
Car Jackers

Project Report

CS 4710 - Fall 2012

Team members

Jeremy Bonnell - jjbonne@gmail.com

Tong Wu - tongwutwu1@gmail.com

University of Utah

Abstract

The Car Jacker is a device that allows a person to control settings of their car with an

Android smartphone. Vehicle features controllable by the Car Jacker include the ignition,

locks, and climate control settings. Whether one would like to remotely heat and defrost

their car on an ice cold morning, or cool it down in the heat of the blistering sun, the Car

Jacker will get the job done.

I. Functional Description

The Car Jacker has 3 basic functions to control a vehicle via a wireless phone: remote

start/stop of the vehicle, remote lock/unlock of the vehicle’s doors, and control of the

vehicle’s heating/cooling system. The heating/cooling settings controllable by the Car

Jacker are the fan speed, temperature setting, vent position, rear defrost, and air

conditioner (AC). In addition to the basic functions, the Car Jacker has a safety feature

to prevent a user from interacting with the system while driving, as well as a theft

deterrent feature to prevent an idle car from being stolen while the owner is away.

To use the Car Jacker, a software application must be installed on an Android

smartphone and hardware must be installed in the vehicle. To ensure they are paired

correctly, the software is defined to a particular hardware device. The user can then

launch the Android interface, adjust the settings, and press the “Send” button. A text

message is sent by the phone to a cellular shield. The cellular shield is a device that

enables text messaging services within the vehicle. The cellular shield then transmits

the message to an Arduino microcontroller. The Arduino microcontroller is a small

hardware device that runs a software application that is waiting for messages from the

phone. The cellular shield and Arduino will be covered in greater detail in later sections.

Once a valid message has been received, the Arduino sends signals to a circuit board to

bypass the power supplies of the ignition switch, lock switches, and dials on the

heating/cooling panel. The Arduino can then switch relays to direct the power to the

actual motors - i.e. the starter motor, blower motor, etc... Once the settings have been

enabled, the microcontroller sends a confirmation message back to the cellular shield

which sends the message back to the phone in the form of a text message. The user

can then select new settings or shut the Car Jacker system down.

The safety feature was developed to prevent users from operating the system while

driving. The Car Jacker system only works if the vehicle shift knob is in the “Park”

position. Once the driver places the key in the ignition and moves the shift knob out of

“Park”, the system is disabled and control will return to the dashboard settings. The

microcontroller detects this occurrence and sends a message back to the phone. The

system will not reinitialize until the shift knob has been placed back into the “Park”

position.

The theft deterrent feature was developed to prevent the driving of the car without the

key. The brake pedal must first be pressed before the gear can be removed from “Park”.

If they key is not in the ignition and the brake pedal is pressed, the Car Jacker System

will be disabled and the ignition will be turned off. The microcontroller detects this

occurrence and sends a message back to the phone. This feature also ensures that a

driver places the key in the ignition before departure.

II. Motivation

The motivation behind the Car Jacker project was cost and educational analysis. The

vehicle used to implement the project was a 2005 Toyota Camry, equipped with power-

locks but no keyless entry system. The Camry was taken to a local car alarm company

where a keyless entry system was installed. The system cost approximately $200 and

did not have remote-start capabilities. Other packages had a remote-start option but cost

an additional $200 for the component. It was determined that the implementation could

have been done better in terms of cost and the number of features, meanwhile providing

an opportunity to understand the engineering aspect behind such a system.

Since many companies design remote starters and keyless entry, an additional

motivation behind this project was to develop a system that would include aftermarket

features that were not currently available. After interviewing people who have had

remote-start systems installed, it was concluded that the feature most desired was the

control over heating and cooling settings. The general consensus was: the settings

were often left in inadequate positions for heating the vehicle - thereby defeating the

purpose of the remote-starter. The prospect of adjusting the cabin temperature was

deemed a useful feature to add. For example, in the freezing morning, the ability to heat

the car can eliminate the need to scrape the windows. This can be beneficial to people

who are not in good physical condition as well as to people who must park in uncovered

areas.

III. Implementation

A-1. Hardware Components

Arduino Mega 2560

The microcontroller used for this project is the Arduino Mega [2] which was purchased

from Sparkfun.com [1]. It has 256KB of flash memory and was more than enough

memory for the purpose of this project. It has four UART serial ports but only two were

needed. One port was connected to the cellular shield so the phone could communicate

with the microcontroller. The other port was connected to the onboard diagnostic system

(OBD-II) which provided the engine status of the car. The Arduino also had plenty of

digital pins (highlighted blue in Figure 1) for the relay driver circuit. The microcontroller

digital signals were connected to the relay driver through optoisolators and were used for

switching the relays. The cellular shield, OBD-II, and relay driver circuit will be explained

in greater detail in later sections.

The temperature control required a range of input voltages 0V - 12V to drive each

temperature setting. In this case, pins 51 - 53 (MOSI, CLK, SS) of the SPI interface are

used (highlighted green in Figure 1), The purpose of the SPI signals is to adjust digital

potentiometers which supply variable voltages to the air mix servo motor. The Arduino is

programmed by connecting to a laptop with a USB cable and installing the code.

Specifications for the Arduino Mega power source recommend using 7 to 12VDC.

Therefore, the 12V car battery was used to power the board. However, since the

alternator can potentially boost the voltage level up to 13.8V once the car is started, a

12V voltage regulator is used to prevent the board from exceeding voltage specifications.

The Arduino Mega also has a 3.3 voltage supply, administered by an onboard voltage

regulator, which was used to power the cellular shield [7].

Figure 1. Arduino Mega 2560 [2]

Cellular Shield SM5100B

The SM5100B cellular shield [7] was purchased from Sparkfun [1]. This particular

cellular shield was chosen because it is able to communicate with the Android

smartphone via SMS (short message service) technology. SMS is also known as “text

messaging”. The shield was powered by the 3.3 voltage supply [1] from the Arduino

(highlighted red in figure 1). The Arduino and cellular shield are able to transfer data by

connecting one of the transmit/receive serial ports from the board (Serial-1 highlighted

yellow in Figure 1) to one of the transmit/receive serial ports of the shield (highlighted

blue in Figure 2). For receiving, pin 2 of the cellular shield is connected to pin 19 of the

board. For transmitting, pin 3 of the cellular shield is connected to pin 18 of the board.

The serial ports on the cellular shield are able to transfer up to 460 kbps. The frequency

of 1900 MHz was use since it is the frequency of cellular phones in the US. In order for

the phone and cellular shield to communicate, a SIM card and an antenna are required.

The SIM cards were purchased from AT&T for $25 each and came with a 30 day

unlimited text messaging plan.

Figure 2. Cellular Shield SM5100B [7]

Quad-band Wired Cellular Antenna SMA

The quad-band wired cellular antenna sma (Figure 3) was also purchased from Sparkfun

[1]. This particular antenna was chosen because it has a quad-band of 1900 MHz with a

gain of 3.5 dBi [1] which can transmit and receive data from the cellular tower. It also

performs well with receiving SMS messages inside a started vehicle, where noise factors

have the potential to block incoming messages.

Figure 3. Quad-band Wired Cellular Antenna SMA [1]

On Board Diagnostic System (OBD-II)

The OBD-II interface was used to report the status of the car to the Arduino board which

is then used to send data to the Android. The larger end of the OBD-II cable is

connected to the OBD-II port under the steering wheel and the smaller end is connected

to the communication interface (part C Figure 4). The communication interface was then

attached to an OBD-II UART shield which was connected to Arduino Serial-2 port. The

OBD-II interface is only used to report the start/stop status of the car by reading the

voltage. If the output voltage is above 13 volts, the car is started. Any lower output

voltage indicates that the car is not started

A. OBD-II cable B. Pin reference C. OBD-II Communication Interface

Figure 4. OBD-II Interface [1]

Relay Driver Circuit

Each option controllable by the Car Jack system has a 3.3V-5V microcontroller digital

signal parsed through the relay driver. The relay driver circuit is used to saturate the

mosfet transistors which provide the 12V that is necessary to switch the relays. The

relays then select between the vehicle’s default controls and the Arduino driven control

(these options can be observed by referencing the “vehicle controls” in Figure 5). In

essence, the relays are used to bypass the power that is supplied to the dashboard

switches and dials and apply the power to the settings directly. The relay driver circuit is

connected to the Arduino through opto-isolators to prevent unwanted inductive feedback

into the microcontroller.

