
1Project Levitate: Synopsis
Leif Andersen

Daniel Blakemore
Jon Parker

I. INTRODUCTION

The goal of Project Levitate is to create a quadrotor that is capable of autonomous flight and object tracking.
A quadrotor is a flying robot with four vertical rotors centered around a control unit. Quadrotors tend to be more
stable and easier to maneuver than traditional single rotor helicopters. With one rotor, the angle of the rotor must be
adjusted to control speed and direction. Additionally, traditional helicopters need a tail rotor on an orthogonal axis
to stabilize against the torque of the main rotor. With four rotors, the same control and stability can be achieved
by just changing speeds on individual rotors with no angular adjustments.

All of the hardware and software will be onboard the quadrotor, without any need to talk to an external computer.
It will use a camera with very basic image recognition software to track objects tagged with a recognizable pattern
similar to a barcode. There will also be some rudimentary autopilot software that will cause the quadrotor to
follow the object being tracked, while not crashing into anything. If the quadrotor has lost the item it is tracking,
it will simply hover, and eventually land. This will be achieved using an onboard gyroscope and accelerometer.
The quadrotor will have a radio to control throttle primarily for safety and debugging. The quadrotor will not be
pre-packaged, but instead will be a modified version of the quadrotor built in our prior Embedded Systems class.

Some of the groups working with quadrotors are the Micro Autonomous Systems Technologies in the GRASP
lab at the University of Pennsylvania with their Aggressive Maneuvers for Autonomous Quadrotor Flight video [1],
and Raffaello DAndrea at the FRAC Center in Paris [2]. Both of these groups use motion capture for positioning,
but the advanced uses of their robots demonstrate that quadrotors are adept platforms with room for self-contained
automation. Jur Van Den Burg of the University of Utah Algorithmic Robotics Lab has a flight lab for quadrotors
to which he is providing access, plus he and his grad students are serving as informational resources.

II. QUADROTOR

A quadrotor platform has already been constructed. It consists of eight-inch propellers mounted to four brushless
DC motors [3]. Each rotor has 400g of thrust maximum, for a combined maximum platform thrust of 1.6kg. For
good maneuverability, the motors should be at 50

Fig. 1. Preliminary quadrotor platform.



The quadrotor platform in Figure 1 was a rapid prototype and will be modified as part of this project. A new
carbon fiber frame will replace the pictured one (an AR Drone cross piece). This frame is lighter, stiffer, and
larger to accommodate all the sensors comfortably. The zip ties of the old platform will be replaced with proper
screw-mounts. Acrylic will be laser cut and serve as the base to which the electronics will mount. These platform
improvements are necessary so that physical flight characteristics do not change due to the shifting of components.

III. HARDWARE

The hardware components of the quadrotor comprise of:
• One SmartFusion Evaluation Kit [4]
• Six range finders [5]
• One inertial measurement unit (IMU)
• One camera [6],
• One radio

Fig. 2. General hardware block diagram.

A. SmartFusion Evaluation Kit

The SmartFusion Evaluation Kit is a microcontroller unit consisting of an ARM Cortex-M3 and 200k-gate FPGA
placed on a board with a mixed signal header and various other peripherals. The SmartFusion will serve as the
central controller to read sensors and run software for the quadrotor. It has been chosen for the ease in which
C-code can be written for it, and because motor control with stabilization is very time sensitive so running that in
parallel hardware that is written for the FPGA will result in the most stable flight. The SmartFusion has 256KB of
flash, 64KB of SRAM, and 4.6KB of FPGA block RAM.

2



Fig. 3. SmartFusion Evaluation Kit.

B. Range Finders

Maxbotix LV-EZ1 ultrasonic range finders will be used to detect obstructions in the quadrotors path. These
range finders were chosen for their price, and their simple pulse-width modulation (PWM) communication. The
SmartFusion FPGA makes interfacing with PWM simple, and costs less pins than alternative formats. One range
finder was attached as part of the Embedded Systems final project, and drivers to read raw data from it have already
been written. However, new FPGA hardware will replace these drivers. This hardware will pre-process the noisy
output of the range finders and discard incorrect values before the software reads the data. These sensors can detect
objects from eight inches up to twenty feet away.

Fig. 4. Range finder.

C. Camera

The chosen camera is a TCM8230D. It outputs 640x480 16-bit color frames at 30 frames-per-second. It was
selected for its small size and low price. Since the SmartFusion has limited RAM, some pre-processing of the
image must be performed before saving it into a frame buffer; this pre-processing will scale the image down to
3-bit black-and-white at 320x240. This means the frame buffer only needs to be 28.8KB. Figure 5 illustrates the
results of the scaling on a typical image:

3



Fig. 5. Illustration of image downscaling from 640x480 at 16-bit color to 320x240 at 3-bit color.

