
Car Jackers - Project Proposal
CS 3992 (Spring 2012)

Team members:
Jeremy Bonnell

Tong Wu

I. Functional Description

The Car Jacker has 3 basic functions controlled via a wireless phone: the remote start/
stop of the vehicle, remote lock/unlock of the vehicle’s doors, and the control of the
vehicle’s heating/cooling settings. The heating/cooling settings it controls are the fan
settings, temperature settings, vent settings, AC settings, and rear defroster settings.
Control over these settings is enabled only after the vehicle has been started and is
returned to dashboard controls when a person sits in the driver’s seat. If time allows,
additional work will be done towards other functions such as the implementation of a
location detector that shows the position of the vehicle.

II. Motivation

The motivation behind the Car Jackers project is a personal one. The vehicle Jeremy's
wife currently owns is a 2005 Toyota Camry. It has power-locks but did not come
equipped with keyless entry. So for her birthday, last year, the vehicle was taken to a
local car alarm and stereo company where a keyless entry system was installed. The
system ran about $200 and had remote-start capabilities. Her previous vehicle had a
remote-start option and, though she would have liked that as well, cost an additional
$200 for the component. When it was discovered that any idea can be implemented for
senior project, we felt this was the perfect opportunity to save a buck and discover if a
remote-start component is really worth $200.

While contemplating the idea of the starter implementation, other considerations
resurfaced. Jeremy had remembered on numerous occasions, while using the remote-
start option in her previous vehicle, his wife had often forgot to adjust the heater settings
prior to exiting the vehicle. Having started it several minutes before departure, she
would still have to go out to the vehicle and adjust the heater settings or scrape the
windows and drive away cold. This is when the decision to take the project a step
further and also implement remote heating/cooling controls was made.

III. Implementation

A-1. Hardware Components

Arduino Mega 2560
The microcontroller used for this project is the Arduino Mega which was purchased from

Sparkfun.com [1]. It has 256KB of flash memory and is more than enough memory for
our purposes. It has four serial ports but only two were needed. One port is connected
to the cellular shield so the phone can communicate with the microcontroller. The
other port is connected to the onboard diagnostic system (OBD-II) which shows the
engine status of the car. The Arduino also has plenty of digital pins (highlighted blue
in Figure 1) for the PCB (printed circuit board) relay driver. The relay driver connects
the microcontroller signals to the car and amplifies their output voltages. The cellular
shield, OBD-II, and PCB relay driver will be explained in greater detail in later sections.

Some controls, such as the fan control, require a range of input voltages to drive each
setting. In these cases, pins 51 - 53 (MOSI, CLK, SS), which is the SPI interface
(highlighted green in Figure 1), are used. The SPI signals are connected to the PCB
relay driver and ultimately control various voltages with digital potentiometers. An A-B
USB cable is used for programming the board.. The A end connects to the computer
and is a standard USB connection while the B end connects to the Arduino board and is
a trapezoid shaped connection. Specifications for the Arduino Mega recommend using
a power source of 7 to 12 volts-DC. Therefore, the 12V car battery is used to power the
board. However, since the alternator can potentially boost the voltage level up to 13.8V
once the car is started, a 12V voltage regulator is placed between the battery and board
to prevent the board from exceeding voltage specifications. The Arduino Mega also has
a 3.3 voltage supply, administered by an onboard voltage regulator, which is used to
power the cellular shield [2].

Figure 1. Arduino Mega 2560

Cellular Shield SM5100B
The SM5100B cellular shield was purchased from Sparkfun [1]. This particular cellular
shield was chosen because it is able to communicate with the Android smartphone via
SMS (short message service) technology. SMS is also known as “text messaging”.
The shield is powered by the 3.3 voltage supply [1] from the Arduino (highlighted red in
figure 1). The Arduino and cellular shield are able to transfer data by connecting one
of the transmit/receive serial ports from the board (Serial-1 highlighted yellow in Figure

1) to one of the transmit/receive serial ports of the shield (highlighted blue in Figure
2). For receiving, pin 2 of the cellular shield is connected to pin 19 of the board. For
transmitting, pin 3 of the cellular shield is connected to pin 18 of the board. The serial
ports on the cellular shield are able to transfer up to 460 kbps. The frequency used is
1900 MHz since it is the frequency used by cellular phones in the US. In order for the
phone and cellular shield to communicate, a SIM card and an antenna are required.
The SIM cards were purchased from AT&T for $25 each and came with a 30 day
unlimited text messaging plan.