Figure 5. Relay Overview

There were three primary tasks the relay driver was responsible for and can be denoted

as boxes ‘A’, ‘B’, and “Voltage Divider Bank” in Figure 5.

Switch Circuit (Box ‘A’)

The switch circuit ‘A’ was used for switching override relays for the fan, vent, ignition,

defrost, AC, and door lock systems. It was necessary for the car to be stopped, started,

locked, or unlocked at any point in time so the input on the ignition and lock relays were

always powered - except for in shutdown mode. However, the input for the

heating/cooling systems is only available after the car had been started and the

accessory power was available. The locks are only powered for a short period of time

(1500ms), so it was not necessary to have an override switch to bypass the default

locking mechanism.

The circuit of (Figure 6) is a simple MOSFET amplifier circuit and is driven by (0V,5V)

digital pins from the Arduino. The transistor used is the SQ2310ES, N-Channel, 0V -

20V, 6A MOSFET by Vishay [3] (Figure 6), with a threshold voltage of 1.5V .

Figure 6. Relay Driver - Switching Circuit

The boxed area of Figure 6 signifies logic within the relay driver circuit. When the digital

pin is 0V, the MOSFET behaves as an open circuit. This allows the car to be started in

the normal fashion because the power is being passed through the input line (Pin 30) to

the default output line (Pin 87A) on the relay. If the digital pin is set high to 5V and the

ignition is not being turned, the transistor becomes saturated allowing current to flow

through the transistor, and the relay is triggered. This allows the Arduino to send the

input of (Pin 30) to the output line of (Pin 87). The signal is then passed into the relay

bank were the setting lines can be controlled. The relay bank switches are identical to

the override switches except there is nothing connected to the default (Pin 87A).

Therefore, each setting can be individually turned on and off. The relay bank will be

covered in more detail in a later section.

Temperature Control Circuit (Box ‘B’)

The task of the temperature control circuit is to apply a variable voltage (between 0V and

12V) to temperature control air mix servo motor. With the aid of the Arduino’s SPI

interface, digital potentiometers were adjusted to supply the voltage to the two servo

motor control signals. If one of the control signals was set to 12V and the other to

ground, the arm would position the vent to be moved to the heater core. If the voltage

and ground were switched, the servomotor arm would be positioned to the cooling core.

Two digital potentiometers were moved in unison to achieve this task. Opposing sides of

the potentiometers received the 12V, while the other opposing sides received the ground

signal. The wiper pin was used to send the variable voltages to the servo motor control

signals. In addition, an air mix damper position sensor pin had to be attached to one of

the wiper pins to tell the motor when to stop. The digital potentiometers used (Figure 7)

is the AD5206 from Analog Devices [4], with 10KΩ terminal resistance and 256 positions

and 6 On-Chip potentiometers.

 Figure 7. AD5206 Digital Potentiometer [4]

Figure 8. Relay Driver - Temperature Control Circuit

Voltage Divider Bank

This portion of the circuit is a set of voltage dividers that lower switch output voltages to

the Arduino’s 5V input specifications. Each voltage divider, (Figure 9) consists of a 7KΩ

and 5KΩ resistor in series with the 5KΩ resistor leading to ground. Between the two

resistors is a connection leading to an analog_in port on the Arduino. This causes the

maximum switch output of 12V to be reduced to 5V and safely be used as Arduino input.

The Arduino typically does not poll these ports unless a call is made to read the voltage

from a particular pin in software. Once an analogRead() call is made in software, the

analog port allows voltage to pass long enough to take a “snapshot” of the line voltage,

the line is set back to an open circuit, and an integer of 0-1023 is returned in software.

Figure 9. Relay Driver - Single Voltage Divider

The integer can then be translated and returned to the Android to display the vehicle’s

current settings. Also within the voltage divider circuit is another ADG1436 switch

positioned between the 5KΩ resistor and ground. One input of the switch is connected

to nothing, while the other input is connected to the 5KΩ resistor. The output is

connected to ground. Using a digital pin from the Arduino, the “Div_select” line is set to

default on the nothing input. Right before the call to analogRead() the select line is set to

the 5KΩ input then set back to nothing afterwards. This keeps the branch from being a

continuous drain on the switch output.

Relay Bank

The relay bank is an array of the switch circuits seen in (Figure 6) and is used to turn

individual settings on and off. The relays can essentially be thought of as multiplexers

with nothing connected to the default output lines. When the override signal is low, the

relay bank is not receiving any setting signals. When the override signal is high, the

relay bank receives the power that was bypassed from all the default controls. Each

individual system, such as ignition system, fan system, etc., has its own network within

the relay bank. When power is being supplied to the relay bank, individual settings for

each system can be turned on and off. The vehicle’s starter motor, blower motor, and

locks required up to 40A of current to operate. The relays used by the Car Jacker are

the 275-266 SPDT 30A and 40A Automotive Grade Relays from Radio Shack [6].

Diagrams for the networks within the relay bank can be viewed near the end of the

document and precedes the source code.

A-2. Hardware Procedure

Using the SMS (Short Message Service) capabilities installed on the Android

smartphone, a signal is transmitted to the cellular shield and the data is parsed to the

Arduino microcontroller. OBD-II data is also sent to the microcontroller to determine if

the engine is on or off. The Car Jack system is installed in the Camry by splicing into the

vehicle’s heating/cooling, door lock, and ignition systems (Wiring for individual settings

can be found at the end of the document). This allows the microcontroller to capture

and translate the vehicle’s current settings and transfer them to the phone where a GUI

displays them to the user. A general overview of the design can be seen in Figure 10.

Figure 10. Design Overview

Some components within the vehicle’s wiring scheme, such as vent and temp settings,

are controlled by servo motors. Therefore in order to parse the signals through the

microcontroller, the splicing of the heating/cooling, lock, and ignition wires are done at

the back of the dashboard controls. This required a fair amount of reverse engineering

since the setting of every controller's voltage had to be recorded in order for the

microcontroller to decipher the settings they are currently on. Each setting has a power

signal that is sent to the either a switch or a dial. When the dial is turned or a switch is

pressed, the circuit is completed and the starter motor, blower motor, etc... is powered.

The different settings for the motors are basically a range of voltages. For a switch, such

as the rear defrost, this is trivial. The switch simply makes a direct connection from the

power line to the rear defrost heating element. For servo motors or blower motor, the

settings are more complex. There are either an array of discrete signals that control the

different voltages required for each setting, or there are potentiometers with a single line

used to supply a whole range of voltages.

To determine what the current setting is for the discrete configurations or a switch

configuration, a direct reading can be sent into the microcontroller. Each setting was

spliced from the individual setting lines and sent to a digital input line of the

microcontroller. If that line is high, this is the setting that is on.

To determine what the current setting is for the potentiometer configuration, an analog

read must be sent into the microcontroller’s “analog_in” pins. This is an Analog to Digital

Conversion (ADC). This is where the microcontroller takes a voltage of an analog signal

and converts it into an integer value between (0-1023) for (0V-5V) within the software of

the Arduino. The voltage divider bank is used to lower 12V signals to the specification of

5V. Every setting was measured with a multimeter to determine what the voltage was for

that particular setting. For the temperature, there were 31 settings. Within the software,

each value for all the settings is defined. To determine the current setting, the Arduino

polls the analag_in pin, converts it to to an integer value, and cross-references the

settings. The current setting can then be sent to the Android for the user to view.

