

iSlide Avalanche Receiver
Final Report

Jacob Sanders
Sean Jennings

University of Utah

iSlide 1

Table of Contents

Project Description 3
Project Scope 4
Hardware Design and Implementation 5

Antenna 5
Finding Direction 6
Finding Distance 8

Signal Amplification 9
Preparing the Signal for Digital Conversion 12

Software Design and Implementation 14
Analog to Digital Conversion 14
Digital Signal Processing 15

High Frequency Noise Filter 15
Peak Detection Algorithm 15

iPhone Interface 16
Risk Assessment Revisited 18

Bottle-Neck Design Process, Noise, and Wireless Inexperience 18
Improper Hardware Selection and Limitations of the Standard Frequency 19
Limited Public Documentation on the iPhone 19
Cost 19

Conclusion 20
References 21
Acknowledgements 23
Appendix A1 - IOS Source Code 24

iPhone GUI files 24
iPhone Serial files 31

Appendix A2 - MCU Source Code 34
Appendix A3 - Matlab Source Code 40
Appendix B - Bill of Materials 43
Appendix C1 - Complete Circuit Schematic 44
Appendix C2 - Photograph of Final Product 45

iSlide 2

Project Description
The intent of our project was to design an avalanche
beacon accessory and application for the iPhone.
Avalanche beacons are used by winter recreationalists
to locate buried victims in the case of an avalanche.
The user wears the device during outdoor recreation
and runs in a low-power transmit mode, emitting a
brief 457 kHz radio pulse about once per second [1].
If an individual is buried in an avalanche, rescuers
switch their beacons to receive mode and use them in
conjunction with other search techniques [2] to locate,
and hopefully rescue, buried victims.

Originally, avalanche beacons simply transformed the
input signal into an auditory tone whose intensity
fluctuated proportionally with the strength of the signal,
leaving the signal processing to the ear and brain of
the user [3]. Most beacons on the market today
implement a visual display and some form of signal
processing to approximate the distance and direction
to the victim [4]. Our objectives with this project were
to understand how these devices work, design a
compatible receiver device, and advance the existing
technology by interfacing with the iPhone.

Our interest in this project stems mainly from three
sources. First, we share a common interest in embedded systems. This is essentially
what motivated our microcontroller-based design over a fully analog design. Secondly,
it seems that for virtually every task a person might want to perform, “there’s an app for
that.”[5] We're interested in applying our knowledge of software engineering to the
growing field of mobile computing. And finally, the analog component of this receiver
was in uncharted territory for both of us, giving us an excellent opportunity to stretch
our experience and understanding.

The essential hardware component of our project is a microprocessor-based receiver
circuit with a 32-pin iPhone interface. The software component included the programing
of the microprocessor as well as a user-friendly iPhone application. This report
describes the process of researching and implementing our project. Though we faced
many challenges, we were able to successfully implement the iSlide avalanche beacon
receiver.

iSlide 3

Scope
The primary standard to which current avalanche beacon manufacturers adhere is EN
300 178, published by the European Telecommunications Standards Institute (ETSI)
[1]. ETSI establishes mechanical and electrical standards for the devices as well
as acceptable methods for testing their various components and functions. For the
purposes of this project, we didn’t attempt total compliance with ETSI standards. We
did, however, make our device compatible with others on the market by adhering to the
following ETSI specifications:

● Operating frequency: 457 kHz
● Bandwidth: 160 Hz
● Carrier keying (see Fig. 2):

○ On time: 70 ms minimum
○ Off time: 400 ms minimum
○ Period: 1000 ms ± 300 ms

Though there are several features we would have enjoyed implementing, the core
requirement of our project was the design and implementation of a receiver, capable of
directing the user to the source of a transmitting beacon. In the end, we found this to be
challenging enough to consume our time and financial resources without implementing
any additional frills.

iSlide 4

Hardware Design and Implementation

We designed and simulated our analog circuitry using mathematical and graphical
models in freeMat [6] and LTSpice [7]. The final circuit was was soldered on various
interconnected prototyping boards as shown. The details of each component of the
analog circuitry is outlined in the sections that follow.

Antenna
The key to our design is the compact and directional nature of our antennas. In general,
the length of an antenna is on the same order of magnitude as the wave length of
the desired frequency [8]. The wavelength of a 457-kHz signal is approximately 656
meters, [9] almost 6000 times bigger than the iPhone [10]. Obviously, a standard half-
or quarter-wave antenna won't work in our design. AM radio receivers (which operate
between 535-kHz and 1605-kHz [11]) address this problem using a loopstick antenna
[12], which consists of an inductive coil wrapped around a ferrite rod. The ferrite rod
responds to the magnetic portion of an electromagnetic signal, inducing a current on
the coil [13]. The resonant frequency of the antenna can then be adjusted by adding

iSlide 5

a capacitive impedance to form and LC circuit [14]. Though the resultant circuit may
have a length of only a few centimeters, it's effective length (due to geometry, material
properties, and tuning circuitry) can be much larger[15].

The resonant frequency, f, of an LC circuit is defined as:

 Eq. 1

The bandwidth, β, of the LC circuit can also be controlled by adding a parallel
resistance, R, such that:

 Eq. 2

There is a trade-off between gain and noise, however, since adding resistance to the
circuit also adds noise [16]. One way to reduce resistance is to use litz wire to wind the
antenna coil rather than a solid conductor, since litz wires has a lower DC resistance
[17].

Finding Direction
Another useful characteristic of the loopstick antenna is it's figure-eight radiation pattern.
The signal received by the antenna is stronger at either end of the rod and nulls toward
the center. Thus, when pointing the antenna directly at a transmitter, the strength of the
signal is strong, but when oriented perpendicularly the signal weakens significantly [17].

Our design exploits this pattern, using two mutually orthogonal antennas, thus the null
of one antenna aligns with the maximum of the other. Placing the antennas in an “x”
orientation, such that each point away from the user at a 45˚ angle, we're able to direct
the user along the figure-eight radiation pattern of a transmitting beacon. When the
amplitudes of the signals from both antennas are equal, we direct the user forward. If
either signal becomes stronger than the other, the user is directed to turn slightly in the
direction that leads back to equilibrium.

iSlide 6

We purchased several prefabricated 2.5” loopstick antennas wound using a very fine litz
wire.

The nominal inductance of the antenna was 680-μH. We tuned them to 457-kHz using
a parallel capacitance and resistance of 77-pF and 5.6-MΩ, respectively. Unfortunately
the signal to noise ratio of the antennas wasn't very good. We theorized that two main
issues caused the problem:

1. The large inductance of the antenna necessitated a very small capacitance
value. This made it difficult to tune the antenna using discrete components (due
to the imprecision of nominal values) and though a variable capacitor simplified
the task significantly, it also introduced additional noise.

2. The inductive coil covered only 33% of the ferrite rod's surface area. Maximum

efficiency is obtained by covering the entire length of the rod [18].

To overcome these issues, we rewound the antennas using thicker litz wire. Doing so,
we were able to cover more of the rod's length using fewer windings, thus minimizing
the inductance of the antenna. We also employed a winding method developed
by the U.S. Army Signal Corps which produces better surface coverage and lower
inductance. Rather than simply winding from one side of the rod to the other (as with the
prefabricated antennas) we began the winding in the middle of the rod, winding counter

iSlide 7

clockwise on one side and clockwise on the other and connecting the two ends of the
winding to a common node. The result of this is equivalent to placing two inductors in
parallel (thus reducing the inductance) while providing the efficiency of using the whole
surface area of the rod [15].

These optimizations to the antenna improved our signal to noise ratio by a factor of six.
Additional improvements would likely be needed to take the receiver to production, but
this improvement was sufficient for our classroom demonstration, giving us a usable
range of about 10-15 feet. Our custom antenna had an inductance of about 23-μH
allowing for a more reasonable capacitance value of about 5300-pF and a resistance of
200-kΩ.

Finding Distance
We were also able to estimate the distance away from the transmitter using the
amplitude of the signal received by each antenna. First, we compiled a table of
measurements containing the head-on signal strength of each antenna at various
distances from a transmitting beacon.