The camera we have chosen has QFN-style packaging but little or no documentation as to the spacing of the
actual pads. We will need to have a breakout PCB manufactured for the camera as well as an additional PCB to
expose eight GPIO pins on the mixed signal header of the SmartFusion board.

Fig. 6. Camera.

D. Radio

In order to implement simple, point to point communication for controlling the quadrotor, we have added a
radio to our design. We will be using a pair of XBee radios to implement a transparent wireless UART connection
between the controlling computer and the quadrotor. Pressing a key on the keyboard will correspond to a command

4



on the quadrotor (to minimize encoding/decoding overhead). This interface will be used to control speed, initiate
flight, and terminate flight during testing.

Fig. 7. Xbee radio.

E. Inertial Measurement Unit
The IMU was chosen in Embedded Systems and driver code has already been written for it. It is a SparkFun

9 Degree of Freedom Sensor Stick. The 9 degrees of freedoms refers to the three sensors on board: a gyroscope,
an accelerometer, and a magnetometer. Each sensor takes measurements on an x, y, and z axis for a total of nine
pieces of data. This gives us the degrees per second the quadrotor rotates at, the acceleration of the quadrotor, and
the quadrotors orientation relative to the Earths magnetic pole. The drivers from the Embedded Systems project
will be discarded and replaced with FPGA hardware written for this project. This will help offload work from the
ARM processor.

Fig. 8. Nine Degree of Freedom Sensor Stick.

F. Stabilization Hardware
The stabilization of the quadrotor will be implemented in hardware due to its fixed-function nature. Stabilization

will take the outputs of the IMU and run them through a Kalman Filter. A Kalman Filter takes the IMU data

5



and converts it into orientation (pitch, yaw, and roll). Then, a PID (proportion integral derivative) controller will
set the individual motor speeds to keep the quadrotor level. A PID controller uses the error in the quadrotors
current orientation from its desired orientation. By taking the derivative and integral of this error in real time, and
multiplying these by fixed constants, speeds of the motors can be set that will eventually stabilize the quadrotor to
the desired orientation. Each axis of orientation and the error from it can and will be processed independently to
simplify the math. Additionally, the position determined by a down facing range finder will be used as the input
to another PID controller to adjust the height of the quadrotor to a desired height.

G. Locomotion
Locomotion is an extension of the stabilization hardware. It will take a desired (x,y,z) position relative to the

current location as an input and fly there using more PID controllers. Essentially it is just modifying an equilibrium
point for the stabilization to reach.

IV. SOFTWARE

The software will include three modules:
• Minimum Safe Distance Controller
• Image Processing
• Autopilot

The purpose of these modules is to look for a tagged target, scan for possible obstructions, and then calculate a
path of flight that best follows the tagged target.

Fig. 9. General software block diagram.

6



A. Minimum Safe Distance Controller

The minimum safe distance controller will read data from all six range finders. The range finder data will be
used to determine how far the quadrotor can fly in each direction. These safe distances of flight will then be sent
to the Autopilot code.

B. Image Processing

Data from the frame buffer will be used by the image processing to determine the location of the tag. A
segmentation algorithm will be applied which separates out the tag from the surrounding image. If the tag is found,
a screen location will be output from the code for use by the autopilot. The tag will be sufficiently unique such
that no background image will be a match for the tag. The actual tag can be prebuilt into the application, and does
not need to be sent to the quadrotor while in flight.

C. Autopilot

The autopilot code will take the determinations of the minimum safe distance controller and image processing to
calculate a path of flight. The goal is to fly the quadrotor such that the tag is centered in the cameras view, filling
a certain proportion of the view (which corresponds to distance). However, obstructions will likely prevent a direct
path of flight, in which case the quadrotors calculated path will navigate around these obstructions while still doing
its best to center the tag in the cameras view. In the case where the obstructions prevent any path towards the tag,
or the case where the tag is not visible, the quadrotor will maintain its position and, after a short delay, initiate a
landing sequence. The autopilot will send desired locations to the locomotion hardware to actuate its planned path.

V. INTERFACES

A. Camera

The camera has an I2C+data interface consisting of the standard two-wire I2C interface and an additional 8-bit
data bus. In order to handle all incoming camera data, we will be compressing the image as we read it. The
compression will involve reducing the image to 320x240 pixels and converting the color from RGB565 to a 3-Bit
grayscale format. This allows us to fit an entire frame in one of two available blocks of SRAM on the SmartFusion.
From there, the data will be read by the image processing code and used for pattern detection.