Information from reverse engineering was also used to determine which settings were

needed for the relays. Within the microcontroller, the software implementation is

responsible for allowing direct or Arduino control of the settings. For Arduino control, this

was done by setting the override signal to high and adjusting the digital potentiometer

values to control voltage levels within the relays and switch in between the Arduino

override control and default controls. In addition, each signal from the relay has an opto-

isolator attached to prevent reverse EMF (electromagnetic flux) which could potentially

destroy the microcontroller circuit.

The phone initializes the system by requesting the vehicle start/stop status. The OBD-II

interface first checks the ignition status of the vehicle and sends it to the Arduino to be

returned to the phone. If the car has not been started, the option to start the car will be

enabled. Otherwise the heating/cooling, door lock, and start status of the car will be

fetched and returned to phone. At this point the option to override the heating/cooling

systems will be given to the user. If an override signal is sent by the phone, the Arduino

enables the override signal to the relays. The dashboard heating/cooling settings are

then switched to the Arduino driven controls with the SPDT switch. The Arduino then

sends digital signals to power the relay circuits and the SPI output are used to set the

digital potentiometers. The Arduino settings are initially set the same as the dashboard

settings, but can now be adjusted via the Android app. If the vehicle is not being driven,

the door lock and ignition functions are enabled. Heating/cooling functions are available

if the car is started and the vehicle is in park. These detections are done by the moving

the shift knob out of park. Wiring for individual settings can be found at the end of the

document.

B-1. Software Implementation

The software implementation of this project was a GUI interface written on an Android

smartphone and displayed control options and vehicle's start and heating/cooling status

to the phone. It generated encoded strings to be sent to the microcontroller via text

messaging. This required the use of a SIM card in order to transmit and receive the SMS

signals. Once the signal has been received and decoded by the microcontroller, a

confirmation signal sends back to the phone and the phone displays the current status to

the screen. Both the phone and microcontroller needed to know the encoding scheme

used in order to communicate effectively.

Arduino

The Arduino microcontroller parses messages sent from the phone and performs the

appropriate task based on message details. The Arduino task list is labeled in (Figure

11). The majority of tasks are done by setting digital pins to HIGH or LOW, which in turn,

switch relays. The temperature control system requires a range of voltages for its

numerous settings. Digital potentiometers are used to adjust these levels. The digital

potentiometers are operated with the Arduino SPI interface, pins 51-53. A tutorial on

digital potentiometers is available on Arduino’s website [2]. The Arduino also receives

signals from the OBD-II to retrieve the engine status of the vehicle. Messages are sent to

the phone by means of the cellular shield mounted on the Arduino. The Arduino

communicates with the cellular shield by sending AT commands along the serial ports.

When the Arduino sends a message to the phone, it sends the appropriate AT command

the cellular shield, along with the Android mobile number and the message itself. All the

programming for the board was written using Arduino 1.0 IDE.

Android Application

The phone messages are sent to the mobile number of an activated SIM card. The SIM

card is mounted on the cellular shield and its mobile number is hard coded in software.

The messages are sent internally with SMS (short message service) and were linked to

buttons in the Android GUI application. When the “Send” button is pressed, it sends the

message to the Arduino. Each message consists of 7 characters with the first 2 always

being “zz”. These characters indicate the initialization sequence to the system and filter

out unwanted text messages. The 4 remaining characters are represented as bits of

hexadecimal characters. Each hex bit is comprised of 4 binary bits and each binary bit

represents a setting. A chart of how a message is constructed is shown in figure 11. For

example, “zza7812” corresponds to lock door, turn on AC, turn on override, turn on

ignition/engine, turn on rear defrost, set fan to level 4, set vent to level 1 (defrost), and

set temperature to hot. The Arduino microcontroller also sends messages to the phone

for the status of the car. All the code of the Android application was written in Eclipse IDE

with Android SDK (Android Software Development Kit). An image of what the GUI looks

like is shown in (Figure 12).

Figure 11. Bit representation for settings.

Figure 12. Android GUI

IV. Tasks

The first task accomplished was the gathering of materials and components for the

project. A breakdown of all items necessary for the project is as follows:

● Arduino Microcontroller Board

● Cellular Shield

● * Vehicle

● Android Smartphone

● Multimeter

● SIM card

● Antenna

● OBD-II Plug

● OBD-II Shield

● 2005 Toyota Camry wiring diagrams and schematics

● (22, 16, 14, 12, 10) AWG wire. (~250 ft. total)

● 10KΩ, 5KΩ, 2KΩ (1/4 Watt) Resistors

● Diodes

● Optoisolators

● Wire nuts, slice connectors, Anderson Powerpole connectors

● N-Channel Mosfet Transistors

● Digital Potentiometers

● 30-40A - Automotive grade Relays (SPDT Switch)

● 5A SPDT - (DIP) (for breadboard small circuits

Gathering components was crucial since the initialization of the project could not begin

until the communication components were acquired. The Arduino, Cellular Shield,

antenna, and the first SIM card were all ordered by mid-April. Communication between

the cellular shield and Arduino were complete by the end of Spring Semester 2012

The next task worked on was the sending and receiving of the SMS signal. This task

began by implementing a simple Android application that allowed the phone to send a

short SMS signal to the transmitter/receiver attached to the microcontroller. The signal

performed trivial tasks, such as turning on an LED. Then the advancement of more

complicated tasks were initialized, such as - sending a sequence of signals, light a

sequence of LED's, return a signal to the phone and display something to the screen.

After the signals were being sent and interpreted correctly, an Android application was

written to interact with the hardware. This step required minimal wiring and was not the

most time consuming portion of the project. The most time consuming portion of the

project was the building the relay driver circuit board and the wiring of relays to the

vehicle. By the end of Summer semester - August 2012, the relay driver circuit board

was constructed, the relays were wired to the board and could be switched on and off,

and the first iteration of software for the Android and Arduino were written and ready for

initial testing.

The final task was the reverse engineering and hardware connections between the

systems of the vehicle. The dashboard of the vehicle had to be removed to access the

wiring of the controls. Next, each setting had to have their voltage read with a multimeter

and recorded for the software implementation. Each setting was then wired to through

the relays and tested individually until all settings were complete. The order of systems

completed was the locks, fan, vent, rear defrost, ignition, temp, and shutdown system.

The goal was to complete the project one month before the “demo day” exhibit in Fall

semester 2012. We have successfully accomplished all goals by demo day.

V. Risks and Interface Issues Encountered

● The transistor and relay switch circuits took much longer to design than

anticipated.

● Many small test circuits had to be built on breadboards and tested in the vehicle,

under actual circumstances, to make sure they would not fry. Several

components were not grounded and did in fact fry. A breadboard was also melted.

● The vehicle brake and OBD-II fuses were blown several times.

● If an override was placed on the ignition switch, it was difficult to check if the key

was inserted. A separate custom circuit had to be built through the ignition switch,

while the default power was not supplied, to enable the vehicle shutdown mode.

● The servo motor for the temperature setting was difficult to figure out. The 2005

Camry diagrams found on www.alldata.com [8] did not show PWM signals that

were connected to the vehicle’s ECU. This system took the longest to reverse

engineer.

● The encoded messages sent from the Android had to be reconfigured to

hexadecimal. The cellular shield would not always consistently pass the entire text

message. Message passing was constrained to 7 characters to make sure the

system was reliable.

VI. Lessons Learned

The risks were subject to, like everyone else, running the risk of not receiving all

materials in time. Also, the OBD-II and relays, and signal interpretation proved to be

difficult. We also had to be careful about dismantling the vehicle and its wiring. If caution

is not practiced the dashboard or one of us could have gotten hurt. We also needed to

make diagrams so we did not detach a bunch of wires and not know how to rewire them.

With only a two-man group, we also ran the risk of not having enough man-power to

complete the project. This is why we needed to start as early as possible. We had to

work very hard to complete this project in time! But in the end, the challenge and

learning experience were well worth it.