Fitting an equation to the curves of our measured values yields the following:

iSlide 8

 Eq. 3

 Eq. 4

The actual distance from the transmitter is then estimated using the Pythagorean
theorem:

 Eq. 5

Signal Amplification
As demonstrated in Fig. 8, signal strength decreases significantly with distance—it's
inversely proportional to distance squared [19]. For example, a usable signal at 14 feet
becomes completely saturated at 4 feet. To deal with this problem, we implemented
3 stages of signal amplification allowing the micro-controller to switch between
stages as necessary. This feature was not fully implemented in our signal-processing
algorithm, however, since only the second stage was really necessary for our classroom
demonstration.
The major obstacle we faced in designing our amplifier stages was dealing with noise.
The first stage of amplification is typically the most important in dealing with noise since
the noise and signal gain from stage one is cascaded through each subsequent stage.
It's important to have the highest gain and lowest noise possible on the first stage
[20]. As demonstrated by Eq. 2, however, a narrow bandwidth requires a large input
resistance on stage one, but adding resistance to the circuit also adds noise. Thus,
by increasing resistance we increase noise but by decreasing resistance we increase
the bandwidth allowing the antenna to detect more frequencies and in turn, increasing
noise. To deal with this issue, we opted to use an instrumentation amplifier op amp
configuration. The instrumentation amplifier provides high gain while rejecting common
mode noise and providing the high input resistance inherent in the non-inverting input of
the op amp, without adding additional resistors to the tuned LC circuit [21].

iSlide 9

The total gain of this stage was about 400-V/V, as calculated using the following
equation:

) Eq. 6

Where, R3 and R5 are matched, as are R14 and R15, as well as R16 and R17. In order
to accomplish this, we used resistors with a tolerance of only 1%. The op amps shown
in Fig. 9 are configured almost to their maximum gain for that frequency. Our resistor
values were chosen to be relatively small (without being impractically small) so as to
minimize noise.

We chose to use the LT1632 op amp from Linear Technology because of it's high gain
at 457-kHz, it's rail to rail output, and because it is easily configurable using a single
power supply, allowing us to power the amplifiers using the iPhone's 3.3-V supply
without a negative rail. In order to use a single supply, however, it was necessary to
create a virtual ground at 1.65-V (half of the 3.3-V supply). This was done as follows
[22]:

iSlide 10

To further optimize the circuit and reduce noise, we added additional capacitance in
conjunction with the resistors since a parallel RC (resistor-capacitor) circuit acts as a
high pass filter, and a serial RC circuit acts as a low pass filter [23]. Using the following
equation to calculate the capacitance value which provides a cutoff at 457-kHz, we then
used a common rule of thumb, sizing the capacitors up a decade for low pass filters and
down a decade for high pass filters ensuring that our signal would not be accidentally
cut off.

 Eq. 7

We also separated the tuned antenna physically from the amplifier circuit using short
coaxial cables and a BNC-type connector in order to avoid self-resonance between the
antenna and the amplifier circuitry [24]. We added decoupling capacitors to the antenna
and connected the virtual ground to it. This ensured that the antenna's oscillations
would be centered at virtual ground. To reduce power supply noise, we connected a
large capacitor across the source and ground terminals of each op amp package [25],
resulting in the following circuit configuration:

iSlide 11

The result of these optimizations was a strong signal up to about 3 or 4 feet with only
about 20-mVpp of noise. Note that the value of the capacitor in the tuned antenna circuit
needed to be adjusted. We assume that this was necessary to account for impedance
matching necessitated by the connecting the antenna to the amplifier using a coaxial
cable.

Stage two and three were simple inverting amplifiers as shown below. Each was
connected to the output of its predecessor. By the third stage noise once again became
very limiting, but stage two provided a usable signal up to about 14 feet (as shown in
Fig. 8) with only about 60-mVpp of noise. Since the amplitude of the pulse is all that we
needed to calculate distance and direction, the fact that the signal might be inverted
was of little importance.

Preparing the Signal for Digital Conversion
One serious difficulty we encountered had to do with the sampling rate of our
microprocessor's ADCs. In order for a signal's frequency to be accurately measured
using an ADC, the sampling rate must be greater than the Nyquist frequency (twice

iSlide 12

the frequency of interest) [26]. Our ADCs were capable of sampling the signal up to a
rate of 1-MHz [27] which satisfies Nyquist's requirements, but does not provide enough
resolution to confidently calculate the amplitude of the signal.

For the purposes of our receiver, however, we only need to know when a transmitting
pulse is on (to verify that our direction and distance calculations are not based on
the actual signal and not on noise) and what the average amplitude of the signal is.
We overcame the limitations of the ADC by designing a peak detector circuit [28] for
connection between the output of each amplifier and the analog inputs of the micro-
controller as follows:

This circuit helped transform a signal like that shown in Fig. 14a to the signal shown in
Fig. 14b. It also helped reduce much of the signal noise.

The average amplitude of a 70-ms pulse was then easily sampled many times by the
ADC at a rate of 1-MHz so that the signal can be processed by the microprocessor.

iSlide 13

Software Design and Implementation
The software component of our project consists of a graphical user interface (GUI)
designed using Interface Builder for Xcode IDE and a serial device driver to interface
between the microcontroller and the iPhone.

Xcode supports a variety of programming languages, two of which were used for the
iSlide software, Objective-C and C. Objective-C was used solely for the user interface,
while C was used for the serial communication. Xcode also offers several templates for
iOS applications; we chose to use the tab bar application template. The first tab is used
as a splash page, and the second is the receiver enable tab which interacts with the
user and directs them to the transmitting beacon.

The receiver enable tab gives the user an option to toggle receive mode, on and off
and gives a graphical display of distance and direction. While receive mode is enabled
the direction indicator directs the user left, right, or straight along the current path.
The distance display simply displays a value received from the microcontroller below
the direction indicator. Note that the iPhone is only provided with a direction and
distance value that has been precomputed by the microprocessor, it has no part in the
computation aside from interpreting the value received.

Interfacing with the iPhone is done by using the Rx and Tx ports on the iPhone as a
standard UART serial port [29], which is described further in the iPhone interfacing
section. Several files are needed for the iSlide GUI and thus are placed in Appendix
A3. The analog to digital conversion (ADC) process and digital signal processing (DSP)
happens before any relevant data is transmitted to the iPhone. The following two
sections cover ADC and DSP.

Analog to Digital Conversion
As computer engineering majors, we wanted to have a digital aspect of our project,
which is why we decided to use a microcontroller unit (MCU) rather than analog circuitry
for the signal processing. After researching possible MCUs, we decided to use the
LeafLabs Maple 32-bit microcontroller shown in figure 15. The LeafLabs device uses
the 72 MHz STM32F 103RB processor by STMicroelectronics and operates at 3.3 V
(as does the iPhone). The processor is rated for
temperatures from -40° C to 85° C. The STM32
microprocessor has two ADCs with a total of
sixteen channels. Each ADC has twelve bits of
precision and a 14-MHz maximum ADC clock
rate. We used four of the sixteen channels; one
for the output of the stage 1 and stage 2

iSlide 14

amplifiers for each antenna.

At its maximum sampling rate, 1-MHz, the ADC samples slightly above the Nyquist
Frequency as previously explained. Our first attempt at sampling the output of our
antenna circuit was only sampling at about 150-KHz, well under the Nyquist frequency.
We were also only using positive samples, that is,
only samples that were above the 1.65-V virtual
ground, causing us to sample several different
beacon pulses, rather than sampling the same
pulse several times. Using this method, it was
impossible to model the 457-kHz waveform.

After reading further into the STM32
documentation, we realized the ADC supported
simultaneous sampling of both ADCs. This
allowed us to simultaneously sample two
channels, and the result was stored in a 32-bit
integer. The upper sixteen bits contained the
result of channel a, and the lower sixteen bits
contained channel b. The result was stored in
DMA, and we read that value when necessary. By using the DMA we were able to
allow the ADC to sample freely without having to wait on computation to finish before
taking the next sample. Refer to Appendix A3 for the related source code file,
islide_dsp.pde.

Digital Signal Processing
After the analog signal was digitized through the ADC, we needed to process that digital
value. At a maximum clock rate of 72-MHz, the microprocessor selected to compute our
signal processing algorithms was sufficient. Two algorithms were used to process the
digital value: a high frequency noise filter, and a peak detection algorithm.

High Frequency Noise Filter
Our original required an algorithm to filter high frequency noise because analog
waveforms tend to fluctuate in voltage levels as it oscillates. More specifically, if two
samples are taken consecutively, the second sample could be less than first while the
waveform is rising to its positive peak, and similarly when falling to its negative peak.
This algorithm places each sample into an array of size four. When the array is full the
samples are averaged and we determine if that value is a peak or not by what we call
a “peak detection algorithm.” Now that the array is full, each sample, n, replaces the

 element in the array and a new average is computed. This algorithm was later
omitted to cut down on computation time since our analog peak detector eliminated
most of the noise.