Figure 2. Cellular Shield SM5100B

Quad-band Wired Cellular Antenna SMA
The quad-band wired cellular antenna sma (Figure 3) was also purchased from
Sparkfun [1]. This particular antenna was chosen because it has a quad-band of 1900
MHz with a gain of 3.5 dBi [1] which can transmit and receive data from the cellular
tower. It also performs well with receiving SMS messages inside a started vehicle,
where noise factors have the potential to block incoming messages.

Figure 3. Quad-band Wired Cellular Antenna SMA

On Board Diagnostic System (OBD-II)
The OBD-II interface is used to report the status of the car to the Arduino board which is
then used to send data to the Android. The larger end of the OBD-II cable is connected
to the OBD-II port under the steering wheel and the smaller end is connected to the
communication interface (part C Figure 4). The communication interface is then
attached to Arduino Serial-2 port. The OBD-II interface is only used to report the start/
stop status of the car.

A. OBD-II cable B. Pin reference C. OBD-II Communication Interface

Figure 4. OBD-II Interface

PCB Relay Driver
Each option controllable by the Car Jack system has 2 signals parsed through the
PCB relay driver. One signal is the vehicle’s default driven control and the other is
the Arduino driven control (these options can be observed by referencing the “vehicle
controls” in Figure 5)

Figure 5. PCB Relay Driver Overview

There are three primary tasks the relay driver is responsible for and can be denoted as
boxes ‘A’, ‘B’, and “Voltage Divider Bank” in Figure 5.

Amplifier Circuit (Box ‘A’)
The amplifier circuit ‘A’ is only used for the ignition and door lock systems. This is
because the car must typically be able to be stopped, started, locked, or unlocked at
any point in time. Also, since the ignition and locks are only powered for a short period
of time (50ms - 1500ms) it was not necessary to have a switch select between vehicle

and Arduino controls. The circuit is a simple MOSFET amplifier circuit and is driven
by (0V,5V) digital pins from the Arduino. The transistor used is the SQ2310ES, N-
Channel, 0V - 20V, 6A MOSFET by Vishay (Figure 6), with a threshold voltage of 1.5V
[3].

Figure 6. PCB Relay Driver - Amplifier Circuit

The boxed area of Figure 6 signifies logic within the PCB relay driver. When the
vehicle’s default ignition and lock systems are operated and the digital pin is 0V, the
MOSFET behaves as an open circuit. This allows the car to be started in the normal
fashion. If the digital pin is set high to 5V and the ignition is not being turned, the
transistor becomes saturated, allowing current to flow, and the ignition switch acts as an
open circuit. This allows the Arduino to control the ignition and door lock systems.

Switch/Amplifier Circuit (Box ‘B’)
The task of the switch/amplifier circuit is to select heating/cooling settings between the
vehicle driven controls and the Arduino driven controls as well as amplify the signals
between 0V and 12V. This circuit uses the same MOSFET as the type-A circuit to
amplify the signal but uses a different configuration. Since the heating/cooling controls
of the vehicle are essentially potentiometers that control a variable amount of output

voltage through resistance, the type-B circuit had to be configured to behave in the
same manner. However, the Arduino can only directly output either 0V or 5V. With the
aid of the Arduino’s SPI interface and digital potentiometers, it was found that a variable
amount of voltage can be achieved. The digital potentiometer (Figure 7) used is the
AD5206 from Analog Devices [4], with 50K terminal resistance and 256 positions .

 Figure 7. AD5206 Digital Potentiometer

The output voltage of the amplifier circuit is controlled variably by the voltage at the
gate terminal (+5V terminal, Figure 8). The drain output is driven by the 12V car
battery with a voltage regulator preventing output voltages above 12V. When the digital
potentiometer is set to high resistance nearest the ground, the full 5V is applied to the
gate. This actually causes the voltage at the drain terminal (node below 2.5K R,
Figure 8) to be 0V. This is because the current is high enough for the full +12V source
to be consumed through the 2.5K resistor. It was found that as the voltage at the gate
is lowered, the voltage at the drain goes up to the full 12V. That is until the gate voltage
becomes approximately 1.8V. Once the threshold voltage of 1.5V is approached, the
transistor is no longer saturated and the drain voltage is 0V. This process allows the
system to control the voltage output sent to the switch.