VII. Tasking and Scheduling

1. Communication between Phone and Arduino 3 weeks

2. Android Application and Arduino code 2 weeks

3. Relay Circuit 2 week

3. Connections: Car with Relay 4 weeks

4. Connections: Arduino and Relay 1 week

5. Communication between Phone and Car 4 weeks

6. Finishing touches: Controls from Phone to Car 4 weeks

Testing/Debugging every step at a time

VIII. Bill of Materials

Toyota Camry $...

Android Phone $...

Sim Card (3) from AT&T $75

Arduino Mega 2560 (1) from Sparkfun $70

Cellular Shield SM5100B (1) from Sparkfun $100

Relays (20) from automate (Resistors (20), Potentiometers (2),

Mosfets (20), Diode (20), Optoisolator (20), Splicers (40)) $150

OBD-II RS232 interface and OBD-II UART shield (1) from sparkfun $60

Antenna (1) from Sparkfun $20

IX. Bibliography

References

1. Sparkfun. [Online] April 21, 2012. [Cited: April 21, 2012.] http://www.sparkfun.com/

2. Arduino. [Online] April 21, 2012. [Cited: April 21, 2012.] http://arduino.cc/en/

3. Vishay. [Online] April 21, 2012. [Cited: April 21, 2012.] . N-Channel MOSFET

 http://www.vishay.com/docs/67036/sq2310es.pdf

4. Analog Devices. [Online] May 1, 2012. [Cited: May 1, 2012.] .AD5206 Digital Pot.

 http://www.analog.com/static/imported-files/data_sheets/AD5204_5206.pdf

5. Analog Devices. [Online] April 21, 2012. [Cited: April 21, 2012.] . SPDT Switch

 http://www.analog.com/static/imported-files/data_sheets/ADG1436.pdf

6. RadioShack. [Online] May 1, 2012. [Cited: May 1, 2012.] .SPDT 30A Automotive

 Grade Relay. http://www.radioshack.com/product/index.jsp?productID=2062477

7. Cellular Shield - Sparkfun. [Online] April 21, 2012. [Cited: April 21, 2012.]

http://www.sparkfun.com/products/9607

8. AllData. [Online] May 1, 2012. [Cited: May 1, 2012.] .2005 Toyota Camry Diagrams.

http://www.alldata.com

X. System Diagrams

http://www.sparkfun.com/
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://www.sparkfun.com/
http://www.sparkfun.com/

XI. Code

Arduino Code

#include <string.h> //Used for string manipulations

#include <SPI.h>

char in_char=0; //Will hold the incoming character from the Serial Port.

char mobilenumber[] = "8019108604"; //phone number

boolean checker = false;

boolean override = false;

boolean ready = false;

boolean engineOn = false; //See if the engine is on or off

boolean notified = true; //Notification when phone received message

int currentState = 0;

int counter = 0;

boolean checkBreak = false;

const int inPin = 7; //Reading pin for break, key, shift. If this is high, everything off.

const int outPin = 6; //Constant high pin

int val = 0; //temp val for shift knob

//Fan pinouts

const int fanOvr = 22;

const int fanA = 24;

const int fanB = 26;

const int fanC = 28;

const int fanD = 30;

int fanPins[] = {fanOvr, fanA, fanB, fanC, fanD};

//Engine pinouts

const int engOvr1 = 31;//acc

const int engOvr2 = 32;//ign

const int engA = 33;

const int engB = 34;

const int engC = 35;

const int engD = 36;

const int engE = 37;

int enginePins[] = {engOvr1, engOvr2, engA, engB, engC, engD, engE};

//Vent pinouts

const int ventOvr = 38; //Override for all

const int ventA = 39;//def

const int ventB = 40;//foot/def

const int ventC = 41;//foot

const int ventD = 42;//face/foot

const int ventE = 43;//face

int ventPins[] = {ventOvr, ventA, ventB, ventC, ventD, ventE};

//Lock pinouts

const int lockOvr = 44;//unused

const int lockA = 45;

const int lockB = 46;

int lockPins[] = {lockOvr, lockA, lockB};

//Def pinouts

const int defA = 48;

int defPins[] = {defA};

//Temp pinouts

const int tempOvr = 49; //Override

const int tempAC = 47; //AC

int tempPins[] = {tempOvr, tempAC};

const int tempCold = 0; //Temp cold (INT ADDRESS OF DIGIPOT-1 ON CHIP)

const int tempHot = 2; //Temp hot (INT ADDRESS OF DIGIPOT-2 ON CHIP)

const int slaveSelectPin = 53; //SPI pin

//-----------------Initialization-------------

void setup()

{

 //Reset all pins

 ResetAll();

 //Initializing read and constant pins for break, key, shift signal

 pinMode(outPin, OUTPUT);

 pinMode(inPin, INPUT);

 digitalWrite(outPin, HIGH);

 // set the slaveSelectPin as an output:

 pinMode (slaveSelectPin, OUTPUT);

 // initialize SPI:

 SPI.begin();

 delay(100);

 for (int channel = 0; channel < 6; channel++) {

 setTemp(channel, 0);

 }

 //Initialize serial ports for communication.

 Serial.begin(9600);

 Serial1.begin(9600);

 Serial2.begin(9600);

 Serial.flush();

 Serial2.flush();

 delay(10000);

 Serial.println("Starting SM5100B Communication...");

 while(ready == false)

 {

 if(Serial1.available())

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'S')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'I')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'N')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'D')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == ':')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == ' ')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == '4')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 Serial.println();

 Serial.println("Ready for action");

 ready = true;

 }

 }

 }

 }

 }

 }

 }

 }

 }

 //Serial1.println("AT+SBAND=7");

 //Serial1.println("AT+CFUN=1,1"); //reset shield

 //delay(1000);

 //Serial1.println("AT+IPR?"); //baud rate, has been set

 Serial1.println("AT+CMGF=1"); // set SMS mode to text

 Serial1.println("AT+CNMI=3,3,0,0"); // set module to send SMS data to serial out upon

receipt

 Serial1.println("AT+CMGD=1,4"); // delete all SMS

 //Wait for a little while before sending the reset command to the OBD-II-UART

 delay(1500);

 //Reset the OBD-II-UART

 Serial2.print("ATZ\r");

 //Wait for a bit before starting to send commands after the reset.

 delay(1000);

 Serial2.flush();

 delay(2000);

 Serial.println("Ready");

}

//-------------------Running---------------------------

void loop()

{

 //Checking if the engine is on

 if(checker == false)

 {

 checkBreak = false;

 val = digitalRead(inPin);

 if(val == 0 && currentState == 0)

 {

 Serial.println("Break: System Off");

 Override(LOW);

 OverrideEngine(LOW);

 ResetAll();

 override = false;

 notified = false;

 engineOn = false;

 currentState = 1;

 checkBreak = true;

 checker = true;

 delay(5000);

 }

 else if(val == 1 && currentState == 1)

 {

 Serial.println("Unbreak: System Ready");

 currentState = 0;

 checker = true;

 checkBreak = true;

 delay(5000);

 }

 if(checkBreak == false)

 {

 //Receive 1 text message

 while(Serial1.available() > 0)

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'S')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'I')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'N')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'D')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == ':')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == ' ')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == '4')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 Serial1.println("AT+CMGF=1"); // set SMS mode to text

 Serial1.println("AT+CNMI=3,3,0,0"); // set module to send SMS data to

serial out upon receipt

 Serial1.println("AT+CMGD=1,4"); // delete all SMS

 delay(1000);

 }

 }

 }

 }

 }

 }

 else if(in_char == 'T')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'I')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'N')

 {

 ready = false;

 Serial1.println("AT+CFUN=1,1"); //reset shield

 while(ready == false)

 {

 if(Serial1.available())

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'S')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'I')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'N')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'D')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == ':')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == ' ')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == '4')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 Serial.println();

 Serial.println("Ready for action");

 ready = true;

