

Solar Door Panel

Team Sodopa

University of Utah

Computer Engineering Senior Project

David Hurst

Tyson Hunt

Jeffrey Kelley

david.hurst5@gmail.com

tyswitz@hotmail.com

scientist009@gmail.com

mailto:david.hurst5@gmail.com
mailto:tyswitz@hotmail.com
mailto:scientist009@gmail.com

Introduction

Door displays are used commonly throughout many business and schools, however, they are

static and boring. Think of how nice it would be if someone could tap into their wireless

network to update or change their door display that is powered from solar cells. The display uses

a wireless radio for all communication, and can be accessed remotely. This allows the user to

change their name, set the display to their office hours, work hours, picture logo, or anything else

the user would like. Using wireless communication and being powered by solar panels, it is

completely standalone, requires no maintenance, and best of all no recharging of batteries.

Using solar energy helps reduce energy costs, is friendly to the environment, and it is available in

most settings where the device could be located such as an office hallway. To further decrease

the environmental impact, super-capacitors were used instead of lithium-ion batteries which

contain toxic materials.

This project consists of several major components. A cholesteric LCD (ChLCD), an energy

harvester to capture and store solar energy into a storage element, a micro-controller unit (MCU),

which controls all data flow and energy usage, and a wireless radio are wall mounted outside of

an office, or conference room. This energy harvester monitors energy availability and notifies

the MCU of the ability to request an update for the display. Since an update takes the majority of

energy that the storage element can hold, there is no point in trying an update unless the

operation can finish. All the components chosen use as little energy as possible in order for the

solar panel to supply enough energy in a reasonable amount of charging time and lighting

conditions.

Another major piece of this project is the base station radio connects the user's computer to

communicate with the wall mounted display nearby. The radio on both ends uses the 802.15.4

protocol, which has an indoor range of 80-140 feet, relatively low power requirements, and is

readily available. This base station acts as a bridge between the host computer’s USB port and

the radio.

The software component of the project enables the user to change what is displayed, preview any

changes before making an update, and view information general information about the

display. The custom-designed web server serves an interface for the user to connect to, either

locally or over the Internet. The user also has the option to integrate the display device with a

Google calendar and enable automatic updates every day. This is especially useful for

conference rooms that have a daily schedule.

Functional Description

Figure 1 below shows how each component of the system is connected.

Figure 1 - Functional Design of the Solar Panel Display

A solar panel is connected to a custom-designed energy harvester board which charges the

storage element, consisting of a bank of super capacitors. The device uses a bank of four 5.5V

1.5 Farad capacitors which have the capability of storing about 20 Joules of energy per

capacitor. The same board supplies both 5V and 3.3V in order to power external peripherals

including the MCU, XBEE Radio, and the display. It also monitors the voltage and lets the

MCU know when the battery is full or empty, based on voltage levels of the 3.3 volt line. The

minimum voltage level for operation is 3.1 volts which is considered empty by the Energy

Harvester. The energy harvester board has the ability to turn off its own voltage regulators

preventing serious discharge of the capacitor bank.

The MCU manages waking up and sleep settings for all of peripherals, including the radio and

display. The radio uses asynchronous communication and the display uses a SPI serial

interface. A radio dongle connected to the user's computer via USB acts as a bridge to

communicate with the display. The software running on the computer sends and receives data to

update the display and gather information about the device.

Microcontroller (MCU)
The low energy microcontroller which can consume less than 6uA of current per second allows

the display to operate without consuming large amounts of energy. The Gecko EFM32890gf128

starter kit was used. The MCU has a large enough memory to store the MCU program code and

still be able to store data for the images needed for the Kent display. The MCU has a total of

128kB of flash memory. It has the ability to operate in different energy modes and has the ability

to control many external devices through its USART, UART, TIMERS, RTC , and other features

in the different energy modes as shown in Figure 3 and 4. Refer to the figure below for a layout

of the MCU and energy modes the interfaces can operate in.