Since the heating/cooling signals are driven an indefinite amount of time, the Car Jacker
must select between dashboard controls and Arduino driven controls. This is done by
means of switches in the relay driver type-B circuit. The switch used for this circuit is
the ADG1436 SPDT (2:1) switch, with 0V to 12V input and a 5V select line by Analog
Devices [5] (Figure 8).

Figure 8. PCB Relay Driver - Switch/Amplifier Circuit

The switches can essentially be thought of as multiplexers, with an override signal from
the Arduino serving as a select line between the two options. When the override signal
is low, the vehicle’s default heating/cooling settings are selected. When the override
signal is high, the Arduino driven heating/cooling settings are selected.

Voltage Divider Bank
This portion of the circuit is self-descriptive. It is a set of voltage dividers that lower
switch output voltages to the Arduino’s 5V input specifications. Each voltage divider
simply consists of a 5K resistor leading to an analog in port of the microcontroller
and a 7K resistor leading to ground. This causes the maximum switch output of
12V to be reduced to 5V and safely be used as Arduino input. The Arduino typically
does not poll these ports unless a call is made to read the voltage from a particular pin
in software. Once an analogRead() call is made in software, the analog port allows
voltage to pass long enough to take a “snapshot” of the line voltage, the line is set back
to an open circuit, and an integer of 0-1023 is returned in software. The integer can
then be deciphered and returned to the Android to display the vehicle’s current settings.

Also within the voltage divider circuit is another ADG1436 switch positioned between
the 7K resistor and ground. One input of the switch is connected to nothing, while the
other input is connected to the 7K resistor. The output is connected to ground. Using
a digital pin from the Arduino, the select line is set to default on the nothing input. Right
before the call to analogRead() the select line is set to the 7K input then set back to
nothing afterwards. This keeps the 7K branch from being a continuous drain on the
switch output.

PCB Relay Bank
The vehicle’s starter motor, blower motor, locks, etc.. require up to 30A of current to
operate. Therefore a PCB relay bank is set in place to ramp up the current potential
with 275-266 SPDT 30A Automotive Grade Relays from Radio Shack [6].

A-2. Hardware Procedure

Using the SMS (Short Message Service) capabilities installed on the Android
smartphone, a signal is transmitted to the cellular shield and the data is parsed to the
Arduino microcontroller. OBD-II data is also sent to the microcontroller to determine if
the engine is on or off. If the engine is started, the option to override the default settings
is enabled. The Car Jack system is installed in the Camry by splicing into the vehicle’s
heating/cooling, door lock, and ignition systems. This allows the microcontroller to
capture and decipher the vehicle’s current settings and transfer them to the phone
where a GUI displays them to the user. A general overview of the design can be seen
in Figure 7.

Figure 9. Design Overview

Some components within the vehicle’s wiring scheme, such as vent and fan settings,
are controlled by servo motors or blower motors deep under the dash. Therefore in
order to parse the signals through the microcontroller, the splicing of the heating/cooling
and ignition wires are done at the back of the dashboard controls. This required a fair
amount of reverse engineering since the setting of every controller's voltage, current,
and resistor values had to be recorded in order for the microcontroller to decipher the
which settings they are currently on. This information is also used to determine which
settings were needed for the digital potentiometers. Within the microcontroller, the
software implementation is responsible for allowing direct or Arduino control of the
settings. For Arduino control, this is done by setting the override signal to high and
adjusting the digital potentiometer values to control voltage levels within the PCB relay
driver. In addition, each signal from the relay has an opto-isolator attached to prevent
reverse EMF (electromagnetic flux) which could potentially destroy the microcontroller
circuit.