 }

 }

 }

 }

 }

 }

 }

 }

 }

 Serial1.println("AT+CMGF=1"); // set SMS mode to text

 delay(200);

 Serial1.println("AT+CNMI=3,3,0,0"); // set module to send SMS data to serial

out upon receipt

 delay(200);

 Serial1.println("AT+CMGD=1,4"); // delete all SMS

 }

 }

 }

 }

 //End of a text message

 /*if(in_char == '\r')

 {

 Serial.println("End message");

 checker = true;

 break;

 }*/

 //Every text message has 7 characters begin with zz and follow by xxxxx hex values

 //Begin

 if(in_char == 'z')

 {

 delay(10);

 in_char = Serial1.read();

 Serial.print(in_char);

 if(in_char == 'z')

 {

 checker = true;

 Serial2.print("ATRV\r");

 while(Serial2.available())

 {

 delay(10);

 in_char = Serial2.read();

 if(in_char == '1') {

 delay(10);

 in_char = Serial2.read();

 if(in_char == '2') {

 Serial.println("Car not started");

 //Car has not started

 //notified = false;

 engineOn = false;

 break;

 }

 else if(in_char == '3') {

 Serial.println("Car started");

 engineOn = true;

 /*

 //car started

 val = digitalRead(inPin);

 //System off state

 if(val == 1)

 {

 Serial.println("System Off");

 Override(LOW);

 OverrideEngine(LOW);

 ResetAll();

 override = false;

 notified = false;

 engineOn = false;

 checker = true;

 }

 //Ready to go

 else if(val == 0)

 {

 Serial.println("Ready to go");

 notified = false;

 engineOn = true;

 checker = true;

 }*/

 break;

 }

 }

 }

 Serial2.flush();

 if(val == 0)

 {

 break;

 }

 delay(1000);

 Serial.println("3rd Character");

 in_char = Serial1.read();

 Serial.print(in_char);

 //Start parsing message

 //3rd character

 //bit 0 indicates notified bit

 //bit 1 nothing potentially AC

 //bit 2 indicates Unlockdoor

 //bit 3 indicates Lockdoor

 switch (in_char)

 {

 case '0': //0000

 notified = false;

 ACOff();

 break;

 case '1': //0001

 notified = true;

 ACOff();

 break;

 case '9': //1001

 notified = true;

 LockDoor();

 ACOff();

 break;

 case '8': //1000

 notified = false;

 LockDoor();

 ACOff();

 break;

 case '4': //0100

 notified = false;

 UnlockDoor();

 ACOff();

 break;

 case '5': //0101

 notified = true;

 UnlockDoor();

 ACOff();

 break;

 case '2': //0010

 notified = false;

 ACOn();

 break;

 case '3': //0011

 notified = true;

 ACOn();

 break;

 case 'b': //1011

 notified = true;

 LockDoor();

 ACOn();

 break;

 case 'a': //1010

 notified = false;

 LockDoor();

 ACOn();

 break;

 case '6': //0110

 notified = false;

 UnlockDoor();

 ACOn();

 break;

 case '7': //0111

 notified = true;

 UnlockDoor();

 ACOn();

 break;

 }

 //4th character

 //bit 0 indicates override 1 for on 0 for off

 //bit 1 indicates engine

 //bit 2 indicates defrost

 //bit 3 nothing

 delay(1000);

 Serial.println("4th Character");

 in_char = Serial1.read();

 Serial.print(in_char);

 switch (in_char)

 {

 case '0': //0000

 Override(LOW);

 ACOff();

 delay(6000);

 OverrideEngine(LOW);

 ResetAll();

 override = false;

 engineOn = false;

 break;

 case '1': //0001

 if(override == false)

 {

 Override(HIGH);

 OverrideEngine(HIGH);

 override = true;

 }

 if(engineOn == true)

 {

 DefrostOff();

 StopEngine();

 engineOn = false;

 }

 break;

 case '3': //0011

 if(override == false)

 {

 Override(HIGH);

 OverrideEngine(HIGH);

 override = true;

 }

 if(engineOn == true)

 {

 EngineKeyOnAcc();

 delay(1000);

 }

 else if(engineOn == false)

 {

 EngineAcc();

 delay(3000);

 Starter();

 delay(1000);

 engineOn = true;

 }

 DefrostOff();

 break;

 case '7': //0111

 if(override == false)

 {

 Override(HIGH);

 OverrideEngine(HIGH);

 override = true;

 }

 if(engineOn == true)

 {

 EngineKeyOnAcc();

 }

 else if(engineOn == false)

 {

 EngineAcc();

 Starter();

 engineOn = true;

 }

 DefrostOn();

 break;

 }

 //5th character

 //fan levels

 if(engineOn == false || override == false)

 {

 break;

 }

 delay(1000);

 Serial.println("5th Character");

 in_char = Serial1.read();

 Serial.print(in_char);

 switch(in_char)

 {

 case '0': //0000

 setFan(0);

 break;

 case '1': //0001

 setFan(1);

 break;

 case '2': //0010

 setFan(2);

 break;

 case '4': //0100

 setFan(3);

 break;

 case '8': //1000

 setFan(4);

 break;

 }

 //6th character

 //vent levels

 delay(3000);

 Serial.println("6th Character");

 in_char = Serial1.read();

 Serial.print(in_char);

 switch(in_char)

 {

 case '0': //0000

 setVent(0);

 break;

 case '1': //0001

 setVent(1);

 break;

 case '2': //0010

 setVent(2);

 break;

 case '4': //0100

 setVent(3);

 break;

 case '8': //1000

 setVent(4);

 break;

 }

 //7th character

 //temp

 delay(1000);

 Serial.println("7th Character");

 in_char = Serial1.read();

 Serial.print(in_char);

 switch(in_char)

 {

 case '1': //0001 hot

 setTemp(tempCold, 0);

 delay(10);

 setTemp(tempHot, 255);

 delay(10);

 break;

 case '2': //0010 cold

 setTemp(tempHot, 0);

 delay(10);

 setTemp(tempCold, 255);

 delay(10);

 break;

 }

 break;

 }

 }

 }

 }

 }

 //Send

 if(checker == true)

 {

 delay(2000);

 //testing

 Serial1.println("AT+CMGD=1,4"); // delete all SMS

 Serial.println();

 Serial.println("Sending");

 checker = false;

 //System off

 if(val == 0)

 {

 Serial.println("Sending System off");

 }

 //Ready to go

 else if(val == 1)

 {

 Serial.println("Sending System ready to go");

 }

 if(engineOn == false)

 {

 Serial.println("Engine not on");

 }

 else if(engineOn == true)

 {

 Serial.println("Engine on");

 }

 if(override == false)

 {

 Serial.println("Override not on");

 }

 else if(override == true)

 {

 Serial.println("Override on");

 }

 Serial1.println("AT+CMGF=1"); // set SMS mode to text

 Serial1.print("AT+CMGS="); // now send message...

 Serial1.write(34); // ASCII equivalent of "

 Serial1.print(mobilenumber);

 Serial1.write(34);

 Serial1.println();

 delay(500); // give the module some thinking time

 if(val == 0)

 {

 Serial1.print("Off");

 }

 else

 {

 Serial1.print("Ready");

 }

 Serial1.write(26); // ASCII equivalent of Ctrl-Z

 delay(10000); // the SMS module needs time to return to OK status

 checker = false; // stop sending messages, wait to receive

 }

}

void Starter()

{

 //Set up for starter motor

 digitalWrite(enginePins[2], LOW); //Turn Engine A Off first - Radio/Cig_lighter

 digitalWrite(enginePins[4], HIGH); //Engine C - Starter Relay

 digitalWrite(enginePins[5], HIGH); //Engine D - Ignition Coil

 //Start the starter motor

 digitalWrite(enginePins[6], HIGH); //Engine E - Starter Motor

 delay(1500); //wait for 1.5 secs to turn and turn the starter motor off

 digitalWrite(enginePins[6], LOW); //Turn off Engine E - Starter Motor

 digitalWrite(enginePins[4], LOW); //Turn off Engine C - Starter Relay

 digitalWrite(enginePins[2], HIGH); //Turn on Engine A - Radio/Cig_lighter

 digitalWrite(enginePins[3], HIGH); //Turn on Engine B - Lights, Heat/Air, Misc.