Figure 2 - MCU Board Layout (Energy Micro, 2011)

The energy modes of the MCU are called EM0, EM1, EM2, EM3 and EM4. The colors that

represent each energy mode are shown in the figure below. EM0 mode is the normal operation of

the MCU with all features enabled. EM1 disables the MCU and allows functionality for most of

the device. The device was found to consume about 1.08mA in EM1 mode. EM1 is enabled

automatically whenever the __WFI() instruction is called. This instruction waits for an interrupt

from an internal component.

Figure 3 - Energy Modes of MCU (Energy Micro, 2011)

The list below shows the current consumption in each mode as seen on the data sheet (Energy

Micro). The four energy saving power modes are shut off mode (EM4), stop mode (EM3), deep

sleep (EM2), and sleep mode (EM1).

The Energy Micro EFM32g Reference Manual (2011) stated the following for energy

consumption:

 • 20 nA @ 3 V Shutoff Mode

 • 0.6 μA @ 3 V Stop Mode, including Power-on Reset, Brown-out

 Detector, RAM and CPU retention

 • 0.9 μA @ 3 V Deep Sleep Mode, including Real Time Clock with

 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM

 and CPU retention

 • 45 μA/MHz @ 3 V Sleep Mode

 • 180 μA/MHz @ 3 V Run Mode, with code executed from flash (p. 5)

EM2 is the energy mode that is desired while the display device is asleep to consume the least

amount of energy as possible. In this mode the high frequency clocks are disabled along with

USART communication required for the Kent display. The problem with this mode is very few

components are enabled which means the device must be woken up before resuming operation.

Since the RTC timer is enabled in this mode it is used to wake the device up after the sleep

period has elapsed. This period can be changed but was set to 4.6 hours. The RTC timer is used

in multiple places to help reduce further energy requirements of needing a second timer. EM2 is

activated by calling Enter_EM2() or whenever the __WFI() function is called as long as the

CMU->CTRL->DEEP_SLEEP register in the MCU is set to 1 first.

The other energy modes were not used since the device cannot be woken up unless a system

reset is performed. The MCU handles all communication between the radio and the Kent display.

It processes any commands received from the radio and processes them accordingly. The RF

Radio Communication protocol explains the possible commands. Whenever a byte is received

from the radio it appends it to the payload. A payload follows the following protocol. The first

byte is the command. The next two bytes are the size of the payload for the command (set to 0 if

there is no payload). The first byte (second byte received) is the lower byte of the size of the

payload and the second byte (third byte received) is the upper byte of the size payload. The size

of the payload is checked to determine how many more bytes are needed to receive the entire

payload. The first 3 bytes, the command, lower byte of the size of the payload, and upper byte of

the size of the payload, are all required. There may be no payload present (if size is set to 0).

To help reduce errors and determine if valid packets are received the two bytes that make up the

size must follow the following convention. For the upper byte of the size, the most significant bit

(0x80) must be set to 1 to show that it is not garbage. For the lower byte the least significant byte

(0x01) must be set to 1 to show that it is valid. The remaining 14 bits determine the size of the

payload. The top byte performs the operation TOP_BYTE & 0x7F and shifted right one bit to

ignore the valid bit while the lower byte is shifted right one bit removing the valid bit. The

remaining two bytes (TOP_BYTE | BOTTOM_BYTE) once combined make up the total size of

the payload assuming the top byte is already at an offset of one byte to the left.

After the timeout of the RTC timer is fired it begins to process the completed payload. If the

packet has not been received in this time it is discarded. If the size value is corrupted it will

either not receive enough of the packet or receive too much. This is the reason for using valid

bits in the payload to help determine when errors occur. If the packet payload is full it will look

at the packet and check that it has received a correct command and a valid size packet.

The MCU allows a timer wakeup from sleep mode or a timeout state if the radio times out (no

response or takes too long to send packet). Another way to wake up the radio in case the user

wants to update the display sooner than 4.6hours is via a manual switch. The switch will fire an

internal GPIO interrupt and the MCU will process the interrupt waking it up disabling the RTC

timer since it has already wakened up.

