Team Cool Beans

Poor Man’s LoJack

Our solution to stolen cars and short range vehicle security systems

Project Website:

Table of Contents

Team Cool Beans POOr Man’S LOJACK.........ccviiiiieiecie ettt st ene s 4
00 I T 1 o 11 o o T USSP 4
B2 \Y o (V7 1 o o USSR 4
RS = o Lo I D 1= o (o) S 4
1.4 Required Functionality for DEMO Daycccovveeiieiieeie et 4
1.5 Optional Functionality Time ATTOWINGccuoiiiririiiiesieeie ettt 5

2 HarOWAIE DESIGN ...ttt e et b bbbt s bt st e b e e et b ne e enes 5
2.1 HaradWare DESCIIPLION........eeieeeeiieeieeiesteesteeeeseesteeee e e steeee s e esseesseeseesseenseeseesseensesneesseensens 5
2.3 HAIAWAIE PIECES......cue ettt ettt s e st et e et e s b e e te et e sse e seestesaeentesnnesneenneans 5
2.3 L REQY BANK ... e et sr e 5
2.3 2 REIGY DIIVES ...ttt b ettt e e bbbt b e se e se e s 6
2.3.3 Arduino/Cellular SNIEI..........cceeiieecee et nne e 6
2.3.4 OBDI INEITACE....ccueeeecieeiteece ettt et st e s e be e tesreesreeneereenne e 6
2.3.5 GPS RECEIVENuiiiiieiiee ettt s ettt e et e s te e et e e sae e et e e e st e e teesaeeebeeaneeeaseesneeenneeannas 6
2.3.6 Hardware POWEr REQUITEIMENES........couuriirierieriirieeeeee et e et see b s sse e enes 6
2.4 Hardware BIOCK Diagram........c.ccveiuieieiiesieciteseesteeieseesteesae e ae e s e e eseesneenseeneesneenseens 7

S o1 LT Z= TS D= Lo o S 8
G0 D 1= o] o1 o o USSP 8
3.2 SOMWAIE PIECESveeieeeiee ettt ettt e et sae e et e e sae e et e e s aeeenbeesaeeenbeesaeeeteesneeeneennnes 8

3.2.1 Arduino LoJack MSG Based CONrOlErcccccvieereeieseere e 8
I € S Y 1 1= g = ot TSSO 8
3.2.3 OBDII INLEITACE.....ccueeiiieiie ettt e e st e e sbe e s e e e seesnneenbeesneeas 9
3.2.4 ArduinNO TCP/IP INEEITACEeeiie ettt e e e ere s 9
3.2.5 ANndroid TCP/IP INEEITACEeeieeieee ettt sneens 9
3.2.6 Android Lo Jack MSG Based CONtrollerc.ooeeieeieieesece e 9
G 372 A AN 1o | 10 o I €16 1 SRR 9
3.3 Hardware BIOCK DIagIaM.........ccecueiueriiriiriesiesieeeeee ettt sne b n e e e 10

S o 1 [S 11

5 Testing and Integration (Milestones from schedule detailed)ccovvveveeiicce e 12
ST I SRS 12

L 0= 1 01 = = TSRS 12
5.1.2 Complete Power and INLErface.........cooveveieeiiere e 12
5.1.3 Arduino OBDIT INEIfACING.....ccueiieiieiiecee ettt s nae s 12
LN T - SRS 12
ES T2 AN o (o] o 1SS 13
AR 2 TS Tolr= 0T | 0] o 1N o o S 13
5.2.2 Android to Arduino COMMUNICALIONccceiueeiueeieceeie et enas 13
5.2.3 Finalize Interface between Android and Arduinog..........ccoceeveeieneneenene e 13
5.2.4 Fully FUNCLION@l TNEEGIaiON.......oiuiiiieieeieiesie ettt 13
ST 2N 0 L1 oo TS 13
5.3.1 BaSiC ArduinNO COUE........cccueiieeieeie e cieste ettt ettt ae s e s teenesre e neenesneenns 13

5.3.2 Connect the cell phone and the ArdUINOcoeeiiriiiienee e 14

5.3.3 Full testing Of ArdUINO & Carcooeeieiiiiieie ettt s 14

5.3.4 Getting thiNgS 0 WOTK........c..oiiiiiiieiee e 15

5.4 COMMUNICALIONS......eitteieeeiesteesteetesseesteeaesseesseesesseesseessesseesseesseaseesseessesssesseesseensesseessenneesses 15
5.4.1 Purchase Parts & CONStruct iNterface..........ccvevvvieevicie e 15
5.4.2 Design COdE Of CEIl 10 CaF.....c.eiiueeiiiieieeie et s 15
XIS B 00! 1.1 = 1 Fo! o [T 16
5.4.4 Getting thiNgS t0 WOIK......c..ciieiieie et e e ens 16

