
Sample Mid-Term Exam 1

CS 4960-01, Fall 2008

Actual exam scheduled for October 10

Name:

Instructions: You have fifty minutes to complete this open-book, open-note, closed-computer exam. Please
write all answers in the provided space plus the back of the exam.

1) Suppose that you have the following program:

int go(int q, int s)
{

int i, j, fv = 0;
for (j = 0; j < s; j++) {
for (i = 0; i < q; i++) {
if (j > 0)
fv = f(fv);

else
fv += f(i);

}
}
return fv;

}

You know nothing about f, except that it’s purely functional (i.e., it does not change the state of any
global variable). You’re not allowed to change them or look at its implementation.

When you run go(n, 1), the computation takes n seconds. When you run go(n, m), the computation
takes n · m seconds.

You’re allowed to change go to make it work with P processors. Sketch an implementation on Peril-L
that takes advantage of parallelism, and estimate speedup for go(n, m) where n >> P .

Explain your time estimate in terms of your implementation sketch. Assume that the overhead for
parallelism is negligible, which is realistic compared to the time apparently required for a call to f.
You can also assume that simple operations, such as assigning to an array slot or local variable, are
essentially free (again, compared to the expensive calls to f).

1

2) Suppose that you’re writing a program to modify a square 2-D array of numbers. You’ll modify it
using P threads, where P is much less than the width of the array. Each number in the input array is
an integer between 0 and 232, but the distribution of numbers is not specified.

Here’s what your program should do:

1. Each number should be replaced with the average of itself with the four surrounding numbers.

2. Then, imagine a line through row = column diagonal of the array; each number should be
averaged with its “opposite” across the diagonal. For example, the number at row 5 column 7
should be averaged with the number at row 7 column 5, and diagonal elements are left alone.

3. Finally, each number n should be replaced with an average from sampling n random values across
the whole array.

Describe how to organize threads and data for this problem to maximize parallelism. The data distri-
bution does not have to be static or fixed for given run.

2

3) Define the types data t, tally t, and result t and implement the following functions to plug into a
reduce framework:

tally_t init();
tally_t accum(tally_t, int, data_t*);
tally_t combine(tally_t, tally_t);
result_t reduceGen(tally_t);

The functions should implement the following computation: given an array of floating-point numbers,
determine the maximum absolute difference between any number in the array and the average of all
numbers in the array.

You don’t need to write the “client” half of the code. Assume that someone else will use your choice
of data t to set up suitable inputs.

3

4) The following code in the book (page 159) doesn’t work as advertised:

EatJuicyFruit()
{

pthread_mutex_lock(&lock);
while (apples==0||oranges==0) {
pthread_cond_wait(&more_apples, &lock);
pthread_cond_wait(&more_oranges, &lock);

}
/* Critical Section: Eat both an apple and an orange */
pthread_mutex_unlock(&lock);

}

Imagine that thread 1 is waiting. Then, a while later, thread 2 picks an orange and makes it available
to eat; it increments oranges and signals more oranges. Then, still later, thread 3 picks an apple and
makes it available to eat, incrementing apple and signalling more apples. Thread 1 will still be stuck,
instead of eating the apple and orange. Why? Explain the problem and suggest a way to fix the above
code.

4

Answers

1) Calling f apparently takes constant time, independent of its argument. Moreover, after the first
iteration of the outer loop, each call to f depends on the previous one, so the only opportunity for
parallelism is in the first iteration. In the first iteration, all the calls to f are independent. We should
expect to make go(n, m) take about n/P + n · (m − 1) seconds.

int go(int q, int s)
{
int i, j, fv = 0;

if (s > 0) {
int _tfv_[q];
/* run one iteration in parallel */
forall (k in [0 .. P-1]) {
int l, start, end;
start = k * (_q_/P);
end = (k + 1) * (_q_/P); /* assume that q/P is an integer */
for (l = start; l < end; l++) {
tfv[l] = f(l);

}
}
/* sum the results of the first iteration */
for (i = 0; i < q; i++)
fv += tfv[i];

}
}

/* remaining iterations are inherently sequential */
for (j = 1; j < s; j++) {
for (i = 0; i < q; i++) {
fv = f(fv);

}
}

return fv;
}

2) The data organization should change with each phase of the computation:

1. Use a block allocation, which minimizes non-local data access when surrounding values are needed.

2. Give each thread some data on both sized of the diagonal, where the region for half of the data
for each thread is the “mirror image” across the dialog of the region of the other half, so that the
average computations and updates are completely local.

3. There’s no particularly good choice in this case, but a work queue is probably a good idea, since
some regions of the array may have larger numbers than other regions, and the amount of work
to perform for each array element is proportional to the size of the number.

3) typedef double data_t;
typedef struct { double minv, maxv, total; int count; } tally_t;
typedef double result_t;

5

tally_t init() {
tally_t t = { 0, 0, 0, 0 };
return t;

}

tally_t accum(tally_t t, int i, data_t* array)
{
if (t.count == 0) {
t.minv = t.maxv = array[i];

} else {
t.minv = min(t.minv, array[i]);
t.maxv = max(t.maxv, array[i]);

}
t.total += array[i];
t.count++;
return t;

}

tally_t combine(tally_t t1, tally_t t2)
{
if (t1.count == 0) return t2;
if (t2.count == 0) return t1;
t1.minv = min(t1.minv, t2.minv);
t1.maxv = min(t1.maxv, t2.maxv);
t1.total += t2.total;
t1.count += t2.count;
return t1;

}

result_t reduceGen(tally_t t)
{
double avg = t.total / t.count;
return max(avg - t.minv, t.maxv - avg);

}

4) The problem is that a more oranges signal might be missed while waiting on more apples, but the
loop is committed to waiting on both. As noted in the book, it doesn’t work to separately loop on
apples and oranges. However, within the combined loop, we should should always check apples
before waiting on more apples, and we should check oranges before waiting on more oranges, like
this:

while (apples==0||oranges==0) {
if (apples == 0)
pthread_cond_wait(&more_apples, &lock);

if (oranges == 0)
pthread_cond_wait(&more_oranges, &lock);

}

6