Peak Detection Algorithm
The Idea behind the peak detection algorithm was to determine whether or not the

iSlide 15

current sample was a peak. Every sample was compared to the previous sample
and stored in an array if it was larger than the previous; this was considered the
current “peak.” If the current sample was less than the previous, it was stored in
the next element of the array, and overwritten if the following sample was a higher
value. Sixteen total “peaks” for each antenna were stored into an array and averaged.
Distance and direction were calculated using the computed average. This would
effectively model the waveform and detect the peaks if we were sampling at a frequency
well above 1-MHz. Due to the sampling rate limitations, described previously, we also
had to discard this approach. Using the analog peak detector, however, we have a
pulse for 70-ms at a steady voltage, allowing us to take several samples of a given
peak. We choose to store sixteen samples above a 1.70-V threshold, average them,
and compute distance and direction.

iPhone Interface
The only hardware we needed to gain
access to the iPhone’s serial pins was a
PodBreakout board, which connects to the
standard iPhone connector port, giving
access to all 30 pins as shown in figure 16
[29]. We were then able to develop a
handshake protocol as well as a robust
communication protocol using serial UART
communication between the iPhone and
the microprocessor. The handshake and
communication protocols are depicted in
Fig.17. When the user presses the receive
button, the serial port on the iPhone is
opened and a handshake character is sent to the MCU. The MCU confirms the
handshake and waits for a request from the iPhone. Meanwhile the main thread on the
iPhone has been waiting for the confirmation, upon confirmation a child thread is
launched and makes a request for the distance and direction packet and waits. The
MCU, which has been waiting for a request sends the packet and waits for confirmation
that the iPhone received the packet. The screen is now updated to display recent
search information and another request is made. This cycle is repeated until the user
disables receive mode, at which time a character, “!”, is sent to the MCU indicating a
reset request.

iSlide 16

Fig. 17 Communication protocol for sending and receiving data via UART

iSlide 17

Risk Assessment Revisited
In our project proposal, we identified the following risks and concerns:

● Our limited experience with wireless design.
● Modulation restriction of avalanche beacon standards.
● Difficulty identifying the shortest path to a transmitting beacon.
● Limited public documentation on iPhone hardware.
● Noise filtering.
● Cost.

Most of these items proved to be valid concerns. During the development process, we
encountered two unexpected challenges:

● A bottle-neck design process.
● Improper hardware selection.

Many of these concerns were interrelated. We’ll address their effect on our final product
in the paragraphs that follow.

Bottle-Neck Design Process, Noise, and Wireless Inexperience
The most significant challenge we faced had to do with our design approach. With
limited understanding of the principles of radio wave propagation and wireless
communication, we planned to “figure out” the direction and distance algorithms
after completing our hardware design so that we could experiment and take actual
measurements to determine an effective method for identifying the distance from and
direction to a transmitting beacon.

Unexpectedly, we spent much of the semester implementing the hardware only to
discover that our theorized beacon-location approach was flawed. As a result, a
significant portion of the software development was delayed until the final weeks of the
project.

We had imagined that radio waves would propagate like perfect invisible spheres in
a 3-dimensional Cartesian coordinate system, that we could capture any signal if our
tuning and amplification were sufficient, and that distance and an exact, shortest-path,
direction to a transmitting beacon could easily be calculated using basic geometry and
trigonometry.

Our initial design consisted of about five simple BJT (Bipolar Junction Transistor)
amplifier stages following the tuned antenna, and in simulation it appeared that our
design would work extremely well. After building the cicuit, however, we quickly
discovered the complexities and trade-offs of obtaining high gain and low noise,
especially with cascading amplifiers. This motivated our op amp design and the winding
of our own antennas, which helped significantly, but still left us with a usable range of
only about 10 to15 feet before our signal became washed out by noise from internal and
external sources. Luckily, this was sufficient for our classroom demonstration.

iSlide 18

We were also caught off guard by the effect of the figure eight radiation pattern on
the complexity of processing the signal. Additional research and guidance from a few
experienced professionals lead us to the successful methodology described previously
in this document. By comparing the amplitude of the signal detected by each antenna,
we were able to guide the user on a circular path along the radiation pattern of the
transmitting antenna toward the source beacon.

Improper Hardware Selection and Limitations of the Standard Frequency
We realized that our ADC sampling rate was insufficient to completely digitize our
analog signal about 24 hours before our demonstration. Originally, we were concerned
that we may not be able to modulate the signal to encode the data required for some of
our add-on features. Now we faced the possibility that our micro-controller would never
even get an accurate representation of the signal.

We understood that in order to recreate the signal we would need to sample at a rate
of at least two times our 457-kHz frequency, or 994-kHz (the Nyquist frequency). We
assumed that our 72-MHz processor would easily manage that task. It never occurred
to us that the microprocessor’s ADCs would operate on a slower 14-MHz clock and that
each sample would require at least 14 clock cycles, though realistically we were only
able to sample at a rate of more than half the Nyquist frequency.

To overcome this obstacle, we were able to find a hardware solution, to implement the
averaging and peak detection algorithms as described above.

Limited Public Documentation on the iPhone
When conducting preliminary research for this project, we discovered the serial
communication ports on the iPhone. This makes communicating with the iPhone
somewhat trivial. The downside to using the serial port was the lack of documentation
on how to use it. After a denied application for the Made For Apple (MFi) license, it
was necessary to find supplemental information on how to access the serial port.
Fortunately, we were able to find an open source tutorial on using the iPhone as a
serial UART [29]. Using the provided information, we were able to use C libraries and
functions to access the UART as in any UNIX-based software [29].

Cost
Unfortunately, this project broke the bank. Thank goodness for student loans! We had
anticipated spending about $500 on the project, but as shown in the bill of materials, we
actually spent over $1000, not to mention shipping, university parking fees, late night
snacks, and the loss of wages caused by taking time off work. The bill of materials for
the iSlide device itself, however, was only about $140.

iSlide 19

Conclusion
Though we faced several serious challenges, and paid for it in nearly every aspect of
our unbalanced lives, this was an incredible experience for us. Much additional work
would be required to take this project to production, but we worked well as a team
and were both stretched beyond our perceived limits at times. We learned a lot about
project planning and development and about the principles of electrical and computer
engineering. We were able take an idea and produce a working prototype by our
target deadline. We successfully designed and implemented an avalanche beacon
receiver consisting of a custom iPhone accessory and application. Our design was
compatible with commercial beacons and we were able to successfully guide users, to a
transmitting beacon.

iSlide 20

References
[1] Electromagnetic compatibility and Radio spectrum Matters (ERM); Avalanche Beacons; Transmitter-
receiver systems, ETSI Standard EN 300 718, 2001.

[2] “Avalanche Tranciever”; Wikipedia; Retrieved from http://en.wikipedia.org/wiki/Avalanche_
transceiver#Search_techniques in July, 2011.

[3] J. Hereford et al, “457 kHz Electromagnetism & the Future of Avalanche Transceivers,” International
Snow Science Workshop, Big Sky, MT, 2000 [Online]. Available: http://www.backcountryaccess.com/
index.php?id=171

[4] “Dual Antennas,” Antennas [Online]. Retrieved from http://beaconreviews.com/transceivers/
Antennas.asp in July 2011.

[5] E. Letterman, “There’s an app for that,” CCHeadliner, Nov. 2, 2011. Retrieved in December
2011 from http://ccheadliner.com/news/there-s-an-app-for-that/article_a8901100-04a1-11e1-8874-
001cc4c002e0.html

[6] Open source software retrieved in August 2011 from http://freemat.sourceforge.net/.

[7] Free software retrieved in August 2011 from http://www.linear.com/designtools/software/.

[8] P. Donohoe, “Wire Antennas,” ECE 4900 Lecture Notes. Retrieved in July 2011 from
 http://www.ece.msstate.edu/~donohoe/ece4990notes4.pdf.

[9] Frequency Wavelength Calculator, Retrieved in august 2011 from http://www.csgnetwork.com/
freqwavelengthcalc.html.

[10] iPhone 4s Technical Specification. Retrieved in December 2011 from http://www.apple.com/iphone/
specs.html

[11] “United States Frequency Allocation: The Radio Spectrum,” U.S. Department of Commerce, 2003.
Retrieved in December 2011 from http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf.

[12] “Loop Antenna,” Wikipedia. Retrieved in August 2011 from http://en.wikipedia.org/wiki/
Loop_antenna.