Kent Display
This project utilizes a low power Cholesteric display that retains information when there is no

power. This allows the device to be turned off and still show the information needed on the

screen saving energy. When the display is in the idle state (sleep) it consumes 10 uA according

to the data sheet as seen in Figure 4. The display operates at a logic level of 3.3V and requires a

voltage of 4-9V for the power.

Figure 4- Kent Characteristic Information (Kent Displays Incorporated)

Through experimentation it was found that the device drew about 4.3mA in an idle state (while

awake) and about 4.9mA while driving the image. The MCU in idle mode was found to consume

1mA with only the CMU clock enabled in EM0. This shows that the Kent display used about

3.9mA of current while driving an image.

Figure 5 - Kent Display Sleep mode Current Usage

Figure 6 - Kent Display Screen Update Current Usage

These tests were performed for the RAM_WRITE (writes a byte at a time to the kent’s memory)

and DISP_FULLSCRN (performs a full screen update from the memory) commands. The test

wrote a 240x320 image array into the memory one byte at a time. For a complete list of

commands see the data sheet for the Kent display or the KentDisplay.c file for the MCU.

The Kent display uses a 100m pitch ribbon cable connector. A PCB board was purchased from

SparkFun that would connect to the ribbon cable and create a PCB board breakout connector.

The connector layout for the Kent display pins can be seen in the figure below. The reset line

must be tied to 3.3V. It is tied internally high but it was found that a lot of the time it did not

function correctly. It was fixed by wiring the reset wire straight to the logic 3.3V line to avoid

constant resets.

Figure 7 - Kent Internal Pin Layout (Kent Displays Incorporated)

Each image sent to the display had to be aligned horizontally (320pixels x 240pixels) with each

byte in Big Endian format. The top left byte of the image would map to Byte[0, 0] in the displays

memory bank. Refer to Figure 8 for a more detailed look at the memory bank. The boundaries of

the memory show a large pixelated area. This area is called the active layer of the device. The

active layer is an additional pixel to the left, top, bottom, or right, of the boundaries (the

boundary pixels are actually 2 pixels wide and/or high). So Byte[0, 0] has an active pixel to its

left and above it. The active layer cannot be written to. They mimic the pixel’s value adjacent to

it. So if Byte[0,0] was a white pixel the active layer pixel next to it would become white. There

are, however, commands that allow the user to ignore the active layer (avoid the active layer

from changing values). The images sent to the display from the microcontroller do not care what

values the active layer are or become. It writes whatever image is received from the

microcontroller.

Figure 8 - Active Area of the Kent Display (Kent Displays Incorporated)

The Kent display is controlled via USART (SPI) interface. The SPI settings are slightly non-

standard. While it requires CLPOL = 0 (standard), MSBF sent first (standard), it requires

CLPHA = 1 (data valid on leading edge). The baud rate was set to 9600 which seemed to work

well for the display. The display is very slow and takes 2-3 seconds for a full screen update. The

USART route was tied to LOCATION 0 (USART_USED->ROUTE) in the MCU meaning it

uses Port D PINS 2 (TX | SI), 3 (RX | SO), 4 (SCK), 5 (CS) for the USART2 interface. The

internal Chip Select line pin in the USART was disabled so that it could be manually set by the

drivers file since it needed special chip select capability.

RF Radio Communication
This section explains the commands that the radio uses, the interface of the radio, and the

protocol that the radio uses.

Commands
READY: Value 0xDC. Sent by the MCU to the host computer to state that is waiting for an update. The

MCU waits for a response from the computer until a packet is sent from the computer that tells the

MCU what to do. The payload is set to 0 since no information is needed by the host.

UPDATE: Value 0x50. This command tells the MCU that an image update is being sent. The payload

represents an image for the Kent display. This image is written to the onboard memory of the Kent

display after the packet has been determined to be valid (valid bits of the size packets are set and the

size matches 9600Bytes).