B RISK MITIGALION ..ottt e e e beetesseesreeaseeaeenseensesaeesneensesnnenrens 16

T BIll Of M A TAIS ... oo 17

Team Cool Beans Poor Man’s L oJack

1.1 Introduction

Our senior project will be the design and implementation of a low cost, LoJack type car
communication system. Our goal is to put together a two part system that will implement the
vehicle tracking ability of the original LoJdack system, along with some additional features
including: a remote start, a remote door lock/unlock feature, and remote vehicle monitoring
system. All of these features will be controlled or displayed on an Android phone used by the
owner of the car. An Arduino microcontroller will provide the vehicle based computing
necessary to achieve this functionality.

1.2 Motivation

The motivation for re-designing a LoJack type system is three fold. While LoJack requires a
monthly service fee, our implementation will allow the use of any GSM based wireless provider.
In the United States this would mean being able to use one of T-Mobile sor AT& T’ s prepaid or
contract plans for a much lesser value. Android phones are also becoming increasingly popular
and while most new cars have remote features they have a limited range usually within only 100
feet or less. Because the Poor Man's LoJack System is GSM based, range is only limited by the
coverage of the provider on both the vehicle and Android phone. Additionally we will be
implementing extra features that LoJack does not currently have.

1.3 Technical Description

In order for this system to work we are going to build an embedded system for the car using an
Arduino board and an Arduino shield card that privides a cellular interface, meaning that you
would simply need to purchase a sim card and install it in the device to begin communication
between the Android platform and the car. The Arduino will use NMEA 2.0 GPS location strings
from an rs232 GPS receiver to determine the car’s location, it will then package the GPS data,
OBDI|I data, and door pin status and send all that to the Android device. The Android device will
receive the data packets and display them to the GUI to be displayed in an understandable format
to any user. The Android will package the command headed for the car and send them to the car
based platform where it will be parsed and used to trigger different pins on the Arduino board to
change the boards logical state. The pins attached to these command lines will be connected to a
circuit card where solid state relays will then be used to lock or unlock the doors and start the
car.

Power adapters and converters will need to be devised to power each of the components off of
12VDC.

1.4 Required Functionality for Demo Day

Remote GPS vehicle tracking using Google Maps

Remote engine start

Remote lock and unlock

Basic security door open status

OBDII remote data monitoring (rpm, speed, coolant temp)

1.5 Optional Functionality Time Allowing

GPS Finding the car in the parking lot using Google Maps
Security between the Android and Car platforms

2 Hardware Design
This section describes the hardware implementation of our LoJack system.

2.1 Hardwar e Description
The bulk of our analog hardware design will be in the OBDII interface and relay driver board.
Our digital hardware will mostly be COTS items.

2.3 Hardware Pieces
Our hardware implementation will contain the following pieces where work will need to be done
by the group.

Relay Bank - automotive grade relays wired to drive the starter, and door locks.

Relay Driver - circuit that will process TTL signals from the Arduino as well as door pin signals
from the car.

Arduino/Cédlular Shield - will need to be wired to send and receive from other hardware
pieces.

OBDII interface - will provide the voltage level and logical conversion between the car and
serial port on the Arduino.

GPS Antenna — will provide NMEA 2.0 GPS strings to the Arduino serial port at a given baud
rate.

Hardware Power Requirements — will need to be addressed such that the incorporated
hardware will run off 12 Volts.

2.3.1 Relay Bank
A bank of 3 SPDT 30A relays will be used to start the car, lock the car doors, and unlock the car
doors. Wiring should be fairly straight forward here.

2.3.2 Relay Driver

The purpose of this circuit will be to amplify the signals from the Arduino output’s to drive the
relays. As such the driver board will need to be diode protected so that back EMF does not ruin
the driver circuitry. This circuit will also be used to condition any inputs to the Arduino to TTL
levels.

2.3.3 Arduino/Cellular Shield

The Arduino, Cellular Shield, and GSM module will be bought. An antenna of the correct band
will need to be bought and attached to the GSM unit. Integrating the Arduino into the vehicle
will be fairly straightforward. Voltage regulation will be key as we are told the GSM module is
sensitive to voltage variation. Voltage regulation is planned to be handled by the cellular shield
this however may not be enough.