The phone first initializes the system by requesting the vehicle start/stop status. The
OBD-II interface checks the ignition status of the vehicle and sends it to the Arduino
to return to the phone. If the car has not been started, the option will be enabled.
Otherwise the heating/cooling, door lock, and start status of the car will be fetched and
returned to phone. At this point the option to override the heating/cooling systems will
be given to the user. If an override signal is sent by the phone, the Arduino enables
the override signal to the PCB relay driver. The dashboard heating/cooling settings
then short circuit while the Arduino takes control of the signals and begin sending
digital signals to power the PCB relay driver circuits an SPI output is used to set the
digital potentiometers. The Arduino settings are initially set the same as the dashboard
settings, but can now be adjusted via the Android app. As long as the Android
application is running and a person is not in the driver’s seat, the door lock function is
always enabled. Heating/cooling functions are available if the car is started and no
one is in the driver’s seat. Start/stop functions can always be invoked unless someone
is driving the vehicle. These detections are done by the driver’s seat sensor. Once a
person has entered the vehicle, all CarJack functions are disabled, save the ignition.
The driver needs to put the key in the ignition in order to unlock the steering wheel. So
10 seconds are given to do so before the ignition times out and is disabled as well.

B-1. Software Implementation

The software implementation of this project will be a GUI interface written on an Android
smartphone and will display control options and vehicle's start and heating status to
the phone. It will generate encoded signals to be sent to the microcontroller via text
messaging. This will require the use of a SIM card in order to transmit and receive the
SMS signals. Once the signal has been received and decoded by the microcontroller, a
confirmation signal will be sent back to the phone and the phone will display the current
status to the screen. Both the phone and microcontroller will need to know the encoding
scheme used in order to communicate effectively.

Arduino
The board will parse the messages sent from the phone and perform the appropriate
tasks based on the message through the relay by setting the digital pins to HIGH or
LOW. The fan and temperature controls need different voltages from the arduino so we
decided to use digital potentiometers. The digital potentiometers are operated with the
arduino SPI interface, pins 51-53. A tutorial is available on arduino’s website [2]. The
list of tasks are listed in figure 10. It will also receive signals from the OBD-II and send
the appropriate message of the engine status to the phone through the cellular shield by
sending AT commands along with the android phone’s number and messages. All the
programming for the board are done in arduino 1.0 IDE.

Android Application
The phone will send messages to the cellular shield with the SIM card's number hard
coded in the software. The messages are sent with SMS (short message service) based
that is linked with buttons in the android application. If a button is pressed, it will send
a message to the arduino. The list of messages sent to the arduino is in figure 10. The
messages are sent It will also receive messages from the cellular shield for the status of
the car. All the android application's code will be done in eclipse. An image of what the
GUI look like shown in figure 11.

Figure 10. List of button names and tasks with messages

Figure 11. Android GUI

IV. Initial Tasking

The first task accomplished was the gathering of materials and components for the
project. A breakdown of all items necessary for the project are as follows:

● Arduino Microcontroller Board
● Cellular Shield
● * Vehicle
● Android Smartphone
● Multimeter
● SIM card
● Antenna
● OBD-II Plug
● usb (type-A) to usb (type-B) adapter
● 2005 Toyota Camry wiring diagrams and schematics

This step is crucial since the initialization of the project could not begin until some of key
components were acquired. All orders were placed and University components (such
as the Arduino microcontroller) arranged for checkout by mid-April. The goal was to
have everything acquired by the end of Spring semester 2012.

The next task to work towards is the sending and receiving of the SMS signal. This
will began by writing a simple Android application that allowed the phone to send a
short SMS signal to the transmitter/receiver attached to the microcontroller. The signal
performed trivial tasks, such as turning on an LED. Then the advancement of more
complicated tasks began to evolve, such as - send a sequence of signals, light a
sequence of LED's, return a signal to the phone after the lighting sequence is complete,
and display something to the screen. When the group was satisfied that the signals are
being sent and interpreted correctly, the introductory part of the project was considered
to be done. However after the reverse engineering portion of the project was complete,
a suitable Android application was written to interact with the hardware. This step
required minimal wiring and was not a difficult portion of the project. The most difficult
portion of the project was the PCB relay and wiring it up to the vehicle. The initial goal
was to start and complete this task during Summer semester 2012.