7



Fig. 10. Camera interfacing.

B. Range Finders

To implement collision avoidance in the autopilot, we need data about surrounding objects. We gather this data
using ultrasonic range finders pointed outward along each of the spokes of the frame. Because the sensors are
unreliable, we first filter the data and then feed it into our collision avoidance code. This code will alert the
autopilot if an object breaches a set minimum safe distance which will trigger different flight behavior.

8



Fig. 11. Range finder interfacing.

C. Stabilization: IMU and Motors

The data from the IMU is not useful in its raw state. We would like to write a feedback loop on yaw, pitch, and
roll to stabilize the quadrotor during flight. The yaw, pitch, and roll data will be computed in hardware using a
Kalman filter. Then, also in hardware, it will be fed to a PID controller which will combine locomotion commands
from the autopilot with stabilization data resulting in stable flight based on autopilot input.

9



Fig. 12. Interfacing for the motors, IMU, stabilization, and locomotion to autopilot.

D. Software Flight Loop

Figure 13 displays the software run loop based on the autopilot model:

10



Fig. 13. Software run loop.

VI. GROUP COMMUNICATION PLAN

All members of the team have worked together before. Meetings will be held weekly on campus to work together
and check progress. E-mails and texting will be the primary form of communication outside of the weekly meetings.
Skype will be used for any conversations when someone cannot attend a meeting. All digital work will be kept in
a Git repository for consistency and to avoid loss of data.

11



VII. SCHEDULE AND MILESTONES

Figure 14 displays the project schedule and who is running point on each task:

Fig. 14. Schedule for project completion.

A. Milestones

• Post reconstruction function
After we rebuild the quadrotor on our new frame, attaching and rewiring all the components more securely,
we will need to test all these connections to make sure we are still in a working state and the new frame didn’t
change any of the lift properties of our platform.

• Flying with verilog stabilization
The stabiliztaion we tested for the Embedded Systems project is written in C for ease of debugging. For

12



performance reasons, the stabilization for this project will be implemented in the FPGA. Once this is done,
we should be able to demo stabilization after this change.

• Controlled locomotion in arbitrary directions
With the stabilization written, we should be able to demonstrate the ability to move in a specific direction
without losing too much altitude or crashing.

• Radio controlled locomotion
Similar to above, except the movement commands are issued via radio.

• Locomotion stopping for obstructions
Once the collision avoidance is complete, we should be able to move in a given direction, but stop when we
sense an object too close.

• Locomotion navigating around obstructions
If the quadrotor is moving in a certain direction, it should be able to move around an obstacle and continue
moving.

• Reacting to an image change
To test the camera is feeding correcting into the autopilot, simply reacting to a change in what the camera
sees is a good milestone.

• React only to a pattern
Detecting and reacting to a pattern but not to any other movement is important to demonstrate the image
processing section of the project.

• Follow a pattern
Moving along with a pattern attached to an object is the final milestone of the project and will be what we
present on demo day.

VIII. TESTING AND INTEGRATION

Testing and integration will be conducted in line with development as illustrated by the schedule. We will be
making extensive use of the SmartFusions convenient UArt output system which supports the printf function to a
desktop console. The electrical and motor system has already been tested as part of the Embedded Systems project.
Specific parts will be tested and integrated as follows:

• IMU and Kalman Filter
The IMU has already been tested as part of the Embedded Systems project. Since it must be rewritten to work
in hardware, it will be retested by printing output values to the console as we physically move the IMU. Once
the data looks accurate we will pass it through the Kalman filter and see if the Kalman filters outputs match
the current orientation of the platform.

• Range finders
The range finders were already tested as part of the Embedded Systems project, but their drivers will be
converted into FPGA hardware that filters the data. A console app that displays measured distances will be
used to test the range finders.

• Minimum safe distance controller
The minimum safe distance controller is a simple software extension of the range finders, so once the range
finders have been tested, they will be integrated with the minimum safe distance controller. Then we can test
this out on the quadrotor platform, physically holding the platform and moving it around while printing the
outputs of the safe distance controller to the console to check that values are valid.

• Camera
To test the camera, we will write software that outputs the frame buffer to a console. Then we will save that
data as a text file. We will write code to display that file as an image on a desktop display to verify camera
operation.

• Image processing
Testing image processing will require specific test images at first. We will populate the frame buffer with these
images and run the segmentation algorithm. Then we can print to console the resulting location of the image
and determine if this matches the expected result from the test pattern.