NULL: Value 0x00 Used to define an empty command.

Interface
The XBEE RF Series I radio was used due to its ease of integration. It requires 4 pins. The

XBEE interface employs 4 pins: power pin which provides 3.3 volts, ground, DIN (data to

transmit), and DOUT (data received). An optional sleep line is being used to put the radio to

sleep whenever it is idle. The radio uses around 1mA when idle. While trying to transmit it uses

about 7mA and receiving it uses 50mA. In sleep mode drops the radio down to 6uA. The sleep

line must be pulled high (3.3 volts) to enter sleep mode. It will only sleep after the TX and RX

buffers have been emptied and the SM setting internally must be changed to 1. To force the radio

to sleep, the TX line (DIN) had to be pulled low since the GPIO is active high by the USART.

The radio is operated via asynchronous serial communication interface. The radio is operates at

9600 baud rate and only uses the TX and RX pins of the USART routed to Location 1 by setting

the USART1->ROUTE register. Location 1 employs pins PD0 as the TX line and PD1 as the RX

line.

Protocol

Device:

1) Wake up radio every 3 hours.

2) Send ready signal

3) Turn receiver on for 10 seconds

and wait.

4) If response

I) Parse and complete

command

II) Once Received Sleep

Radio

III) Wakeup Kent IF

UPDATE CMD

II) Put Kent to Sleep

5) Sleep

Server:

1) Wait for ready signal

2) Send acknowledgement once received

3) Send image data

4) Receive power/energy data

5) Send done signal

6) Repeat

6) Repeat

Step three timeout for the device must NOT timeout sooner than it can take to receive the

maximum sized payload. The maximum payload size that is received is 9603kBytes for the Kent

display image. The time to receive this size of packet tends to be around 2-3 seconds. The delay

was set high enough to allow sufficient time for the data to be received and adequate time for

processing the byte before the next byte is read from the radio’s buffer. It was determined that a

value under 5 seconds could sometimes cause packet errors as the MCU would wake up before

the entire packet was received.

Energy Harvester Board

Design

The energy harvester was designed around the recently released ultra-efficient energy harvester

chip from TI, the BQ25504. This choice was made in order to maximize the energy harvesting

from an unstable source, indoor solar, and make decisions based on how much energy was

available in the storage element. A big advantage of using this chip is the Voltage Battery OK

(VBAT_OK) logic line put high when the battery has charged to a set voltage, and goes low if

the energy available droops below another point. This board also contains two voltage regulators

for the peripherals, 5 and 3.3 volts. The 5 volt regulator is capable of boosting and is powered

directly off the capacitors, and the 3.3 volt regulator has very low quiescent current at about 1.6

microamps. All the components on the board were chosen to reduce quiescent current as much

as possible. To help understand how much energy is available from indoor usage of solar panels,

a development board with the TI BQ25504 and test solar panel (capable of 3W @ 6V maximum)

were used. The test environment included 1 fluorescent bulb (35W) at 10 feet, and 1

incandescent bulb (60W) at 15 feet, with incidence angles of ~15 degrees. Figure 9 shows

energy harvesting rates vs. voltage of the storage element. The y-axis shoes how fast the

capacitors charged (in micro joules per second), and the x-axis shows the voltage of the

capacitor.

