
OpenMP

OpenMP adds constructs for shared-memory
threading to C/Fortran

for (i = 0; i < n; i++)
 array[i] = convert(array[i]);

⇒

#pragma omp parallel for
for (i = 0; i < n; i++)
 array[i] = convert(array[i]);

1

Compiling with OpenMP

Run gcc with the -fopenmp flag:

gcc -O2 -fopenmp ex1.c

Beware: If you forget -fopenmp, then all OpenMP
directives are ignored!

2

Reflecting on Threads

Include omp.h to get extra functions:

#include <omp.h>
#include <stdio.h>

int main() {
 #pragma omp parallel
 printf("hello from %d of %d\n",
 omp_get_thread_num(),
 omp_get_num_threads());
} Copy

3

Running OpenMP Programs

To control the number of threads used to run an
OpenMP program, set the OMP_NUM_THREADS
environment variable:

% ./a.out
hello from 0 of 2
hello from 1 of 2

% env OMP_NUM_THREADS=3 ./a.out
hello from 2 of 3
hello from 0 of 3
hello from 1 of 3

4

OpenMP Directives

For C, OpenMP directives start

#pragma omp

Some directives that can follow that prefix:

• parallel private, shared, default
reduction

• for

• sections, section

• barrier

• exclusive

5

Creating Threads

The parallel directive creates threads and runs
following statement/block in each thread

#pragma omp parallel
printf("hello");

6

Threads and Sharing

Variables outside a parallel are shared, and
variables inside a parallel are private

private, shared and default control sharing:

#include <omp.h>
#include <stdio.h>

int main() {
 int t, j, i;
 #pragma omp parallel private(t, i) shared(j)
 {
 t = omp_get_thread_num();
 printf("running %d\n", t);
 for (i = 0; i < 1000000; i++)
 j++; /* race! */
 printf("ran %d\n", t);
 }
 printf("%d\n", j);
} Copy

7

Reduce

The reduction clause of parallel

• makes the specified variable private to each
thread

• combines private results on exit

int t;
#pragma omp parallel reduction(+:t)
{
 t = omp_get_thread_num() + 1;
 printf("local %d\n", t);
}
printf("reduction %d\n", t); Copy

8

Work Sharing

With a parallel section, workshare directives split
work among the available threads:

• for

• sections

• single

Unless the nowait clause is specified, each
workshare is followed by an implicit barrier

9

Loop Workshare for Data Parallelism

The for workshare directive

• requires that the following statement is a for loop

• makes the loop index private to each thread

• runs a subset of iterations in each thread

#pragma omp parallel
#pragma omp for
for (i = 0; i < 5; i++)
 printf("hello from %d at %d\n",
 omp_get_thread_num(), i);

Copy

Or use #pragma omp parallel for

10

Combining Loop and Reduce

int array[8] = { 1, 1, 1, 1, 1, 1, 1, 1};
int sum = 0, i;
#pragma omp parallel for reduction(+:sum)
for (i = 0; i < 8; i++) {
 sum += array[i];
}
printf("total %d\n", sum); Copy

11

Section Workshare for Task Parallelism

A sections workshare directive is followed by a
block that has section directives, one per task

#pragma omp parallel
#pragma omp sections
{
 #pragma omp section
 printf("Task A: %d\n", omp_get_thread_num());
 #pragma omp section
 printf("Task B: %d\n", omp_get_thread_num());
 #pragma omp section
 printf("Task C: %d\n", omp_get_thread_num());
} Copy

12

Other Patterns

When OpenMP doesn’t provide high-level support
for your goal (e.g., there’s no scan directive), you
can always fall back to manual data management
and synchronization

13

Synchronization

• barrier within a parallel block is as in Peril-L

• exclusive within a parallel block is as in Peril-L

• atomic is a restricted form of exclusive

14

OpenMP Documentation

http://www.openmp.org/

15