The final task dealt with wiring and hardware components of the project. The dashboard
of the vehicle had to be removed to access the wiring of the controls. Next, each setting
had to be read and documented with the multimeter by splicing into the control wires.
This was done for each controller and for every setting. The next steps were done
incrementally:

● Wire controls into and out of the microcontroller
● Write Arduino microcontroller application and test outputs to see if they matched

the specifications needed for dashboard controls
● Build PCB relay and test against the Arduino application
● Plug OBD-II into vehicle and test readings
● Adjust Android application to interact with microcontroller
● Install Arduino, cellular shield, PCB relay driver, and PCB bank combination into

the Toyota Camry.
● System testing

A simple implementation was first constructed to perform trivial tasks, such as turn
on rear defroster. Then more functionality was added to the controls until the project
was complete. The goal was to complete the project one month before the “demo day”
exhibit in Fall semester 2012.

V. Risks and Interface Issues

● Relay Driver required a lot of testing before installing. Bought blower motor, vent
servo motors, etc... to test in lab first

● All PCB components were not accessible in PCB design library. Had to design
with slots to solder aftermarket chips in.

● Had to make sure all sectors were isolated so back elecro-magnetic flux did not
fry components

● Danger of making car inoperable. Always made wiring diagrams before
disassembling

The risks were subject to, like everyone else, running the risk of not receiving all
materials in time. Also, the OBD-II and relay driver, and signal interpretation proved
to be difficult. We also had to be careful about dismantling the vehicle and its wiring.
If caution is not practiced the dashboard or one of us could have gotten hurt. We also
needed to make diagrams so we did not detach a bunch of wires and not know how
to rewire them. With only a two-man group, we also ran the risk of not having enough
man-power to complete the project. This is why we needed to start as early as possible.
We had to work very hard to complete this project in time! But in the end, the challenge
and learning experience were well worth it.

VI. Tasking and Scheduling

1. Communication between Phone and Arduino 3 weeks
2. Android Application and Arduino code 2 weeks
3. PCB for Relay 2 week
3. Connections: Car with Relay 4 weeks
4. Connections: Arduino and Relay 1 week
5. Communication between Phone and Car 4 weeks

ald
Inserted Text
'

6. Finishing touches: Controls from Phone to Car 4 weeks

Testing/Debugging every step at a time

VI. Bill of Materials

Toyota Camry $...
Android Phone $...
Sim Card (3) from AT&T $75
Arduino Mega 2560 (1) from Sparkfun $70
Cellular Shield SM5100B (1) from Sparkfun $100
PCB Relay (1) from automate (Resistors (7), Potentiometers (2),
Mosfets (7), Diode (7), Opto Isolator (7), Multiplexer (2)) $100
OBD-II (1) from ebay $20
Antenna (1) from Sparkfun $20

VI. Bibliography

References
1. Sparkfun. [Online] April 21, 2012. [Cited: April 21, 2012.] http://www.sparkfun.com/
2. Arduino. [Online] April 21, 2012. [Cited: April 21, 2012.] http://arduino.cc/en/
3. Vishay. [Online] April 21, 2012. [Cited: April 21, 2012.] . N-Channel MOSFET
 http://www.vishay.com/docs/67036/sq2310es.pdf
4. Analog Devices. [Online] May 1, 2012. [Cited: May 1, 2012.] .AD5206 Digital Pot.
 http://www.analog.com/static/imported-files/data_sheets/AD5204_5206.pdf
5. Analog Devices. [Online] April 21, 2012. [Cited: April 21, 2012.] . SPDT Switch
 http://www.analog.com/static/imported-files/data_sheets/ADG1436.pdf
6. RadioShack. [Online] May 1, 2012. [Cited: May 1, 2012.] .SPDT 30A Automotive
 Grade Relay. http://www.radioshack.com/product/index.jsp?productID=2062477

http://www.sparkfun.com/.
http://www.sparkfun.com/.
http://www.sparkfun.com/.
http://www.sparkfun.com/.
http://www.sparkfun.com/.
http://www.sparkfun.com/.
http://www.sparkfun.com/.
http://www.sparkfun.com/.
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Main/ArduinoBoardMega2560

