OpenMP

OpenMP adds constructs for shared-memory
threading to C/Fortran

for (i =0; i < n; i++)
array[i1] = convert(array[li]);

#pragnma onp parallel for
for (i =0; i < n; i++)
array[1] = convert(array[l]);



Compiling with OpenMP

Run gcc with the - f opennp flag:
gcc -2 -fopennp exl.c

Beware: If you forget - f opennp, then all OpenMP
directives are ignored!



Reflecting on Threads

Include onp. h to get extra functions:

#i ncl ude <onp. h>
#i ncl ude <stdi o. h>

Int main() {
#pragnma onp parall el
printf("hello from% of %\ n",
onp_get thread nun(),
onp_get _numthreads());

} Copy



Running OpenMP Programs

To control the number of threads used to run an
OpenMP program, set the OVP_NUM THREADS

environment variable:

% ./ a.
hel | o
hel | o
% env
hel | o
hel | o

hel |l o

out
fromO of 2
from1l of 2

OVP_NUM THREADS=3 ./ a. out
from?2 of 3
fromO of 3
from1l of 3



OpenMP Directives

For C, OpenMP directives start
#pragna onmp
Some directives that can follow that prefix:

e paral l el o private, shared, def aul t
o reduction

e fOr

e Secti ons, section

e barrier

e excl usi ve



Creating Threads

The par al | el directive creates threads and runs
following statement/block in each thread

#pragma onp parall el
printf("hello");



Threads and Sharing

Variables outside a par al | el are shared, and
variables inside a par al | el are private

porivat e, shar ed and def aul t control sharing:

#i ncl ude <onp. h>
#i ncl ude <stdi o. h>

int main() {

int t, j, i;

#pragnma onp parallel private(t, i) shared(j)

{
t = onp_get _thread num();
printf("running %\n", t);
for (i = 0; i < 1000000; i ++)

j++, [* racel */

printf("ran %\n", t);

}

printf("%\n", j);

} Copy



Reduce

The reduct i on clause of par al | el

 makes the specified variable private to each
thread

e combines private results on exit

Int t;
#pragma onp parallel reduction(+:t)

{
t = onp _get _thread num() + 1,

printf("local %\n", t);
}

printf("reduction %\ n", t); Copy



Work Sharing

With a parallel section, workshare directives split
work among the available threads:

e fOr
e Secti ons
e single

Unless the nowai t clause is specified, each
workshare is followed by an implicit barrier



Loop Workshare for Data Parallelism

The f or workshare directive
 requires that the following statement is a f or loop
 makes the loop index private to each thread

e runs a subset of iterations in each thread

#pragma onp parall el
#pragma onp for
for (I =0; 1 < 5; 1++)
printf("hello from% at %\ n",
onp_get thread nun(), 1);

Copy

Or use #pragma onp parallel for

10



Combining Loop and Reduce

int array[8 ={ 1, 1, 1, 1, 1, 1, 1, 1},
Int sum= 0, 1I;
#pragma onp parallel for reduction(+:sum
for (1 =0;, 1 <8; 1++) {

sum += array[1];

}
printf("total %\n", sum; Copy

11



Section Workshare for Task Parallelism

A sect i ons workshare directive is followed by a
block that has sect i on directives, one per task

#pragnma onp parall el
#pragna onp sections

{

#pr agna
printf ("
#pr agna
printf ("
#pragna
printf("

onp section
Task A: %\ n",
onp section
Task B: %\ n",
onp section
Task C. %\ n",

onp_get _thread nun());
onp_get thread nun());

onp_get thread nun());

Copy

12



Other Patterns

When OpenMP doesn’t provide high-level support
for your goal (e.g., there’s no scan directive), you

can always fall back to manual data management
and synchronization

13



Synchronization

e barri er within a parallel block is as in Peril-L
e excl usi ve within a parallel block is as in Peril-L

e at om c Is a restricted form of excl usi ve

14



OpenMP Documentation

http://ww. opennp. or g/

15



