are not portable to other architectures

CS 5460: Operating Systems Lecture 7

Lock Correctness

  How do I show that a lock implementation is wrong?

  How do I argue that a lock implementation is right?

CS 5460: Operating Systems Lecture 7

Summary
  Critical sections are those that must execute

atomically
–  Locks are a way to get atomicity
–  Locks are implemented using lower-level atomic operations

  Locks should guarantee mutual exclusion,
progress, and bounded waiting

  Implementing locks is tricky
–  Many published solutions have been wrong for years before

somebody noticed the problem
–  Even harder on a modern machine

  In real life, 99.9% of the time you don’t implement
synchronization operations yourself

CS 5460: Operating Systems Lecture 7

CS 5460: Operating Systems Lecture 7

Questions?