Figure 9 – Capacitor Charging Rate (uJoules/s) versus voltage (V)

Schematics

Figure 10 - Energy Harvester Board Schematic

Layout

Figure 11 - Energy Harvester Printed 3D Layout

Parts List

Figure 12 - Energy Harvester Part List

Resistor/Capacitor Values
Table 1 - Energy Harvester Component Values

ROV1 3.6MΩ CSTOR 47uF

ROV2 6.2MΩ CHVR 220uF

RUV1 5.6MΩ C2 4.7uF

RUV2 4.3MΩ C3 4.7uF

ROK1 3.3MΩ C4 10nF

ROK2 3.3MΩ CREF 4.7uF

ROK3 3.3MΩ

ROC1 15.62MΩ

ROC2 4.42MΩ

R1 1MΩ

R2 309KΩ

R3 100KΩ

Board Assembly

Figure 13 - Energy Harvester Board Assembled

Board assembly consisted of soldering all the parts to the board received from Sunstone

Circuits. Most of the parts were either 0603 or 1206 in size, and were hand soldered. The

smallest part on the board was the energy harvester chip, the TI BQQ2504, which is a 16 pin

QFN. This was soldered using a hot air gun to first solder the ground pad, and then an iron was

used to attach each lead to the pad on the board. Testing of the board revealed 2 problems; the

3.3V regulator’s input was attached to the wrong trace. To fix this, the trace was cut, and a wire

was soldered on the input pin to the correct location. The other issue was the L2 inductor used

on the 5V boost regulator had too small of a pad. To fix this, a through-hole inductor was used,

and each lead was soldered directly to the pad.

Software

The software is responsible for getting what the user wants on the door tag and getting that into

something that the tag can understand. To meet the low energy requirements for the display, all

image processing is done on a web accessible server before it is sent over the radio to the door

tag for display.

For optimal mobility the front end is a website that can be viewed from anywhere that has access

to the modified web server back end. This site allows users to upload an image, pull down a web-

page, write simple HTML, pull data from Google calendar or other calendar resources in the

ICalendar format at intervals, or input their own calendar data for use. The server takes this data

and turns it into an image which it then makes suitable for the door display by, first converting it

into 1-bit black or white color, then crops it to the correct 4:3 aspect ratio, and finally shrinking

or expanding it to fit the 320 by 240 resolution screen. The server then returns the user to a page

where they preview what will be displayed on the tag. When the tag requests an update this

image is converted into bytes then sent out through a USB port to the radio communication

dongle.

A Use Case

When a user goes to the server’s webpage their browser sends an HTTP get request to the web

server which the Java HTTP server library catches, parses into an HttpExchange object which it

defines and allows access to the requests method, path, headers, and body sections separately as

well as the headers and body of the HTTP response. The server first checks the method for what

type of request it has received; in this case a “get” request which the server responds to by

returning the requested file with a 200 response header or an error page with a 404 header if the

page could not be found. For the user accessing the server this is the index page written in

HTML5.

This web page has several HTML forms to upload different types of data that the user can put

onto the display, because it includes all of the other forms’ behaviors. The user may choose to

upload a Google calendar’s iCal link. When the user pushes the submit button on the form for

this their browser sends a “post” request to the server, Java’s HTTP server catches it like before,

but this time the handler searches the body of the request for the unique ID of the form. For the

iCal link form it extracts the URL and requests the iCal data from that. A timer is also setup to

retrieve the data again every two hours until there is a manual change to what is to be displayed.

The server then parses the iCal data. First it looks for a “BEGIN:VTIMEONE” containing a

“TZID:” tag and adjusts the time zone to match or defaults to the time zone of the server. It then

splits the data into events based on where “BEGIN:VEVENT” occurs. It then takes the start and

end times from the “DSTART;” and “DEND;” lines and the summary of the event to display

from the “SUMMARY:” line. Each event’s data is contained in an event data structure which

allows sorting by start and end times. These events are stored in a sorted list and culled to ensure

that the events to be displayed are on today and end after now (the current time and date). The

next four events are then put into an HTML table for display.

This HTML table or the HTML data from other forms is then given to the cssbox library which

takes in HTML and CSS data and outputs a buffered image of that data for a given viewer size.

In all cases the software passes in the displays 320 x 240 resolution, but this library expands both

directions a little.