[13] “Ferrite Rod Antenna,” Antennas and Propogation. Retrieved in August 2011 from http://www.radio-
electronics.com/info/antennas/ferrite_rod_antenna/ferrite_rod_antenna.php.

[14] “RLC Circuit,” Wikipedia. Retrieved in July 2011 from http://en.wikipedia.org/wiki/RLC_circuit.

[15] "All About Loop Antennas for VLF-LF," Radio-Electronics Magazine, June 1983, pp83. Retrieved in
September from http://user.netonecom.net/~swordman/Radio/re-loop-article.htm.

iSlide 21

[16] K. Coates, “Resistors for Noise,” eHow. Retrieved in November from http://www.ehow.com/
list_7567847_resistors-noise.html.

[17] E. A. Richards el al, “Electrically Small Antenna Design for Low Frequency Systems,” 34th Annual
Antenna Applications Symposium, September, 2010. Retrieved in November 2011 from http://www.q-
track.com/Files/files/Electrically%20Small%20Antenna%20Design-final.pdf.

[18] “Ferrite Rods, Bars, Plates and Tubes,“ CWS Bytemark, 2002. Retrieved in December 2011 from
http://www.bytemark.com/products/rod1.htm.

[19] “Radio Propagation,” Wikipedia. Retrieved in July 2011 from http://en.wikipedia.org/wiki/
Radio_propagation.

[20] “Noise in Cascaded Amplifiers,” Radar Tutorial. Retrieved in November 2011 from http://
www.radartutorial.eu/09.receivers/rx09.en.html.

[21] B. Carter, “A Single-Supply Op-Amp Circuit Collection,” Application Report, Texas Instruments,
November 2010, pp. 11. Retrieved in November 2011 from http://www.ti.com/lit/an/sloa058/sloa058.pdf.

[22] “LT1632 / LT1633 45MHz, 45V/ms, Dual/Quad Rail-to-Rail Input and Output, Precision Op Amps,”
Linear Technology, 1998. Retrieved in October 2011 from http://cds.linear.com/docs/Datasheet/
16323fs.pdf.

[23] “RC Circuit,” Wikipedia. Retrieved in December 2011 from http://en.wikipedia.org/wiki/RC_circuit.

[24] J. Humes, Head of Engineering, Back Country Access, Colorado. Email correspondence on October
20th, 2011.

[25] M Eastwood, Principal, Card Access Inc., Utah. Personal interview in November 2011.

[26] K. Williston et al, “ADCs, DACs, and Sampliy Theory” in Digital Signal Processing, Burlington, MA,
Newness, 2009, ch. 1, sec. 1.2, pp. 28-36.

[27] “STM32F103x8 / STM32F103xB: Medium-density performance line ARM-based 32-bit MCU with 64
or
128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces,” STMicroelectronic, 2009.
Retrieved in August 2011 from http://www.robotshop.com/pdf/microprocessor-stm32f103rb-
datasheet-m30.pdf.

[28] “Peak Detector,” All About Circuits. Retrieved in December 2011 from http://
www.allaboutcircuits.com
/vol_3/chpt_3/5.html.

[29] Meyer, C. iPhone Serial Port Tutorial. Retrieved March 1, 2011, from http://devdot.wikispaces.com/
Iphone+Serial+Port+Tutorial

[30] Image retrieved in December 2011 from http://www.angelfire.com/electronic2/index1/
680uh-Loopstick-Small.jpg.

iSlide 22

Acknowledgements
We would like to thank the following individuals for freely offering their knowledge and
experience to aide us on this project (listed in alphabetically by last name):

● Al Davis, University of Utah. Though he would prefer not to be acknowledged
since “it’s his job to help us.” Thank you for mentoring us in the principles of
project management and development.

● Martin Eastwood, Card Access, Inc. Thank you for helping us troubleshoot our
circuit and for teaching us some useful techniques to increase gain and decrease
noise.

● Jim Humes, Back Country Access. Thank you for reviewing our initial design and
for offering helpful feedback.

● Nathan Mueller, Card Access, Inc. Thank you for helping us understand more
about radio theory, which lead us to make significant improvements to our RF
circuitry.

● Bruce Spratt, General Electric. Thank you for helping us understand some of the
principles of antenna theory.

Finally, thank you to our families and employers for supporting us and allowing us the
flexibility in our schedules that we needed to complete this project on time.

iSlide 23

Appendix A1 - iOS Source Code

iPhone GUI Files
//

// iSlideAppDelegate.h

// iSlide

//

// Created by Jacob Sanders on 6/13/11.

// Copyright 2011 University of Utah. All rights reserved.

//

#import <UIKit/UIKit.h>

@interface iSlideAppDelegate : NSObject <UIApplicationDelegate, UITabBarControllerDelegate> {

}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@property (nonatomic, retain) IBOutlet UITabBarController *tabBarController;

@end

//

// iSlideAppDelegate.m

// iSlide

//

// Created by Jacob Sanders on 6/13/11.

// Copyright 2011 University of Utah. All rights reserved.

//

#import "iSlideAppDelegate.h"

@implementation iSlideAppDelegate

@synthesize window=_window;

@synthesize tabBarController=_tabBarController;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)

launchOptions

{

 // Override point for customization after application launch.

 // Add the tab bar controller's current view as a subview of the window

 self.window.rootViewController = self.tabBarController;

 [self.window makeKeyAndVisible];

 return YES;

}

- (void)applicationWillResignActive:(UIApplication *)application

{

 /*

 Sent when the application is about to move from active to inactive state. This can occur for

certain types of temporary interruptions (such as an incoming phone call or SMS message) or when

the user quits the application and it begins the transition to the background state.

 Use this method to pause ongoing tasks, disable timers, and throttle down OpenGL ES frame

rates. Games should use this method to pause the game.

 */

}

- (void)applicationDidEnterBackground:(UIApplication *)application

{

 /*

 Use this method to release shared resources, save user data, invalidate timers, and store

enough application state information to restore your application to its current state in case it

is terminated later.

iSlide 24

 If your application supports background execution, this method is called instead of

applicationWillTerminate: when the user quits.

 */

}

- (void)applicationWillEnterForeground:(UIApplication *)application

{

 /*

 Called as part of the transition from the background to the inactive state; here you can

undo many of the changes made on entering the background.

 */

}

- (void)applicationDidBecomeActive:(UIApplication *)application

{

 /*

 Restart any tasks that were paused (or not yet started) while the application was inactive.

If the application was previously in the background, optionally refresh the user interface.

 */

}

- (void)applicationWillTerminate:(UIApplication *)application

{

 /*

 Called when the application is about to terminate.

 Save data if appropriate.

 See also applicationDidEnterBackground:.

 */

}

- (void)dealloc

{

 [_window release];

 [_tabBarController release];

 [super dealloc];

}

/*

// Optional UITabBarControllerDelegate method.

- (void)tabBarController:(UITabBarController *)tabBarController

didSelectViewController:(UIViewController *)viewController

{

}

*/

/*

// Optional UITabBarControllerDelegate method.

- (void)tabBarController:(UITabBarController *)tabBarController

didEndCustomizingViewControllers:(NSArray *)viewControllers changed:(BOOL)changed

{

}*/

@end

//

// FirstViewController.h

// iSlide

//

// Created by Jacob Sanders on 6/13/11.

// Copyright 2011 University of Utah. All rights reserved.

//

#import <UIKit/UIKit.h>

@interface FirstViewController : UIViewController {

}

@end

//

// FirstViewController.m

iSlide 25

// iSlide

//

// Created by Jacob Sanders on 6/13/11.

// Copyright 2011 University of Utah. All rights reserved.

//

#import "FirstViewController.h"

@implementation FirstViewController

/*

// Implement viewDidLoad to do additional setup after loading the view, typically from a nib.

- (void)viewDidLoad

{

 [super viewDidLoad];

}

*/

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation

{

 // Return YES for supported orientations

 return (interfaceOrientation == UIInterfaceOrientationPortrait);

}

- (void)didReceiveMemoryWarning

{

 // Releases the view if it doesn't have a superview.

 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc. that aren't in use.

}

- (void)viewDidUnload

{

 [super viewDidUnload];

 // Release any retained subviews of the main view.

 // e.g. self.myOutlet = nil;

}

- (void)dealloc

{

 [super dealloc];

}

@end

//

// SecondViewController.h

// iSlide

//

// Created by Jacob Sanders on 6/13/11.

// Copyright 2011 University of Utah. All rights reserved.