2.3.4 0OBDII interface

The vehicle OBDII port operates at +12VDC logic levels. A voltage level conversion will have
to be done to interface the Arduino to the OBDII interface. The plan is to use an OBDII
interpreter chip to handle the voltage level trandation. Also since our vehicle uses pulse width
modulation interfacing to the OBDII port with nothing more than a serial port is not possible.
Therefore the OBDII interpreter will provide level conversion and a UART interface to talk to
the Arduino serial port.

2.3.5 GPS Receiver

An rs232 serial GPS receiver will be used to output NMEA 2.0 location strings to an Arduino
serial port. The GPS will need to be externally powered and will most likely be the Garmin
16xHVS.

2.3.6 Hardwar e Power Requirements

Hardware Element Current Draw Native Voltage Power
Relay Bank N/A(only when fired) | 12V -
Relay Driver 200mA 12V 2.4W
Arduino/Cellular Shield | 600mA 5V 3W
OBDI|I interface N/A(OBDII powered) | N/A(OBDII powered) | -

GPS Antenna 40mA 12V 0.48W
Totals - - ~6W

2.4 Hardwar e Block Diagram

Arduino Cellular Shield Cell Tower

Relav Relay
I Bank I Driver A Arduino

Android Phone

Android
Application

. OBDI ~ Arduino Serial interface GPS Antenna/

Interface :
Receiver

3 Software Design

This section describes the software implementation of our LoJack system.

3.1 Description

A lot of our software design work will be designing a message interchange format between the
Arduino and Android platforms. Our software will also need to take apart a few different
message types from the OBDII port and GPS.

3.2 Softwar e Pieces

Our software implementation will contain the following pieces where work will need to be done
by the group.

Arduino LoJack MSG Based Controller —will be the main controller piece for the car based
platform.

GPS Interface — will intercept messages coming from the serial ports and feed messages to the
MSG controller.

OBDII Interface — will act as the go between the OBDII Interface hardware and the MSG
controller.

Arduino TCP/IP Interface — responsible building and disassembling packets of data between
Arduino TCF/IP Library and the Arduino Based MSG Controller.

Android TCP/IP Interface — responsible for building and disassembling packets of data
between Android TCP/IP Library and the Android based MSG Controller.

Android Lo Jack MSG Based Controller —will be the main controller piece for the android
based platform.

Android GUI — will be the piece that the user sees and interacts with to provide the LoJack
services.

3.2.1 Arduino LoJack M SG Based Controller

The Arduino MSG based controller will accept and send messages between different send and
receive threads. The controller will need to time the starting of the car and send signals to the
control pins.

3.2.2 GPSInterface
This module will need to take apart the NMEA 2.0 strings and send them to the Android device.

3.2.3 OBDII Interface
This module will need to transact between the PID’ s in the ECU of the vehicle and requests from
the controller.

3.2.4 Arduino TCP/IP Interface

This piece will be responsible for building and disassembling packets of data between Arduino
TCP/IP Library and the Arduino Based MSG Controller.

3.2.5 Android TCP/IP Interface

Responsible for building and disassembling packets of data between Android TCP/IP Library
and the Android based MSG Controller.

3.2.6 Android Lo Jack M SG Based Controller

This module will be the main controller piece for the android based platform.

3.2.7 Android GUI

Will be the piece that the user sees and interacts with to provide the LoJack services

3.3 Hardware Block Diagram

Arduino Enviroment

GPS Rx
Thread

LoJack MSG
d OBDII Rx
Base Thread
Controller

OBDII Tx
Thread

TCP/IP
Packet
assemble

TCP/IP
“acket Send

TCPJIP TCP/IP
Packet Packet
Parse Listener

ArduinoThread Librar

Arduine Cellular

(]
(@)}
m
]
U
m
o
I
=
u
w
s
(@]
wn
o
£
=l
el
A
g

Library

Y

J1850 PWM
Protocol

Android TCP/IP

Car
OBDIl Interface

PID’s
(Diagnostic
Information)

Android Enviroment

TCP/IP

Packet Lojack
assemble MSG

TCP/IP Based

Packet Controller
Parse

4 Schedule

Team Cool Beans

Today's Date:

Project Lead: Team Cool Beans

4/4/2011 Monday

(vertical red line)