The image from cssbox or uploaded through the image form goes through a few processing

steps. First Java’s built-in ColorConverOp.filter is used to take the image and convert it into 1-bit

color with the RenderingHint to enable dithering. Then the getSubimage method of the image is

called with the size passed in being the closest to the 4:3 aspect ratio of the desired final image

that can be obtained while keeping as much of the image as possible. Finally the image is drawn

on another image of size 320x240 which has the effect of resizing the image to the resolution of

the display.

This image is now ready to be outputted to the display. To show the user what all this processing

has done the image is also saved over to the preview image that is on the website and the html

for the site is sent back as the response to the post request through the same HttpExchange. This

forces the browser to refresh the page and change the image to the processed data the user just

put in.

When the server receives the a packet from the radio dongle the rxtx implementation of the Java

communications runs a handler which determines which command has been sent. In response to

the READY command the image is converted into a byte array by iterating over the pixels of the

image and putting their on or off value into the bits of the array in sequence. This byte array is

then sent out through the rxtx library’s outputStream prefixed by the UPDATE command and the

size of the whole packet.

Radio Communication Dongle

A Teensy microprocessor and X-Bee radio were combined to allow communications via a

computers USB port. The Teensy is used as a simple USB to serial converter using the example

code provided with the Teensyduino IDE. An adaptor takes the serial signal from the teensy

normal sized pin outs, down converts it to 3.3V and outputs it to the correct pins on the X-Bee’s

smaller headers. When the X-Bee receives a radio transmission the inverse path is taken by its

serial output.

Bill of Materials

Table 2 - Bills of Materials

Component Vendor Contact info Part Number Price Qty

Teensy ++ PJRC www.pjrc.com TEENSY $16 1

Teensy to XBee

Adaptor Kit

PJRC www.pjrc.com KIT_XBEE_ADAPT

OR
$6 1

XBee DigiKey www.digikey.com XB24-AWI-001-ND $19 2

1E-Ink (backup) Pervasive

Displays, Inc.
Contact Link EW074AS184 /

EW074AS183
$50 1

ChLCD Kent Displays TEmanuele@kentdisplays.co

m
015574130050167 $109 1

MCU DigiKey +47 23 00 98 00

or website
EFM32-G8XX-STK $72.

88
1

Assorted

Caps/Resistors/

Connectors

Mouser ~ ~ N/A N/A

Energy

Harvester
TI Contact Link BQ25504 $49 1

PCB Sunstone, Inc. www.sunstone.com ~ N/A 1

Super Capacitor Panasonic (via

mouser)

Contact Link S5R5H155 $4.1

4

2

Solar Panel Solmaxx 6V 3Watt Thin Film $28 1

Material Descriptions
Table 3 - Material Descriptions

Component Picture Basic Info

Teensy 2.0

(PJRC)

*

Visit Website

ChLCD

(Kent

Displays

Incorporated) *

Visit Website

http://www.pjrc.com/
http://www.pjrc.com/
http://www.digikey.com/
http://www.pervasivedisplays.com/try-buy/home
http://parts.digikey.com/1/parts/2539889-eval-module-bq25504-bq25504evm-674.html
http://www.mouser.com/ProductDetail/Panasonic-Electronic-Components/EEC-S5R5H155/?qs=sGAEpiMZZMsCu9HefNWqphhDW1I6X6cazxL9wSMAdug%3D
http://www.pjrc.com/teensy/index.html
http://www.kentdisplays.com/products/lcdmodules/320x240GraphicLCDModuleGlassCOF.html

MCU

(Energy

Micro)

*

Visit Website

128kb Flash, 3 SPI, RTC, power and

onboard management unit.

Super

Capacitor

(Mouser)

*

Visit Website 1.5Farad @ 5.5Volts

TI BQ25504

(Texas

Instruments)

*

Visit Website

XBee Radio

(Digi)

*

Visit Website

Conclusion & Lessons Learned

There were many issues that were encountered. The first is finding an efficient way to deal with

the packets from the radio. Having a timeout feature on the radio caused it to often wakeup and

stop receiving packets before it had been fully completed. The timeout feature was used to help

prevent energy consumption. This value had to be increased higher than anticipated to help

receive full payloads (9600Bytes). Also the RX radio interrupts seemed to sometimes stall which

made the interrupt finish even though it had more information on the buffer. To fix this a local

variable was set to determine when the RX radio had woke up. If it had done timeout yet, it

would continue to check the interrupt line (RX line) for data until a full payload is received or

the timeout expires.