//

#import <UIKit/UIKit.h>

#import "Serial.h"

#import "Time.h"

@interface SecondViewController : UIViewController {

UIImageView *Background;

UIImageView *arrow;

UILabel *distance;

iSlide 26

//UILabel *distance2;

NSString *serialData;

UITapGestureRecognizer *touchGesture;

bool doubleTapped;

float angle;

UIButton *TransmitButton;

UIButton *ReceiveButton;

UIImage *receiveOnBtnImage;

UIImage *receiveOffBtnImage;

NSTimer *receiverTimer;

int fd; //file descriptor

char somechar[8];

BOOL receiverEnabled;

//int16_t someint;

unsigned int someint;

//int16_t serialInt;

}

- (IBAction)transmitHandler:(id)sender;

- (IBAction)receiveHandler:(id)sender;

- (void)highlightButton:(UIButton *)button;

- (void)highlightButtonOff:(UIButton *)button;

- (void)pollSerialRx:(id)sender;

@property (nonatomic, retain) IBOutlet UIButton *TransmitButton;

@property (nonatomic, retain) IBOutlet UIButton *ReceiveButton;

@property (nonatomic, retain) IBOutlet UIImageView *Background;

@property (nonatomic, retain) IBOutlet UIImageView *arrow;

@property (nonatomic, retain) IBOutlet UILabel *distance;

//@property (nonatomic, retain) IBOutlet UILabel *distance2;

@end

//

// SecondViewController.m

// iSlide

//

// Created by Jacob Sanders on 6/13/11.

// Copyright 2011 University of Utah. All rights reserved.

//

#import "SecondViewController.h"

@implementation SecondViewController

@synthesize TransmitButton;

@synthesize ReceiveButton;

@synthesize Background;

@synthesize arrow;

@synthesize distance;

#define M_PI_6 M_PI_4*(2.0/3.0)

// Implement viewDidLoad to do additional setup after loading the view, typically from a nib.

- (void)viewDidLoad

{

touchGesture = [[UITapGestureRecognizer alloc] initWithTarget:self

action:@selector(viewWasDoubleTapped:)];

[touchGesture setNumberOfTouchesRequired:2];

receiveOffBtnImage = [UIImage imageNamed:@"receive_off_but.png"];

[ReceiveButton setImage:receiveOffBtnImage forState:UIControlStateHighlighted];

receiveOnBtnImage = [UIImage imageNamed:@"receive_on_but2.png"];

[ReceiveButton setImage:receiveOnBtnImage forState:UIControlStateNormal];

[[self view] addGestureRecognizer:touchGesture];

[touchGesture release];

//init vars

iSlide 27

someint = 0;

angle = M_PI;

doubleTapped = false;

receiverEnabled = 0;

self.arrow.transform = CGAffineTransformMakeRotation(angle);

distance.text = [NSString stringWithFormat:@"00"];

distance.textColor = [UIColor greenColor];

[super viewDidLoad];

}

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation

{

 // Return YES for supported orientations

 return (interfaceOrientation == UIInterfaceOrientationPortrait);

}

- (void)didReceiveMemoryWarning

{

 // Releases the view if it doesn't have a superview.

 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc. that aren't in use.

}

#pragma -

#pragma UIResponder delegate overrides

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

{

//Change something when screen is pressed

}

- (void) viewWasDoubleTapped:(UIGestureRecognizer*)sender

{

 if (sender.state != UIGestureRecognizerStateEnded) // <---

 return;

 doubleTapped = true;

}

- (void)viewDidUnload

{

 [self setArrow:nil];

 [self setDistance:nil];

 [self setTransmitButton:nil];

[self setReceiveButton:nil];

 [super viewDidUnload];

 // Release any retained subviews of the main view.

 // e.g. self.myOutlet = nil;

}

- (void)dealloc

{

 [arrow release];

 [distance release];

 [TransmitButton release];

[ReceiveButton release];

 [super dealloc];

}

- (IBAction)transmitHandler:(id)sender

{

}

- (void)highlightButton:(UIButton *)button {

 [button setHighlighted:YES];

}

iSlide 28

- (void)highlightButtonOff:(UIButton *)button {

 [button setHighlighted:NO];

}

- (IBAction)receiveHandler:(id)sender

{

if(!receiverEnabled)

{

fd=OpenSerialPort(); // Open tty.iap with no hardware control, 8 bit, BLOCKING

and at 19200 baud

[self performSelector:@selector(highlightButton:) withObject:sender

afterDelay:0.0];

if(fd>-1)

{

write(fd,"*",1); // Write handshaking message over serial

read(fd,&someint,4); // Read 4 bytes over serial. This will block (wait)

untill the byte has been received

//serialData = [NSString stringWithCString:somechar

encoding:NSASCIIStringEncoding];

distance.text = [NSString stringWithFormat:@"a%d", someint];

if(someint == 1)

{

distance.text = [NSString stringWithFormat:@"Calling Thread..."];

receiverTimer = [NSTimer scheduledTimerWithTimeInterval:0.5

target:self selector:@selector(pollSerialRx:) userInfo:nil repeats:YES];

[receiverTimer fire];

}

receiverEnabled = 1;

}

}

else

{

//tell mcu to cease data xfer

write(fd,"!",1);

[self performSelector:@selector(highlightButtonOff:) withObject:sender

afterDelay:0.0];

receiverEnabled = 0;

[receiverTimer invalidate];

someint = 0;

distance.text = [NSString stringWithFormat:@"00"];

close(fd); //close serial port

}

}

/***

 pollSerialRx reads the antenna data from the microcontroller every 1 second (as

specified by the NSTimer thread)

**/

- (void)pollSerialRx:(id)sender

{

write(fd,"&",1);

read(fd,&someint,4); // Read 4 bytes over serial. This will block (wait) untill the

byte has been received

//serialInt = someint;

write(fd,"=",1); // Confirm reception of antenna data with "=" char

static int temp = 0;

if (!temp)

{

distance.textColor = [UIColor whiteColor];

iSlide 29

}

else

{

distance.textColor = [UIColor greenColor];

}

temp = !temp;

unsigned int direction = someint&0x3;

unsigned int dist = (someint>>4);

//adjust arrow and/or distance meter accordingly

if((direction >= 1) || (direction<=3))

{

if(direction == 1) // turn arrow left

angle = 5*M_PI_6;

else if(direction == 2) // set arrow straight

angle = M_PI;

else if(direction == 3) // turn arrow right

angle = 7*M_PI_6;

self.arrow.transform = CGAffineTransformMakeRotation(angle);

}

distance.text = [NSString stringWithFormat:@"%i ft.", dist];

}

@end

iSlide 30

iPhone Serial Files
//

// Serial.h

//

// Created by Jacob Sanders on 6/13/11.

// Copyright 2011 University of Utah. All rights reserved.

//

#include <stdio.h> /* Standard input/output definitions */

#include <string.h> /* String function definitions */

#include <unistd.h> /* UNIX standard function definitions */

#include <fcntl.h> /* File control definitions */

#include <errno.h> /* Error number definitions */

#include <termios.h> /* POSIX terminal control definitions */

#include <sys/ioctl.h> /* General terminal interface */

int OpenSerialPort();

//

// Iphone Serial I/O demo. see DevDot.wikispaces.com for more info //

// -- //

// By Collin Meyer (TheRain)

//

// 12-09-2007 revision 1 //

// Feel free to reuse this code. //

//

#include "Serial.h"

static struct termios gOriginalTTYAttrs;

int OpenSerialPort()

{

int fileDescriptor = -1;

// int handshake;

struct termios options;

//Open the serial port read/write, with no controlling

//terminal, and don't wait for a connection.

//The O_NONBLOCK flag also causes subsequent I/O on

//the device to be non-blocking.

//See open(2) ("man 2 open") for details.

fileDescriptor = open("/dev/tty.iap", O_RDWR | O_NOCTTY | O_NONBLOCK);

if (fileDescriptor == -1)

{

printf("Error opening serial port %s - %s(%d).\n",

 "/dev/tty.iap", strerror(errno), errno);

goto error;

}

// Note that open() follows POSIX semantics: multiple

// open() calls to the same file will succeed

// unless the TIOCEXCL ioctl is issued. This will prevent

// additional opens except by root-owned processes.

// See tty(4) ("man 4 tty") and ioctl(2) ("man 2 ioctl") for details.

int iotclRet = ioctl(fileDescriptor, TIOCEXCL);

if (iotclRet == -1)

{

printf("Error setting TIOCEXCL on %s - %s(%d).\n",

"/dev/tty.iap", strerror(errno), errno);

goto error;

}

iSlide 31

// Now that the device is open, clear the O_NONBLOCK

// flag so subsequent I/O will block.