}

void EngineKeyOnAcc()

{

 digitalWrite(enginePins[6], LOW); //Turn off Engine E - Starter Motor

 digitalWrite(enginePins[4], LOW); //Turn off Engine C - Starter Relay

 digitalWrite(enginePins[5], HIGH); //Engine D - Ignition Coil

 EngineAcc();

}

void EngineAcc()

{

 //Turn on the accessories

 digitalWrite(enginePins[2], HIGH); //Engine A - Radio/Cig_lighter

 digitalWrite(enginePins[3], HIGH); //Engine B - Lights, Heat/Air, Misc.

 //digitalWrite(enginePins[4], HIGH); //Engine C - Starter Relay

}

void StopEngine()

{

 //Disconnect all pins except override

 for(int i = 2; i < sizeof(enginePins); i++)

 digitalWrite(enginePins[i], LOW);

}

void LockDoor()

{

 digitalWrite(lockPins[1], HIGH);

 delay(500); //wait for .5 secs to turn signal off

 digitalWrite(lockPins[1], LOW);

}

void UnlockDoor()

{

 digitalWrite(lockPins[2], HIGH);

 delay(500); //wait for .5 secs to turn signal off

 digitalWrite(lockPins[2], LOW);

}

void ACOn()

{

 digitalWrite(tempPins[1], HIGH);

}

void ACOff()

{

 digitalWrite(tempPins[1], LOW);

}

void DefrostOn()

{

 digitalWrite(defPins[0], HIGH);

}

void DefrostOff()

{

 digitalWrite(defPins[0], LOW);

}

void setFan(int lvl)

{

 digitalWrite(fanPins[1], HIGH);

 //Turn

 if(lvl == 0)

 {

 //Turn off every pins except Ovr

 digitalWrite(24, LOW);

 //delay(100);

 digitalWrite(26, LOW);

 //delay(100);

 digitalWrite(28, LOW);

 //delay(100);

 digitalWrite(30, LOW);

 }

 else

 {

 digitalWrite(26, LOW);

 //delay(100);

 digitalWrite(28, LOW);

 //delay(100);

 digitalWrite(30, LOW);

 if(lvl > 1) {

 digitalWrite(fanPins[lvl], HIGH);

 }

 }

}

void setTemp(int address, int value)

{

 // take the SS pin low to select the chip:

 digitalWrite(slaveSelectPin,LOW);

 // send in the address and value via SPI:

 SPI.transfer(address);

 SPI.transfer(value);

 // take the SS pin high to de-select the chip:

 digitalWrite(slaveSelectPin,HIGH);

}

void setVent(int lvl)

{

 //Disconnect every pin except Ovr

 //for(int i = 1; i < sizeof(ventPins); i++)

 //digitalWrite(ventPins[i], LOW);

 digitalWrite(ventPins[1], LOW);

 digitalWrite(ventPins[2], LOW);

 digitalWrite(ventPins[3], LOW);

 digitalWrite(ventPins[4], LOW);

 digitalWrite(ventPins[5], LOW);

 //if lvl=0 -> A; lvl=1 -> B; lvl=2 -> C; lvl=3 -> D; lvl=4 -> E;

 digitalWrite(ventPins[lvl+1], HIGH);

}

//Adjust all override signals

void Override(int OnOff)

{

 //OnOff = LOW or HIGH

 digitalWrite(fanPins[0], OnOff);

 //digitalWrite(enginePins[0], OnOff);

 //digitalWrite(enginePins[1], OnOff);

 digitalWrite(ventPins[0], OnOff);

 //digitalWrite(lockPins[0], OnOff);

 //digitalWrite(defPins[0], OnOff);

 digitalWrite(tempPins[0], OnOff);

}

//Adjust all override signals

void OverrideEngine(int OnOff)

{

 //OnOff = LOW or HIGH

 digitalWrite(enginePins[0], OnOff);

 digitalWrite(enginePins[1], OnOff);

}

//Reset all pins

void ResetAll()

{

 //Set pins to output and initialize to low

 for(int i = 0; i < sizeof(fanPins); i++)

 {

 pinMode(fanPins[i], OUTPUT);

 digitalWrite(fanPins[i], LOW);

 }

 for(int i = 0; i < sizeof(enginePins); i++)

 {

 pinMode(enginePins[i], OUTPUT);

 digitalWrite(enginePins[i], LOW);

 }

 for(int i = 0; i < sizeof(ventPins); i++)

 {

 pinMode(ventPins[i], OUTPUT);

 digitalWrite(ventPins[i], LOW);

 }

 for(int i = 0; i < sizeof(lockPins); i++)

 {

 pinMode(lockPins[i], OUTPUT);

 digitalWrite(lockPins[i], LOW);

 }

 for(int i = 0; i < sizeof(defPins); i++)

 {

 pinMode(defPins[i], OUTPUT);

 digitalWrite(defPins[i], LOW);

 }

 for(int i = 0; i < sizeof(tempPins); i++)

 {

 pinMode(tempPins[i], OUTPUT);

 digitalWrite(tempPins[i], LOW);

 }

}

Android Code

Project.java (the main logic)

package senior.project;

import android.app.Activity;

import android.app.PendingIntent;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

//import android.graphics.Color;

import android.os.Bundle;

import android.widget.Button;

import android.widget.ProgressBar;

import android.widget.SeekBar;

//import android.widget.SeekBar.OnSeekBarChangeListener;

import android.widget.TextView;

import android.widget.Toast;

import android.widget.ToggleButton;

import android.telephony.SmsManager;

import android.view.View;

import android.view.View.OnClickListener;

public class Project extends Activity implements OnClickListener {

 /** Called when the activity is first created. */

 String number;

 static boolean overOn;

 static Button send;

 static ProgressBar progress;

 static TextView displayTemp;

 static TextView displayFan;

 static TextView displayVent;

 static TextView displayLock;

 static SeekBar seekTemp;

 static SeekBar seekFan;

 static SeekBar seekVent;

 static SeekBar seekLock;

 static ToggleButton engine;

 static ToggleButton ac;

 static ToggleButton defrost;

 static ToggleButton override;

 static boolean arduinoReady;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 number = "8015606224";

 //number = "5556";

 overOn = false;

 send = (Button) findViewById(R.id.button1);

 // progress = (ProgressBar)findViewById(R.id.progressBar1);

 displayTemp = (TextView) findViewById(R.id.textView6);

 displayFan = (TextView) findViewById(R.id.textView8);

 displayVent = (TextView) findViewById(R.id.textView10);

 displayLock = (TextView) findViewById(R.id.textView12);

 seekTemp = (SeekBar) findViewById(R.id.seekBar1);

 seekFan = (SeekBar) findViewById(R.id.seekBar2);

 seekVent = (SeekBar) findViewById(R.id.seekBar3);

 seekLock = (SeekBar) findViewById(R.id.seekBar4);

 override = (ToggleButton) findViewById(R.id.toggleButton1);

 engine = (ToggleButton) findViewById(R.id.toggleButton2);

 ac = (ToggleButton) findViewById(R.id.toggleButton3);

 defrost = (ToggleButton) findViewById(R.id.toggleButton4);

 seekTemp.setMax(1);

 seekFan.setMax(4);

 seekVent.setMax(4);

 seekLock.setMax(2);

 //Set temp seekbar to start at position 3

 //seekTemp.setProgress(3);

 //displayTemp.setText("Normal");

 // ///

 // State of the car. May change to having the car send the state to the

 // phone on start of the app.

