
MPI

MPI = message passing interface

• No shared memory

• More language-neutral than OpenMP

Library (no new compiler)

⇒ essentially a grown-up bmsg.c

Biased toward C and Fortran, but also
implemented in other languages

• Run-time manager helps launch processes

Latest version is 2.0, but 1.3 is enough for our
purposes

1

MPI Program Model

Write one program...

• Run-time manager runs it P times

• Each process discovers its rank ⇒ role

• Processes coordinate through explicit messages

2

Old Message-Passing Architecture

x-client.c client

x-server.c server server server

3

Old Message-Passing Architecture

x-client.c client

x-server.c server server server

4

MPI Architecture

x.c

x

x x

5

MPI Architecture

MPI run-time

x.c

x

x x

6

MPI “Hello World” in C

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[]) {
 int numprocs, rank, namelen;
 char processor_name[MPI_MAX_PROCESSOR_NAME];

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Get_processor_name(processor_name, &namelen);

 printf("Process %d on %s out of %d\n", rank,
 processor_name, numprocs);

 MPI_Finalize();
}

7

MPI “Hello World” in Java

import mpi.*;

class HW {
 public static void main(String[] args) {
 MPI.Init(args);

 int sz = MPI.COMM_WORLD.Size();
 int me = MPI.COMM_WORLD.Rank();
 String where = MPI.Get_processor_name();

 System.out.println("Process " + me
 + " on " + where
 + " out of " + sz);

 MPI.Finalize();
 }
}

8

MPI Communicators

A communicator represents a set of cooperating
processes

Just use COMM_WORLD, which is initialized by Init

9

MPI Basic Messages

int me = MPI.COMM_WORLD.Rank();
int size = 1;
int array[] = new int[size];

if (me == 0) {
 array[0] = 42;
 MPI.COMM_WORLD.Send(array, 0, size, MPI.INT, 1, 8);
 System.out.println("sent " + array[0]);
} else {
 MPI.COMM_WORLD.Recv(array, 0, size, MPI.INT, 0, 8);
 System.out.println("got " + array[0]);
}

10

Sending a Message

To send:

• Specificy data as array, size, and type

• Specify target process (by its rank)

• Specify a tag

A kind of mailbox id within the target process

Meaning of a tag is completely up to
programmer

11

Receiving a Message

To receive:

• Specificy data area as array, size, and type

• Specify source process (by its rank) or use
ANY_SOURCE

• Specify a tag or use ANY_TAG

12

MPI Send Modes

• standard — message is conceptually sent after
Send returns; may or may not block until received

• buffered — like standard, but Bsend never waits
for receive

• synchronous — like standard, but Ssend always
waits for receive

• ready — Rsend assumes(!) that receive is
currently waiting

The same Recv is used for all send modes

13

MPI Blocking

• The Send, Bsend, Ssend, Rsend, and Recv
operations are all blocking

Send or receive complete on return, buffers
can be re-used

• The Isend, Ibsend, Issend, Irsend, and
Irecv operations are all non-blocking

Check back for send or receive completion:
Wait, Test, WaitAny, ...

Buffers cannot be re-used until completion

Threads could express non-blocking with blocking, but only if you
have threads and if the MPI library is thread-safe

14

Send plus Receive

Suppose that you need to shift data around:

x

x x

If everyone sends (synchronously, non-blocking)
first, then everyone is stuck

Use SendRecv and let the library handle ordering
and efficiency

15

