
Synchronization Primitives

Locks

synchronized (lock) { balance += amt; }

Messages

(thread server)
... (channel-put deposit-ch amt) ...

Transactions

atomic { balance += amt; }

1

Transactions

atomic marks a set of actions to appear to happen
instantaneously to all other processes

Instead of stopping other processes, let everyone
run until non-instantaneous state is detected

This potential problem is called a conflict

Hide the problem by discarding/rewinding changes
and trying again later

This is called an abort

If there was no problem, then make the changes
permanent

This is called a commit

2

Transactions

Process 1

atomic {
 a++;
 b++;
 c++;
}

Process 2

atomic {
 d++;
 e++;
 f++;
}

No conflict: processes 1 and 2 run completely in
parallel

3

Transactions

Process 1

atomic {
 a++;
 b++;
 c++;
}

Process 2

atomic {
 d++;
 b++;
 f++;
}

One process may have to retry its transaction

4

Transactions

Process 1

atomic {
 a++;
 b++;
 c++;
}

Process 2

atomic {
 d++;
 e = b;
 f++;
}

Depends on transaction implementation

5

Multiple Data

Locks (and deadlock)

synchronized (lockA) {
 synchronized (lockB) {
 a.op(b);
 b.op(a);
 }
}

synchronized (lockB) {
 synchronized (lockA) {
 ...
 }
}

6

Multiple Data

Messages (and multiple managers)

(define (a-server ...)
 (sync

(handle-evt a-request-ch
...)))

(define (b-server ...)
 (sync

(handle-evt b-request-ch
...)

 (handle-evt a+b-request-ch
... a-request-ch ...)))

7

Multiple Data

Transactions (no problem)

atomic {
 a.op(b);
 b.op(a);
}

Transactions can fix deadlock and priority inversion

8

Waiting

Locks

lock.lock();

while (q.isEmpty())
 nowFull.await();
result = q.dequeue();

lock.unlock();

9

Waiting

Messages

...
(sync
(if (empty? queue)

never-evt
 (channel-put-ev dequeue-ch

(first queue))))

... (channel-get dequeue-ch) ...

10

Waiting

Transactions

atomic {
 if (q.isEmpty())
 retry;
 result = q.dequeue();
}

retry means “try again when something changes”

11

Implementing Transactions

Eager implementation:

• Perform a write immediately, but remember old
value

• On abort, rewind changes (block other processes)
• On commit, discard old values

⇒ transaction commits quickly

Lazy implementation:

• Remember pending writes, and use them for
re-reads within the transaction

• On abort, discard changes (other processes
continue)

• On commit, perform pending writes

⇒ transaction aborts quickly
12

Implementing Transactions

Pessimistic implementation:

• Watch for conflicts during transaction

⇒ abort early to avoid wasted work

Optimistic implementation:

• Check for conflicts just before commit

⇒ lower overall overhead

13

Issues with Transactions

Transactions only work with actions that are
undoable or immediate — which does not include
I/O

If a transaction is too long:

• Read/write logs grow large

• The transaction may be constantly interrupted

Tracking reads and writes to detect conflicts can
incur significant overhead

14