13



• Radio The radio transmitter plugs into a laptops USB port. To test it, we will print out the messages received
by the SmartFusions radio to the console. Once this works, we will integrate the radio communication so that
it can set the maximum legal thrust in the stabilization software up and down. This ensures we have a safety
cutoff once we start testing quadrotor flight.

• Stabilization and locomotion
Stabilization and locomotion will be verified first by tethering the quadrotor and ensuring that tilting the
quadrotor or hard-coding specific locomotion destinations results in the right motors speeding up while others
slow down. Then we will keep the quadrotor tethered but give it some slack to see if it immediately destabilizes
or not. The final stage is to get it into the flight room and let it free.

• Autopilot
The first test of autopilot software will use hard-coded fake obstruction and image data to check if the quadrotor
can really avoid flying to certain places by carrying it around and reading console output from a laptop. Once
this is in place, those same hard-coded values will be used with integrated locomotion hardware. The quadrotor
will actually be tested in the flight room to see if it tries to avoid the hard-coded location. Finally, the image
processing and minimum safe distance controller will be integrated into the autopilot code and the quadrotor
will be flown in the flight room. Upon success, this will mark completion of the core project.

IX. RISK ASSESSMENT

A. Range Finders

A potential problem with range finders is false positives or false negatives in object detection. We lack experience
with range finders and will need to experiment with how they are mounted on the chassis and how they actually
function in order to get a better idea of what kind of behavior we can expect out of them in software. If necessary,
we may add additional instrumentation to help in detecting objects which the range finders miss such as extra range
finders or different sensors.

B. Camera

Since we have never written camera software or used cameras as more than an end user, we will need to start
working early to avoid finding that we have been working in the wrong direction and running out of time. Another
risk is fidelity. Since were reducing the image down to a low resolution and only eight distinct levels of brightness,
our tag must be large. If the tag gets too far from the camera, it will likely be indistinguishable.

C. AI, Collision Avoidance, and Simulator

The autopilot using image processing and collision avoidance software is the core of our project and will involve
a lot of computation. If it turns out that the Cortex M3 on the AF2 cannot run the code quickly enough we may
need to upgrade hardware or make accuracy sacrifices in our software to compensate. Another big risk is the lack
of understanding of math involved in collision avoidance and image processing for object tracking. We will contact
people experienced with these subjects, specifically Jur van den Berg’s lab.

D. Safety

Physical risk is prominent in this project, both to people and to the hardware. The quadrotor blades can easily
cut skin. If the quadrotor crashes, it could break the electronics, propellers, or the frame. Jur Van Den Burg has
given preliminary permission to use his flight room in conjunction with his grad students. Also, much of the flight
can be tested while the quadrotor is tethered down. Eye protection will be worn at all times.

14



X. BILL OF MATERIALS

Fig. 15. Bill of Materials

XI. BELLS AND WHISTLES

If tasks are completed earlier than scheduled and everything works without bugs, there are several ideas on how
we can expand this project to be even cooler:

• Seek Mode
An augmentation to the autopilot which will try to find the image if it is not visible on camera. This would
require spinning around to look for the image, and flying to the last known location of the image and then
spiraling outwards to search.

• Quadrotor Pong
A game where the quadrotor flies towards a wall until it determines a collision would happen, at which point
it changes flight direction to mimic a pong ball bouncing off the wall. Tags would be used as paddles so if it
sees that the tag is in front of it when it approaches, the ball is still in play.

• Radio Control
The radio for the core of the project is only intended as a safety mechanism to shut off the quadrotor. However,
we can potentially expand this to override the autopilot and allow for user control of the quadrotor.

XII. CONCLUSION

Ideally this quadrotor will demonstrate safe, indoor, stable flight that can track a tagged person by the end of fall
semester. If this is the case, the final demonstration will be a live flight demonstration down a hallway. Given the
possibility of damage, video will be recorded of successful flight to guarantee some demonstration. There is the
possibility that permission for a live demonstration will be denied due to safety concerns, in which case the video
will function as the demonstration.

REFERENCES

[1] http://www.youtube.com/watch?v=MvRTALJp8DM.
[2] http://spectrum.ieee.org/automaton/robotics/diy/video-watch-flying-robots-build-a-6-meter-tower.
[3] http://www.hobbyking.com/hobbyking/store/uh viewItem.asp?idProduct=2069.
[4] http://www.actel.com/documents/A2F EVAL KIT UG.pdf.
[5] http://www.maxbotix.com/products/MB1010.htm.
[6] http://www.sparkfun.com/products/8667.

15