The web server at one point used separate handlers depending on the type of file that had been

requested, but this was removed for a simple handler that could access all files in the server’s

resources. Dithering and monochrome conversion went from a custom Floyd–Steinberg

implementation to the built-in halftone because the built in method worked better for the

displayed images. In all these cases the simpler solution took less time to make and worked

better than the more complex methods that where tried before them. By simplifying the code the

results were cleaner though the complex solutions, which did work, gave lousy results.

http://www.energymicro.com/tools/efm32-gecko-starter-kit
http://www.mouser.com/ProductDetail/Panasonic-Electronic-Components/EEC-S5R5H155/?qs=sGAEpiMZZMsCu9HefNWqphhDW1I6X6cazxL9wSMAdug%3D
http://www.ti.com/ww/en/analog/bq25504_boost_converter_charger_ic/index.html?DCMP=hpa_pmp_bq25504_en&HQS=bq25504-pr
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module

The design and assembly of a custom energy harvester board also presented many lessons

learned. In addition to the items listed as part of assembling a PCB, the operation of the chip

was not entirely clear from reading the datasheet. It wasn’t late in the process until it was

discovered that the chip could enter into a mode where its boost chargers were turned off, despite

having energy available. Placing most of the I/O lines on a header was extremely beneficial in

debugging and modify the design as needed.

During demonstration of the project, we encountered issues with our radio communication,

which was unexpected. We were unable to show off updating the display wirelessly, but we did

manage to show the energy harvesting portion, an update from the device’s memory, and the

software portion.

References

Digi (n.d.). XBee® ZB ZigBee® Modules. Making Wireless M2M Easy. Retrieved April 24, 2012, from

http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-

mesh-module/xbee-zb-module#overview

Energy Micro (2011, November). EFM32g Reference Manual. Eink. Retrieved April 24, 2012, from

http://www.energymicro.com

Kent Displays InCorporated (2010, April 5). 1/4 VGA Cholesteric Display Module with SPI - Compatible

Interface. Kent Displays. Retrieved from

http://www.kentdisplays.com/services/resources/datasheets/25085c_320x240_SPI_datasheet.pdf

Mouser (n.d.). EEC-S5R5H155. Mouser Electronics. Retrieved April 2012, from

http://www.mouser.com/ProductDetail/Panasonic-Electronic-Components/EEC-

S5R5H155/?qs=sGAEpiMZZMsCu9HefNWqphhDW1I6X6cazxL9wSMAdug%3D

PJRC (n.d.). Teensey USB Development Board. Electronic Projects Components Available Worldwide.

Retrieved April 24, 2012, from http://www.pjrc.com/teensy/index.html

Texas Instruments (n.d.). Ultra Low Power Boost Convert with Battery Management for Energy

Harvester Applications. bq25504. Retrieved from http://www.ti.com/lit/ds/symlink/bq25504.pdf

http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module
http://www.energymicro.com/
http://www.kentdisplays.com/services/resources/datasheets/25085c_320x240_SPI_datasheet.pdf
http://www.mouser.com/ProductDetail/Panasonic-Electronic-Components/EEC-S5R5H155/?qs=sGAEpiMZZMsCu9HefNWqphhDW1I6X6cazxL9wSMAdug%3D
http://www.mouser.com/ProductDetail/Panasonic-Electronic-Components/EEC-S5R5H155/?qs=sGAEpiMZZMsCu9HefNWqphhDW1I6X6cazxL9wSMAdug%3D
http://www.pjrc.com/teensy/index.html
http://www.ti.com/lit/ds/symlink/bq25504.pdf