Start Date: 8/22/2011 Monday
First Day of Week (Mon=2): 4 _ [
A hl]] A A N
w g 2
z 2 & = Slglglglglglglglgl=(=(2 (222222
8 & 828 Lolnlnlniliiizlnigliisliiilalals
§ F g8 @ <:2444488060886¢22223233
Task 8 8 £ 2 ¢ 2832228888882 8K3 IS
WBS Tasks leed Stat End & £ = 8 §
1 Car Interface Piip 822711 1271811 119 0% 85 o 119 [N
11 Relay Bank for Car 8/22/11 9/20/11 30 0% 22 0 30]
1.1.1 Purchase Relay s 8/22/11 8/26/11 5 0% 5 0 5 .
1.1.2 Install Relay's In Car 8/27/11 9/03/11 8 0% 5 0 8 -
113 Build/Test Relay Driver 9/04/11 9/19/11 16 0% 11 0 16 [
12 Complete Power and Interface 92111 10/20/11 30 0% 22 0 30]
1.2.1 Stable 5V Arduino Power. 9/21/11 10/10/11 20 0% 14 0 20 []
1.2.2 Stable GPS Power 10/11/11 10/20/11 10 0% 8 0O 10 []
13 Arduino OBDII Interfacing 10/21/11 11/19/11 30 0% 21 0O 30 []
13.1 Build/Test OBDII Interface 10/21/11 11/01/11 12 0% 8 0O 12 []
13.2 Inst Arduio and get to work 11/02/11 11/19/11 18 0% 13 0 18 [
1.4 Finalize 11/20/11 12/18/11 29 0% 20 0 29 [
2 Android Greg sre2n1 120811 109 0% 79 o 100 [
2.1 Basic android App 8/22/11 9/15/11 25 0% 19 0 25 []
211 Android Research 8/22/11 9/03/11 13 0% 10 O 13 []
212 GUI Functionality 9/04/11 91511 12 0% 9 0 12 [|
213 Polish GUI w/ Simon 11/20/11 11/29/11 10 0% 7 O 10 [|
22 Connect Android & Arduino 9/16/11 10/30/11 45 0% 31 O 45]
221 Research Network Protocol 9/16/11 9/30/11 15 0% 11 0 15]
222 IP Cell & Comp /w Simon 10/01/11 10/15/11 15 0% 10 O 15 [|
223 IP cell & Arduino /w Simon 10/16/11 10/30/11 15 0% 10 O 15 []
23 Full Testing of Arduino & Car 10/31/11 11/19/11 20 0% 15 0 20 [
231 Aduio Taking /w Bryon 10/3U/11 11/09/11 10 0% 8 0 10 []
232 Finalize Documentation 11/10/11 11/19/11 10 0% 7 0 10 []
24 Finalize 11/20/11 12/08/11 19 0% 14 0 19 []
3 Arduino Byon 821 121811 119 0% 85 o 119 [N
3.1 Basic Arduino Code 822711 9011 30 0% 22 o 30 [N
3.11 Research Arduino 82211 83u11 10 0% 8 o 10 [N
3.1.2 Build Threads 9/01/11 9011 10 0% 7 0 10 []
313 Setup Serial Interface 9/11/11 9/2011 10 0% 7 0 10 []
32 Connect Cell & Arduino 9/21/11 10/20/11 30 0% 22 0 30 s
321 Communcate with Chip 9/21/11 9/30/11 10 0% 8 0 10 []
322 Setup IP to Computer 10/0/11 10/10/11 10 0% 6 0 10 [|
323 Connect Android & Arduino 10/11/11 10/20/11 10 0% 8 O 10 []
33 Full testing of arduino & car 10/21/11 1119711 30 0% 21 0 30 I
331 Write code for relays 10/21/11 11/01/11 12 0% 8 0 12 []
33.2 Test on relay with phil 11/02/11 11/19/11 18 0% 13 0 18 [
34 Finalize 11/20/11 12/18/11 29 0% 20 O 29 []
4 Communications smon 82211 121811 119 o% 85 o 119 [
41 Purchase Pars & Interface 82211 83111 10 0% 8 o 10 [N
411 Purchase All parts 8/22/11 8/31/11 10 0% 8 0 10 [|
412 Design Cell Images 9/01/11 11/24/11 8 0% 61 0 85]
413 Polish GUI 11/20/11 12/01/11 12 0% 9 0O 12 []
42 Network Communications 9/16/11 10/30/11 45 0% 31 0 45 I
421 Research Network Protocol 9/26/11 10/10/11 15 0% 11 0 15 []
422 Cellto Comp. over IP 101111 10/2511 15 0% 11 0 15 [
423 Cell to Arduino over IP 10/26/11 11/09/11 15 0% 11 0 15 []
43 Documentation 11/10/11 11/29/11 20 0% 14 0 20 [
431 Collect Documentation 11/10/11 11/19/11 10 0% 7 0 10 []
432 Help Every one Finish 11/20/11 11/29/11 10 0% 7 O 10 [|
44 Finalize 11/30/11 12/18/11 19 0% 13 0 19 [