 // before the phone can do anything

 engine.setEnabled(false);

 ac.setEnabled(false);

 defrost.setEnabled(false);

 //override.setEnabled(false);

 seekTemp.setEnabled(false);

 seekFan.setEnabled(false);

 seekVent.setEnabled(false);

 //seekLock.setEnabled(false);

 // ///

 send.setOnClickListener(this);

 engine.setOnClickListener(this);

 ac.setOnClickListener(this);

 defrost.setOnClickListener(this);

 override.setOnClickListener(this);

 seekTemp.setOnSeekBarChangeListener(seekBarChangeListener);

 seekFan.setOnSeekBarChangeListener(seekBarChangeListener);

 seekVent.setOnSeekBarChangeListener(seekBarChangeListener);

 seekLock.setOnSeekBarChangeListener(seekBarChangeListener);

 }

 private SeekBar.OnSeekBarChangeListener seekBarChangeListener = new

SeekBar.OnSeekBarChangeListener() {

 public void onProgressChanged(SeekBar seekBar, int progress,

 boolean fromUser) {

 // TODO Auto-generated method stub

 if (overOn) {

 updateBar();

 updateTemp();

 updateVent();

 }

 updateLock();

 /*else {

 updateZero();

 }*/

 }

 public void onStartTrackingTouch(SeekBar seekBar) {

 // TODO Auto-generated method stub

 }

 public void onStopTrackingTouch(SeekBar seekBar) {

 // TODO Auto-generated method stub

 }

 };

 private void updateBar() {

 displayTemp.setText(String.valueOf(seekTemp.getProgress()));

 displayFan.setText(String.valueOf(seekFan.getProgress()));

 displayVent.setText(String.valueOf(seekVent.getProgress()));

 displayLock.setText(String.valueOf(seekLock.getProgress()));

 }

 private void updateZero() {

 //displayTemp.setText(String.valueOf(0));

 displayTemp.setText("Cold");

 displayFan.setText(String.valueOf(0));

 displayVent.setText("Face");

 displayLock.setText("Nothing");

 }

 private void updateLock(){

 if(seekLock.getProgress() == 0)

 displayLock.setText("Nothing");

 else if(seekLock.getProgress() == 1)

 displayLock.setText("Lock");

 else if(seekLock.getProgress() == 2)

 displayLock.setText("Unlock");

 }

 private void updateVent(){

 if(seekVent.getProgress() == 0)

 displayVent.setText("Defrost");

 else if(seekVent.getProgress() == 1)

 displayVent.setText("FD");

 else if(seekVent.getProgress() == 2)

 displayVent.setText("Foot");

 else if(seekVent.getProgress() == 3)

 displayVent.setText("FF");

 else if(seekVent.getProgress() == 4)

 displayVent.setText("Face");

 }

 private void updateTemp(){

 if(seekTemp.getProgress() == 0)

 {

 displayTemp.setText("Cold");

 ac.setEnabled(true);

 }

 else if(seekTemp.getProgress() == 1)

 {

 displayTemp.setText("Hot");

 ac.setChecked(false);

 ac.setEnabled(false);

 }

 }

 public void onClick(View src) {

 // TODO Auto-generated method stub

 String message = "";

 switch (src.getId()) {

 case R.id.toggleButton1:

 if (override.isChecked() == false) {

 overOn = false;

 engine.setEnabled(false);

 ac.setEnabled(false);

 defrost.setEnabled(false);

 seekTemp.setEnabled(false);

 seekFan.setEnabled(false);

 seekVent.setEnabled(false);

 //seekLock.setEnabled(false);

 updateZero();

 } else if (override.isChecked() == true) {

 overOn = true;

 engine.setEnabled(true);

 ac.setEnabled(true);

 defrost.setEnabled(true);

 seekTemp.setEnabled(true);

 seekFan.setEnabled(true);

 seekVent.setEnabled(true);

 //seekLock.setEnabled(true);

 updateBar();

 updateTemp();

 updateVent();

 updateLock();

 }

 break;

 case R.id.button1:

 message = "zz";

 // Override Off

 if (override.isChecked() == false)

 {

 //Nothing

 if(seekLock.getProgress() == 0)

 {

 message += "00000";

 }

 //Lock

 else if(seekLock.getProgress() == 1)

 {

 message += "80000";

 }

 //Unlock

 else if(seekLock.getProgress() == 2)

 {

 message += "40000";

 }

 }

 // Override On

 else {

 //3rd character

 //AC, Lock, Unlock

 //AC on

 if (ac.isChecked())

 {

 //Nothing

 if(seekLock.getProgress() == 0)

 {

 message += "2";

 }

 //Lock

 else if(seekLock.getProgress() == 1)

 {

 message += "a";

 }

 //Unlock

 else if(seekLock.getProgress() == 2)

 {

 message += "6";

 }

 }

 //AC on

 else if (ac.isChecked() == false)

 {

 //Nothing

 if(seekLock.getProgress() == 0)

 {

 message += "0";

 }

 //Lock

 else if(seekLock.getProgress() == 1)

 {

 message += "8";

 }

 //Unlock

 else if(seekLock.getProgress() == 2)

 {

 message += "4";

 }

 }

 //4th character

 //Override, Engine, Defrost

 if(engine.isChecked())

 {

 // Defrost

 if (defrost.isChecked())

 message += "7";

 else if (defrost.isChecked() == false)

 message += "3";

 }

 else if(engine.isChecked() == false)

 {

 message += "1";

 }

 //5th character

 //Fan

 if(seekFan.getProgress() == 0)

 {

 message += "0";

 }

 else if(seekFan.getProgress() == 1)

 {

 message += "1";

 }

 else if(seekFan.getProgress() == 2)

 {

 message += "2";

 }

 else if(seekFan.getProgress() == 3)

 {

 message += "4";

 }

 else if(seekFan.getProgress() == 4)

 {

 message += "8";

 }

 //6th character

 //Vent

 if(seekVent.getProgress() == 0)

 {

 message += "0";

 }

 else if(seekVent.getProgress() == 1)

 {

 message += "1";

 }

 else if(seekVent.getProgress() == 2)

 {

 message += "2";

 }

 else if(seekVent.getProgress() == 3)

 {

 message += "4";

 }

 else if(seekVent.getProgress() == 4)

 {

 message += "8";

 }

 //7th character

 //Temp

 //Cold

 if(seekTemp.getProgress() == 0)

 {

 message += "1";

 }

 //Hot

 else if(seekTemp.getProgress() == 1)

 {

 message += "2";

 }

 }

 engine.setEnabled(false);

 ac.setEnabled(false);

 defrost.setEnabled(false);

 override.setEnabled(false);

 seekTemp.setEnabled(false);

 seekFan.setEnabled(false);

 seekVent.setEnabled(false);

 seekLock.setEnabled(false);

 send.setEnabled(false);

 sendSMS(number, message);

 break;

 }

 }

 public static void off ()

 {

 engine.setEnabled(false);

 ac.setEnabled(false);

 defrost.setEnabled(false);

 override.setEnabled(false);

 seekTemp.setEnabled(false);

 seekFan.setEnabled(false);

 seekVent.setEnabled(false);

 seekLock.setEnabled(false);

 send.setEnabled(false);

 }

 public static void update ()

 {

 override.setEnabled(true);

 seekLock.setEnabled(true);

 send.setEnabled(true);

 if (override.isChecked() == false) {

 overOn = false;

 engine.setEnabled(false);

 ac.setEnabled(false);

 defrost.setEnabled(false);

 seekTemp.setEnabled(false);

 seekFan.setEnabled(false);

 seekVent.setEnabled(false);

 //seekLock.setEnabled(false);

 } else if (override.isChecked() == true) {

 overOn = true;

 engine.setEnabled(true);

 ac.setEnabled(true);

 defrost.setEnabled(true);

 seekTemp.setEnabled(true);

 seekFan.setEnabled(true);

 seekVent.setEnabled(true);

 //seekLock.setEnabled(true);

 }

 }

 // ---sends an SMS message to another device---

 private void sendSMS(String phoneNumber, String message) {

 String SENT = "SMS_SENT";