// See fcntl(2) ("man 2 fcntl") for details.

if (fcntl(fileDescriptor, F_SETFL, 0) == -1)

{

printf("Error clearing O_NONBLOCK %s - %s(%d).\n",

"/dev/tty.iap", strerror(errno), errno);

goto error;

}

// Get the current options and save them so

// we can restore the default settings later.

if (tcgetattr(fileDescriptor, &gOriginalTTYAttrs) == -1)

{

printf("Error getting tty attributes %s - %s(%d).\n",

"/dev/tty.iap", strerror(errno), errno);

goto error;

}

// The serial port attributes such as timeouts and baud

// rate are set by modifying the termios

// structure and then calling tcsetattr() to cause the

// changes to take effect. Note that the

// changes will not become effective without the tcsetattr() call.

// See tcsetattr(4) ("man 4 tcsetattr") for details.

options = gOriginalTTYAttrs;

// Print the current input and output baud rates.

// See tcsetattr(4) ("man 4 tcsetattr") for details.

printf("Current input baud rate is %d\n", (int) cfgetispeed(&options));

printf("Current output baud rate is %d\n", (int) cfgetospeed(&options));

// Set raw input (non-canonical) mode, with reads

// blocking until either a single character

// has been received or a one second timeout expires.

// See tcsetattr(4) ("man 4 tcsetattr")

// and termios(4) ("man 4 termios") for details.

cfmakeraw(&options);

options.c_cc[VMIN] = 1;

options.c_cc[VTIME] = 10;

// The baud rate, word length, and handshake

// options can be set as follows:

cfsetspeed(&options, B19200); // Set 19200 baud

options.c_cflag |= (CS8); // RTS flow control of input

printf("Input baud rate changed to %d\n", (int) cfgetispeed(&options));

printf("Output baud rate changed to %d\n", (int) cfgetospeed(&options));

// Cause the new options to take effect immediately.

if (tcsetattr(fileDescriptor, TCSANOW, &options) == -1)

{

printf("Error setting tty attributes %s - %s(%d).\n",

"/dev/tty.iap", strerror(errno), errno);

goto error;

}

// Success

return fileDescriptor;

// Failure "/dev/tty.iap"

iSlide 32

error:

if (fileDescriptor != -1)

{

close(fileDescriptor);

}

return -1;

}

iSlide 33

Appendix A2 - MCU Source Code

 #include <stdlib.h>

 #include "dma.h"

 #define baud_rate 19200

 #define SERIAL_LED_PIN 2 //serial led connected to pin 1

 #define DEFAULT_LED_PIN 0 //board is on led on pin 0

 #define ANTENNA_X_PIN 19 // X-Antenna connected to pin 20

 #define ANTENNA_Y_PIN 20 // Y-Antenna connected to pin 19

 #define RAILED_VAL 3400

 #define LOW_VAL 2300

 #define X_TH 2100//1769

 #define Y_TH 2100//1769

 #define MAX_CNT 128

 #define MAX_CNT_POW 7

 #define LEFT 1

 #define STRAIGHT 2

 #define RIGHT 3

 #define OFFSET 150

 #define VREF 3.3

 #define DREF 4096

 #define ax_co 100.8

 #define bx_co -36.35

 #define cx_co 12.04

 #define dx_co -0.526

 #define ay_co 10.01

 #define by_co -8.127

 #define cy_co 8.509

 #define dy_co -0.6099

 void init_dma_xfer(void);

 void handler_adc_sample(void);

 void end_of_transf_irq(void) ;

 uint32 calc_adc_sequence(uint8 adc_sequence_array[6]);

 void set_near(void);

 void transmit(int*);

 //serial vars

 char incomingByte = 0;

 int data_out = 0;

 unsigned int buffer_size = 4;

 int receiverEnabled = 0;

 char antenna_data_conf = 0;

 //adc vars

 byte direction = 1;

 int distance = 0;

 //dsp vars

 int avgx = 0;

 int avgy = 0;

 //distance vars

 float dist_var = 0.0;

 float x_ant = 0.0;

 float y_ant = 0.0;

 float v_x_ant = 0.0;

 float v_y_ant = 0.0;

/*dual simultaneous sampling vars*/

 uint8 adc_length=1; //The number of channels to be converted per ADC channel

 int16 adc1_data; //Temporary binary data

 int16 adc2_data; //Temporary binary data

 uint32 adc_sequence=0; //Temporary

iSlide 34

 boolean dispReg=false;

 boolean dispVolts=true;

 boolean dispBin=false;

 float adc1_Vdata;

 float adc2_Vdata;

 float voltsConvert=3.350; //Conversion to voltage. Use for fine-tuning calibration.

 uint32 irq_fired = 0; //Optional for user function.

 uint32 rawDataArray[6]; //The dma temporary data array.

 uint8 ADC1_Sequence2[]={ // X stage 2

 13}; /* Set te sequence 1-6 for SQR3 (left will be first).

 Must top up to all 6 channels with zeros */

 uint8 ADC2_Sequence2[]={ // Y Stage 2

 15};

 uint8 ADC1_Sequence1[]={ // X Stage 1

 12}; /* Set the sequence 1-6 for SQR3 (left will be first).

 Must top up to all 6 channels with zeros */

 uint8 ADC2_Sequence1[]={ // Y Stage 1

 14};

 uint8 i;

 int samp_cnt = 0;

 byte stage1 = 0;

 byte stage2 = 0;

 void setup()

 {

 //setup serial output pins

 pinMode(SERIAL_LED_PIN, OUTPUT);

 digitalWrite(SERIAL_LED_PIN, LOW);

 pinMode(DEFAULT_LED_PIN, OUTPUT);

 digitalWrite(DEFAULT_LED_PIN, LOW);

 //setup adc input pins

 pinMode(ANTENNA_X_PIN, INPUT_ANALOG); //ch18

 pinMode(ANTENNA_Y_PIN, INPUT_ANALOG); //ch20

 pinMode(17, INPUT_ANALOG); //ch17

 pinMode(19, INPUT_ANALOG); //ch19

 adc_init(ADC1); //rcc_clk_enable(ADC1->clk_id), Must be the first adc command!

 adc_init(ADC2);

 adc_enable(ADC1); //ADC_CR2_ADON_BIT = 1

 adc_enable(ADC2);

 adc_calibrate(ADC1); //Optional

 adc_calibrate(ADC2);

 /*

 * The total conversion time is calculated as follows: Tconv = Sampling time + 12.5 cycles

 * Example, with an ADCCLK = 14 MHz and a sampling time of 1.5 cycles:

 * Tconv = 1.5 + 12.5 = 14 cycles = 1 μs

 */

 adc_set_sample_rate(ADC1, ADC_SMPR_1_5); // Setting all channels sampling time in cycles:

 adc_set_sample_rate(ADC2, ADC_SMPR_1_5); //1,5;7,5;13,5;28,5;41,5;55,5;71,5;239,5.

 /*

 From ST Manual: In dual mode, when configuring conversion to be triggered by an external

event,

 the user must set the trigger for the master only and set a software trigger for the slave

to

 prevent spurious triggers to start unwanted slave conversion. However, external triggers

must be

 enabled on both master and slave ADCs

 */

 adc_set_exttrig(ADC1, 1); //External trigger must be Enabled for both ADC.

 adc_set_exttrig(ADC2, 1); //External trigger must be Enabled for both ADC.

 adc_set_extsel(ADC1,ADC_ADC12_SWSTART); //External trigger Event, ADC1 only!

iSlide 35

 /*

 Once the scan bit is set, ADC scans all the channels selected in the ADC_SQRx registers.

 A single conversion is performed for each channel of the group.

 After each end of conversion the next channel of the group is converted AUTOMATICALLY.

 If the DMA bit is set, the direct memory access controller is used to transfer the converted

 data of regular group channels to SRAM after each EOC.

 */

 /***SELECT BETWEEN THE FOLLOWING OPTIONS*/ //

 ADC1->regs->CR1 |= 1 << 8; // Set scan mode

 ADC2->regs->CR1 |= 1 << 8; // Set scan mode

 //scan_mode(ADC1,1); //USE ONLY WITH DADC.H (not in adc.h)

 //scan_mode(ADC2,1); //USE ONLY WITH DADC.H (not in adc.h)

 adc_set_reg_seqlen(ADC1, adc_length); //The number of channels to be converted.

 adc_set_reg_seqlen(ADC2, adc_length);

 /*

 * calc_adc_sequence(ADCx_Sequence) converts the SQR3 6 channels' (each ADC1 and ADC2) list

into

 * a valid 6 X 5=30 bits sequence format. Load the sequence onto one of 3 SQR registers.