5 Testing and Integration (Milestones from schedule detailed)
5.1 Car

5.1.1 Car Interface
The completion of the car interface will follow the schedule. Components will be
designed/built/tested in the following order. First relay wiring, next relay driver circuit,
and finally OBDI|I interface. It is not our opinion that leaving the OBDII interface for last
introduces any additional risk (work hard stuff first) as the first two components should
be easy to build.
5.1.1.1 Purchase Relays
Buy (2) SPDT 30 amp automotive style relays. These are available at any
automotive parts house or junk yard.
5.1.1.2 Install Relaysin Car
The relays purchased will be installed in the car and tested manually to trigger
ignition on and starter function.
5.1.1.3 Build/Test Relay Driver Circuit
The relay driver circuit will be designed built and tested using an Arduino to test
trigger a relay not necessarily attached to the car. A bench test should be
sufficient until integration can be performed.

5.1.2 Complete Power and I nterface
The power requirements for the devices have been assessed and stable power supplies
will need to be acquired.
5.1.2.1 Stable 5V Arduino Power
The GSM module attached to our cellular shield for the Arduino is very sensitive
to power fluctuations a stable 12V to 5v power supply will need to be sourced.
5.1.2.2 GPS Power
The Garmin GPS we intend to use is capable of accepting 12VDC. It will need to
be wired into the 12V of the car and may need additional voltage stabilization.

5.1.3 Arduino OBDII Interfacing

The Arduino will need to know how to signal the OBDII port and receive the response.
Software to do this will need to be written. The circuit to perform the electrical
trandation between the Arduino serial port and OBDII port will need to be designed and
built.
5.1.3.1 Build/Test OBDI| interface
The OBDII circuit will be first tested with a serial port on a computer to ensure
that the messages are being sent and received properly by the interface. Then the
circuit can be tested with the Arduino serial port with some assurance that the
circuit isworking.
5.1.3.2 Install Arduino and get to work
Once the other members of the teams get their part’s working and we are able to
send messages over the cellular tower we should be able to install the Arduino in
the car and test for functionality.

5.1.4 Finalize

Polish up any interfaces that the user will see and work any bugs that will crop up.

5.2 Android
5.2.1 Basic android App

The Basic android application will feature a polished user interface and correctly
interpret commands from the user to be sent across the network. To accomplish this we
will need to research Android programming methods, create control software, and
interface the control software with a polished GUI.

5.2.1.1 Figure out Android

Research into Android programming to implement GUI, controls and TCP/IP

communication.

5.2.1.2 Application Prototype

A basic application with mock-up interface that will read button presses, correctly

interpret the commands and prepare the commands for transmission over the

network.

5.2.1.3 Finished Application I nterface

Replace mock-up interface with polished design and insure commands are

correctly read from user.

5.2.2 Android to Arduino Communication
In this stage we will demonstrate two-way communication between the Arduino and the
Android Phone across the cellular network.
5221 I mplement Protocol on Android
Demonstrate correct communication output from Android Phone.
5222 Communication Over Network
Demonstrate communication between Android and Computer across Cell
Network.
5.2.2.3 Communication With Android
Demonstrate communication between Android and Arduino across Cell Network.

5.2.3 Finalize I nterface between Android and Arduino
Fully functional implementation of user input being properly translated to the Arduino
output signals.
5231 Functional I nterface between Arduino and Android
Demonstrate correct interpretation of commands between Android and Arduino
across Cell Network
5.2.3.2 Help with documentation
Finalize documentation of Android Application

5.2.4 Fully Functional I ntegration
Demonstrate afully functional system that meets all specifications.
5.3 Arduino

5.3.1 Basic Arduino Code

The basic Arduino setup will go as follows. First since Bryon has never worked on an
Arduino before he should build a basic Arduino circuit that can turn on leds and other fun
functionality. Next a simple threading system should be build that will do something

through threads. Lastly, a serial interface should be setup that will allow the Arduino to
communicate with a serial device.

5.3.1.1 Figure out the Arduino

An Arduino board should be borrowed from Eric Brunvand. From there a system
should be setup that will alow for the turning on and off of LEDs. The code
should be formed that will alow for the testing of these LEDs.