 String DELIVERED = "SMS_DELIVERED";

 PendingIntent sentPI = PendingIntent.getBroadcast(this, 0, new Intent(

 SENT), 0);

 PendingIntent deliveredPI = PendingIntent.getBroadcast(this, 0,

 new Intent(DELIVERED), 0);

 // ---when the SMS has been sent---

 registerReceiver(new BroadcastReceiver() {

 @Override

 public void onReceive(Context arg0, Intent arg1) {

 switch (getResultCode()) {

 case Activity.RESULT_OK:

 Toast.makeText(getBaseContext(), "SMS sent",

 Toast.LENGTH_SHORT).show();

 break;

 case SmsManager.RESULT_ERROR_GENERIC_FAILURE:

 Toast.makeText(getBaseContext(), "Generic failure",

 Toast.LENGTH_SHORT).show();

 break;

 case SmsManager.RESULT_ERROR_NO_SERVICE:

 Toast.makeText(getBaseContext(), "No service",

 Toast.LENGTH_SHORT).show();

 break;

 case SmsManager.RESULT_ERROR_NULL_PDU:

 Toast.makeText(getBaseContext(), "Null PDU",

 Toast.LENGTH_SHORT).show();

 break;

 case SmsManager.RESULT_ERROR_RADIO_OFF:

 Toast.makeText(getBaseContext(), "Radio off",

 Toast.LENGTH_SHORT).show();

 break;

 }

 }

 }, new IntentFilter(SENT));

 // ---when the SMS has been delivered---

 registerReceiver(new BroadcastReceiver() {

 @Override

 public void onReceive(Context arg0, Intent arg1) {

 switch (getResultCode()) {

 case Activity.RESULT_OK:

 Toast.makeText(getBaseContext(), "SMS delivered",

 Toast.LENGTH_SHORT).show();

 break;

 case Activity.RESULT_CANCELED:

 Toast.makeText(getBaseContext(), "SMS not

delivered",

 Toast.LENGTH_SHORT).show();

 break;

 }

 }

 }, new IntentFilter(DELIVERED));

 SmsManager sms = SmsManager.getDefault();

 sms.sendTextMessage(phoneNumber, null, message, sentPI, deliveredPI);

 }

}

SmsReceiver.java (message receive logic)

package senior.project;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.telephony.SmsMessage;

import android.widget.Toast;

public class SmsReceiver extends BroadcastReceiver {

 String message = "";

 static String mes = "";

 @Override

 public void onReceive(Context context, Intent intent) {

 // ---get the SMS message passed in---

 Bundle bundle = intent.getExtras();

 SmsMessage[] msgs = null;

 String str = "";

 if (bundle != null) {

 // ---retrieve the SMS message received---

 Object[] pdus = (Object[]) bundle.get("pdus");

 msgs = new SmsMessage[pdus.length];

 for (int i = 0; i < msgs.length; i++) {

 msgs[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);

 str += "SMS from " + msgs[i].getOriginatingAddress();

 str += " :";

 str += msgs[i].getMessageBody().toString();

 message += msgs[i].getMessageBody().toString();

 str += "\n";

 }

 mes = message;

 if(message.equals("Ready"))

 {

 Project.update();

 }

 else if(message.equals("Off"))

 {

 Project.off();

 }

 // ---display the new SMS message---

 Toast.makeText(context, str, Toast.LENGTH_SHORT).show();

 }

 }

 public static String getMessage() {

 return mes;

 }

}

AndroidManifest.xml (the config)

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="senior.project"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <uses-permission android:name="android.permission.SEND_SMS">

 </uses-permission>

 <uses-permission android:name="android.permission.RECEIVE_SMS">

 </uses-permission>

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:name=".Project"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <receiver android:name=".SmsReceiver">

 <intent-filter>

 <action android:name=

 "android.provider.Telephony.SMS_RECEIVED" />

 </intent-filter>

 </receiver>

 </application>

</manifest>

main.xml (the layout)

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical" >

 <TableLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content" >

 <TableRow

 android:id="@+id/tableRow1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:gravity="center" >

 <ToggleButton

 android:id="@+id/toggleButton1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="ToggleButton" />

 <ToggleButton

 android:id="@+id/toggleButton2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="ToggleButton" />

 <ToggleButton

 android:id="@+id/toggleButton3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="ToggleButton" />

 <ToggleButton

 android:id="@+id/toggleButton4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="ToggleButton" />

 </TableRow>

 <TableRow

 android:id="@+id/tableRow2"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:gravity="center" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Override"

 android:textAppearance="?android:attr/textAppearanceSmall"

android:layout_gravity="center"/>

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Engine"

 android:textAppearance="?android:attr/textAppearanceSmall"

android:layout_gravity="center"/>

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="AC"

 android:textAppearance="?android:attr/textAppearanceSmall"

android:layout_gravity="center"/>

 <TextView

 android:id="@+id/textView4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Defrost"

 android:textAppearance="?android:attr/textAppearanceSmall"

android:layout_gravity="center"/>

 </TableRow>

 <TableRow

 android:id="@+id/tableRow11"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" >

 </TableRow>

 </TableLayout>

 <TableRow

 android:id="@+id/tableRow4"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" >

 <TextView

 android:id="@+id/textView0"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text=" "

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

 <RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content" android:gravity="center"

android:layout_gravity="center">

 </RelativeLayout>

 <TableLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content" android:layout_gravity="center">

 <TableRow

 android:id="@+id/tableRow3"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:gravity="center" >

 <TextView

 android:id="@+id/textView5"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Temp"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <SeekBar

 android:id="@+id/seekBar1"

 android:layout_width="wrap_content"

 android:layout_height="match_parent" />

 <TextView

 android:id="@+id/textView6"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="right"

 android:layout_marginLeft="5px"

 android:gravity="right"

 android:text="Cold"

 android:textAppearance="?android:attr/textAppearanceMedium"/>

 </TableRow>

 <TableRow

 android:id="@+id/tableRow9"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" android:minHeight="30px">

 </TableRow>

 <TableRow

 android:id="@+id/tableRow5"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:gravity="center" >

 <TextView

 android:id="@+id/textView7"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Fan"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <SeekBar

 android:id="@+id/seekBar2"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

 <TextView

 android:id="@+id/textView8"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="right"

 android:layout_marginLeft="5px"

 android:gravity="right"

 android:text="0"

 android:textAppearance="?android:attr/textAppearanceMedium"/>

 </TableRow>

 <TableRow

 android:id="@+id/tableRow10"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" android:minHeight="30px">

 </TableRow>

 <TableRow

 android:id="@+id/tableRow6"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:gravity="center" >

 <TextView

 android:id="@+id/textView9"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Vent"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <SeekBar

 android:id="@+id/seekBar3"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

 <TextView

 android:id="@+id/textView10"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="right"

 android:layout_marginLeft="5px"

 android:gravity="right"

 android:text="Face"

 android:textAppearance="?android:attr/textAppearanceMedium"/>

 </TableRow>

 <TableRow

 android:id="@+id/tableRow8"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:gravity="center"

 android:visibility="invisible" >

 <TextView

 android:id="@+id/textView11"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Space "

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView

 android:id="@+id/textView13"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Medium"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

 <TableRow

 android:id="@+id/tableRow12"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" android:gravity="center">

 <TextView

 android:id="@+id/textView14"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Lock"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <SeekBar

 android:id="@+id/seekBar4"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

 <TextView

 android:id="@+id/textView12"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Nothing"

 android:textAppearance="?android:attr/textAppearanceMedium"

android:gravity="right" android:minWidth="100px"/>

 </TableRow>

 </TableLayout>

 <TableRow

 android:id="@+id/tableRow7"

 android:layout_width="match_parent"

 android:layout_height="match_parent" android:layout_gravity="bottom|center"

android:gravity="bottom|center">

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Send" />

 </TableRow>

</LinearLayout>