 * For more channels, repeat the same for SQR2, SQR1. (For SQR1 4 channels only!)

 */

 ADC1->regs->SQR3 |= calc_adc_sequence(ADC1_Sequence2);

 ADC2->regs->SQR3 |= calc_adc_sequence(ADC2_Sequence2);

 /***SELECT BETWEEN THE FOLLOWING OPTIONS*/ //

 ADC1->regs->CR1 |= 6 << 16; //Regular simultaneous mode ADC1 only !!*/

 //set_dual_mode(ADC1,DADC_MODE_6); // Not in adc files.//USE ONLY WITH DADC.H

 ADC1->regs->CR2 |= 1 << 8; ///ADC_CR2_DMA_BIT 8=1, Use DMA for adc. ADC1 only.

 //adc_dma_enable(ADC1); //Not in adc files //USE ONLY WITH DADC.H

 /* Setup of the DMA for the adc data */

 init_dma_xfer();

 //set the datarate for USART

 Serial1.begin(baud_rate);

 }

 void init_dma_xfer(void)

 {

dma_init(DMA1); // MUST initiate before ANY other setting!!!!.dma_init: rcc_clk_enable(dev-

>clk_id)

 dma_setup_transfer

 (

 DMA1, //dma_device

 DMA_CH1, //dma_channel

 &ADC1_BASE->DR, //*peripheral_address,

 DMA_SIZE_32BITS, //peripheral_size,

 rawDataArray, //*memory_address, user defined array.

 DMA_SIZE_32BITS, //memory_size,

 DMA_MINC_MODE //dma mode, Auto-increment memory address

);

 dma_set_priority(DMA1, DMA_CH1, DMA_PRIORITY_HIGH); //Optional

 dma_set_num_transfers(DMA1,DMA_CH1,adc_length);

 dma_attach_interrupt(DMA1, DMA_CH1,end_of_transf_irq);

 dma_enable(DMA1,DMA_CH1); //CCR1 EN bit 0

 DMA1->regs->CCR1 |= DMA_CIRC_MODE; //Not in dma files. Set circular mode CCR1 CIRC bit

5

 } //end init_dma_xfer*/

 void end_of_transf_irq(void) //User function

 {

 irq_fired = true;

 }

 //Loop is called repeatedly after creating setup() function

iSlide 36

 void loop()

 {

 //direction = !direction;

 //digitalWrite(SERIAL_LED_PIN, LOW);

 digitalWrite(DEFAULT_LED_PIN, LOW);

 if(Serial1.available() > 0) //Check if data has been send from iPod

 {

 incomingByte = Serial1.read(); //Store the incoming data from iPod

 if(incomingByte =='*') // '*' means the receiver has been enabled

 {

 // digitalWrite(DEFAULT_LED_PIN, HIGH); //LED means we received handshake char

 receiverEnabled = 1;

 //timer.resume();

 int confirm = 1;

 Serial1.write(confirm); //Confirm the handshake

 while(Serial1.available() <= 0) //wait for ipod to request data

 { }

 antenna_data_conf = Serial1.read(); //read ipod's request (& - send antenna data)

 if(antenna_data_conf == '&')

 {

 while(1)

 {

 digitalWrite(DEFAULT_LED_PIN, LOW);

 /***SELECT BETWEEN THE FOLLOWING OPTIONS*/ //

 ADC1->regs->CR2 |= 1 << 22; //software_start(ADC1 only)

 //software_start(ADC1,1); //Not in adc files USE ONLY WITH

DADC.H

 while(!(dma_get_isr_bits(DMA1,DMA_CH1)&1)) // Wait on dma transfer complete on

channel (DMA_ISR_TCIF1_BIT)

 {

 dma_clear_isr_bits(DMA1,DMA_CH1); //Global Clear DMA1 channel1 transfer

flags */

 /***SELECT BETWEEN THE FOLLOWING OPTIONS*/ //

 ADC1->regs->SR |= 1<<1 ; //Clear the end-of-conversion bit

*ADC_SR_EOC_BIT) = 0;

 //end_of_conversion_clear(ADC1); //Not in adc files. //USE ONLY WITH

DADC.H

 }

 digitalWrite(SERIAL_LED_PIN, HIGH);

 adc1_data = (rawDataArray[0] & 0xFFFF);

 adc2_data = (rawDataArray[0]>>16 & 0xFFFF);

 //data_out = adc1_data<<8;

 //digitalWrite(DEFAULT_LED_PIN, HIGH);

 if((adc1_data >= X_TH)

 &&(adc2_data >= Y_TH))

 {

 avgx = avgx + (adc1_data>>MAX_CNT_POW); //divide each elmt by 8 for avg

 avgy = avgy + (adc2_data>>MAX_CNT_POW); //divide each elmt by 4 for 2*y_avg/8

 samp_cnt++;

 }

 if(samp_cnt == MAX_CNT)

 {

 digitalWrite(DEFAULT_LED_PIN, HIGH);

 if((avgx < (avgy + OFFSET * 4 / 5)) //*X_TH))

 && (avgx > (avgy - OFFSET)) //*X_TH))

 ||

 (avgy < (avgx + OFFSET)) //*X_TH))

 && (avgy > (avgx - OFFSET)))//*X_TH)))

 {

iSlide 37

 direction = STRAIGHT;

 }

 else if(avgx > avgy) // turn user right

 direction = 3;

 else if (avgx < avgy) // turn user left

 direction = 1;

 v_x_ant = (avgx)*VREF/DREF;

 v_y_ant = (avgy)*VREF/DREF;

 x_ant = ax_co*exp(bx_co*v_x_ant)+cx_co*exp(dx_co*v_x_ant);

 y_ant = ay_co*exp(by_co*v_y_ant)+cy_co*exp(dy_co*v_y_ant);

 dist_var = sqrt(sq(x_ant)+sq(y_ant));

 if(dist_var > 8)

 distance = 99;

 else if(dist_var < 3)

 distance = 0;

 else

 distance = (int)(dist_var+0.5); //Add 0.5, or else the float to int

conversion always rounds down

 data_out = distance<<8|direction;

 // If stage 2 is railed, switch to stage 1

 // Need to switch back if it's not railed

 // Comment out until switch-back is implemented

 /* if(((avgx >= RAILED_VAL) || (avgy >= RAILED_VAL))

 && !stage1)

 {

 stage1 = 1;

 adc_disable(ADC1);

 adc_disable(ADC2);

 dma_disable(DMA1, DMA_CH1);

 //switch adc to sample stage 1 channels

 set_near();

 // Setup of the DMA for the adc data

 init_dma_xfer();

 }

 else if(((avgx <= LOW_VAL) || (avgy <= LOW_VAL)) && !stage2)

 {

 stage2 = 1;

 adc_disable(ADC1);

 adc_disable(ADC2);

 dma_disable(DMA1, DMA_CH1);

 //switch adc to sample stage 1 channels

 set_far();

 // Setup of the DMA for the adc data

 init_dma_xfer();

 }*/

 //store direction in the bottom nibble, distance in the upper 28 bits

 data_out = ((distance<<4) | direction);

 transmit(&data_out);

 avgx = 0;

 avgy = 0;

 samp_cnt = 0;

 }

 }

 }

 else if(antenna_data_conf == '!')

 {

 serial_reset();

 }

iSlide 38

 }

 else if(incomingByte == '!') // '!' means turn the receiver off

 {

 serial_reset();

 }

 }

 }

 uint32 calc_adc_sequence(uint8 adc_sequence_array[1])

 {

 adc_sequence=0;

 for (int i=0;i<6;i++) // There are 6 available sequences in each SQR3 SQR2, and 4 in

SQR1.

 {

 /*This function converts the array into one number by multiplying each 5-bits channel

numbers

 by multiplications of 2^5

 */

 adc_sequence=adc_sequence + adc_sequence_array[i]*pow(2,(i*5));

 }

 return adc_sequence;

 } //end calc_adc_sequence

 void transmit(int *data)

 {

 Serial1.flush();

 Serial1.write(data, buffer_size);

 while(Serial1.available() <= 0) //wait for confirmation that ipod received antenna

data

 { }

 antenna_data_conf = Serial1.read(); //read data reception status

 if(antenna_data_conf == '!') //not implemented on ipod

 {

 serial_reset();

 }

 while(Serial1.available() <= 0) //wait for ipod to request data

 { }

 int x = Serial1.read();

 }

 void serial_reset(void)

 {

 data_out = 0;

 receiverEnabled = 0;

 //timer.pause();

 //timer.refresh();

 //adc stuff

 stage1 = 0;

 Serial1.end();

 Serial1.begin(baud_rate);

 }

iSlide 39

Appendix A3 - Matlab Code

antenna.m
Used for sizing the components of the tunned antenna.

f = 457e3;

B = 160*2*pi;

w0 = 2*pi*f;

L = 23e-6

% Based on H(s), s = 1/sqrt(C*L)

C = 1/(w0^2*L)

w = w0 + pi*B;

R=1/C/B

decoupling_cap.m
Used for sizing capacitors in RC networks.

% info from http://www.ecp.cc/cap-notes.html

%

% Zcap = Rin - j/wC; Zcap = 0 when Rin = -j/wC

%

Rin = 2e3

f = 457e3;

Cmin = 1 / (2 * pi * Rin)

signal.m

Used for displaying captured oscilloscope data and simulating the location algorithms.

clear all;

%% PROGRAM PARAMETERS

%

% Definitions:

%

% frequency - Operating freaquency of receiver device.

%

% steps_per_sample - Sample rate given in O-scope time steps.

%

% smooth_count - For high frequency noise reduction each sample

% is averaged with previous samples. This variable defines the

% number of previous samples that will be included in the

% calculated average.

%

% on_factor,

% avg_amp_count - For pulse detection each peak detected is

% compared with the average amplitude of the previous

% period(s). If it is greater than the average by a factor

% defined in on_factor, it is assumed that a pulse has begun.

% if it is less than the average, it is assumed that the pulse

iSlide 40

% has come to an end. The number of previous periods averaged

% is defined by the value i avg_amp_count.

%

frequency = 457e3;

steps_per_sample = 10;

smooth_count = 10;

on_factor = 10;

avg_amp_periods = 10;

% Load sig_data generated by oscope_reader.m

load('phase360.mat');

start_file = 0;

file_count = length(phase360_count);

%file_count = 1;

for (i = 1 + start_file : start_file + file_count)

clc;

printf('Analyzing file: %d/%d', i-start_file, file_count);

t_step = phase360_step(i);

count = phase360_count(i);

sig(:,1:3) = phase360_sig(:, (i*3-2):(i*3));

period = round (1 / (frequency * t_step * steps_per_sample));

avg_amp = zeros (1, 3);

avg_amp_count = avg_amp_periods * period;

avg_amp_bucket = zeros (avg_amp_count, 3);

pulse_on = zeros(on_factor, 3);

on_time = zeros(on_factor, 3);

sig_max = zeros(1,3);

sig_max_index = zeros(1,3);

sig_max_count = zeros(1,3);

peak_count = zeros(1,3);

%% POLLING LOOP:

%

% This loop represents the infinite polling loop that will be

% implemented by the microprocessor

%

for (j = 1 : (count / steps_per_sample))

sig_sample = sig(1 + (j - 1) * steps_per_sample, 1:3);

%% AVERAGE AMPLITUDE:

%

% Calculate the average amplitude (using the absolute value

% of the signal) of the passed "avg_amp_count" number of

% elements in the signal array.

%

if (j > 2 * avg_amp_count)

for (k = 1:3)

for (l = 2:on_factor)

if (pulse_on(l, k) == false)

if (sig_sample(k) > (avg_amp(k) * l))

pulse_on(l,k) = true;

on_time(l,k) = j;

end

end

end

end

end

index = mod (j, avg_amp_count) + 1;

avg_amp(1:3) = avg_amp(1:3) - avg_amp_bucket(index, 1:3);

avg_amp_bucket(index, 1:3) = abs (sig_sample(1:3) / avg_amp_count);

avg_amp(1:3) = avg_amp(1:3) + avg_amp_bucket(index, 1:3);

% Following used only for testing and modeling

% {

result_amp(j,1:3) = avg_amp;

% }

iSlide 41

end

x(i) = result_amp(length(result_amp)*3/4:length(result_amp),2);

y(i) = result_amp(length(result_amp)*3/4:length(result_amp),1);

x_to_y = result_amp(:,1) ./ result_amp(:,2);

avg(i) = mean(x_to_y(length(x_to_y)*3/4:length(x_to_y)));

% maxes(i,1:3) = max (result_amp(:,1:3))

%theta(:,i) = 360 * (on_time(:,2) - on_time(:,1) + (0.25 * period)) / period;

end

%theta

plot(atan(avg));

oscope_parser.m
Used to parse files generated by an oscilloscope into a format easily readable by
freeMat.

clear all;

%% O-SCOPE FILE PARSER

file_count = 85;

file_start = 0;

dest_file = 'phase360.mat';

filename_0 = 'angle_data/tek';

filename_1 = 'ALL.csv';

step_range = [6, 1, 6, 1];

count_range = [7, 1, 7, 1];

scale_range = [12, 1, 12, 3];

sig_range = [15, 1, inf, 3];

for (i = 1 : file_count)

clc;

printf('Read file(s): %d/%d', i, file_count);

file = [filename_0, num2str(file_start + (i - 1), '%04d'), filename_1];

% Get O-scope horizontal values

step = real (csvread (file, step_range(1), step_range(2), step_range));

count = real (csvread (file, count_range(1), count_range(2), count_range));

% Get O-scope vertical values

scale = real (csvread (file, scale_range(1), scale_range(2), scale_range));

sig = real (csvread (file, sig_range(1), sig_range(2), sig_range));

% Apply O-scope scalling factor to data

for (j = 1 : count)

sig (j, 1:3) = sig (j, 1:3) ./ scale;

end

phase360_sig (:, (3*i-2):(3*i)) = sig (:,1:3);

phase360_step(i) = step;

phase360_count(i) = count;

end

save (dest_file, 'phase360_step', 'phase360_count', 'phase360_sig');

clc;

printf('%d files read to %s.\n', file_count, dest_file);

iSlide 42

Appendix B - Bill of Materials

Table 1 - iSlide Bill of Materials

Part Source Unit
Cost

Qty. Total
Cost

Pod Breakout http://shop.kineteka.com/products/92-podbreakout-ipod-
iphone-ipad-breakout-board.aspx

$14.99 1 $14.99

LeafLabs
Maple 32-bit
MCU

RobotShop.com $49.99 1 $49.99

AM Rod
Antennas

http://www.angelfire.com/electronic2/index1/loopstick.html $2.47 2 $4.96

Prototype
Boards

Raelco $3 3 $9

Op Amps Digikey.com $6.50 7 $45.50

Discrete
Components

Raelco, Digikey, ECE Stockroom, Radioshack -- -- ~$15

Table 2 - Development Bill of Materials

Part Source Unit
Cost

Qty
.

Total Cost

Additional
AM Rod
Antennas

http://www.angelfire.com/electronic2/index1/loopstick.html $2.47 6 $14.82

Additional
Variable
Capacitors,
Op Amps,
and Other
Basic
Components,
Prototype
Boards

ECE Stockroom, Digikey, RadioShack. -- -- ~$200

Apple iPhone http://www.verizonwireless.com/b2c/splash/iphone.jsp $649.99 1 $649.99

Avalanche
Beacon

http://www.ebay.com $120.00 1 $120.00

iSlide 43

http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://shop.kineteka.com/products/92-podbreakout-ipod-iphone-ipad-breakout-board.aspx
http://www.robotshop.com/leaflabs-maple-32-bit-arduino-compatible-microcontroller.html?utm_source=google&utm_medium=base&utm_campaign=jos
http://www.robotshop.com/leaflabs-maple-32-bit-arduino-compatible-microcontroller.html?utm_source=google&utm_medium=base&utm_campaign=jos
http://www.robotshop.com/leaflabs-maple-32-bit-arduino-compatible-microcontroller.html?utm_source=google&utm_medium=base&utm_campaign=jos
http://www.alibaba.com/product-gs/240993298/Antenna_Coil.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.alibaba.com/product-gs/240993298/Antenna_Coil.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.angelfire.com/electronic2/index1/loopstick.html
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.verizonwireless.com/b2c/splash/iphone.jsp
http://www.ebay.com/
http://www.ebay.com/
http://www.ebay.com/
http://www.ebay.com/
http://www.ebay.com/
http://www.ebay.com/
http://www.ebay.com/

Appendix C1 - Complete Circuit Schematic

iSlide 44

Appendix C2 - Photograph of Final Product

iSlide 45