5.3.1.2 Setup the Threads

Threads should be setup with a basic scheduler. The scheduler will need to be
played with later to find the one that will function the most efficiently. This
scheduler should be setup to turn on and off the LEDs to identify the switching of
threads

5.3.1.3 Setup the Serial Interface

The multi-serial communication should be setup. This should set-up 3 different
ports to communicate with another device. This can be tested using a computer
and hyper terminal.

5.3.2 Connect the cell phone and the Arduino

The connection of the cell phone and Arduino should happen in the following fashion.
First a serial communication that was setup in the last task should be setup to
communicate with the cell chip as per the specifications. Set it up to where the cell chip
will communicate with a computer. Lastly set up the cell chip to communicate with the
android phone.

5.3.2.1 Communicate with chip

Following the specifications, from the cell chips design document, setup the cell
chip communication to a serial port. This communication can be tested by sending
text messages to a cell phone.

5.3.2.2 Setup | P to computer

Next setup a connection that can be transmitted to the |P address of a computer.
This means that the packets will need to be setup so that a specific IP address can
read them.

5.3.2.3 Connect Android & Arduino

Now the Android should be setup to accept data packets from the Arduino. Work
with Simon and Greg to get the packets transferring both from and to the Android
correctly.

5.3.3 Full testing of Arduino & car

The Arduino will now need to be hooked up to the car. It should be able to accept simple
messages from the Android and turn on the relays. It should also be able to send
messages back to the Android on current status of the car.

5.3.3.1 Writecodefor relays

The code should now be able to take simple messages and make changes to the
relays. The code should also be able to collect data serially from the car and pass
it back to the Android. A test function should be built that can be activated to test
all of the relays and the receiving of information from the ODBII system. Thisis
so that the device can be tested without the Android present.

5.3.3.2 Test on relay and ODBI I with Phil

All bugs in any of the relay or ODBII communications should be fixed at this
point and time. The device at this point should allow for the car and Arduino to
do full communications. Also the test code from the last module can be used for
testing when an Android is not available.

5.3.4 Getting thingsto work
Polish up any bugs or issues that may pop-up. If needed help any other class mates with
efforts they have remaining.

5.4 Communications

We will need to find out how to communicate via a cellular network using an Arduino board
and an android cell phone. Hopefully the network traffic will allow for push notifications to
the car, if not we may have to use atext to wake strategy.

5.4.1 Purchase Parts & construct interface
In order to be user friendly our project will need to have a clean and intuitive interface to
run the custom
Components as described below.
5.4.1.1 Purchase All parts
Use the shopping list on the back of this paper to purchase all the necessary parts
and components, check the Arduino board out from the University, and get
everything ready for assembly.
5.4.1.2 Design Cell Images
Design a user friendly and intuitive graphica interface for the cell phone, that
would ultimately allow users to click on a graphic and have their car respond
accordingly.
5.4.1.3 Work with Greg on interface
The last part would be to make the graphical user interface connect with the back
end software to function as planned.

5.4.2 Design code of cell to car

Creating the back end software to run on the android phone will definitely be a big part
of this project

And we expect this to be the biggest hurdle, but we plan on using push notifications to
alert the arduino when a function is requested.

5.4.2.1 Figure out network

As it stands, interfacing through a cellular network is currently somewhat of a
mystery since no one in our group has done so before, we plan to search the web
and AT& T’ sdeveloper site for answers to these questions.

5.4.2.2 | P cell and computer

Communications between the cellular network and android cell phone shouldn’t
be too difficult, as the phone is aready connected to the network by default, we
hope to just use the built in network interface libraries to accomplish the
communications required.

5.4.2.3 1P cell and arduino

Communicating between the Cellular network and the arduino board will be a
challenge. First off, getting the board to be accepted by the network may be a
little tricky on its own, once that is done though, the use of push notifications will

be ahurdle aswell. Luckily there is a good amount of documentation available on
the internet describing how to perform these tasks, so we plan to use that as a
reference.

5.4.3 Documentation

Since documentation is an important part of every project, we plan to document every big
achievement as it is made, and uploading that progress to our website, to be assembled
and printed at the end of the

semester.

5.4.3.1 Manage documentation
We hope to use the team website as a repository for us to upload documents, so
they can be viewed by the whole team, and function as a marker of progress for
everyone else.
5.4.3.2 Help everyone complete it
Hopefully group meetings will function as a good way of motivating people to
write up the documentation as they go, if anyone needs any help with something
they’re not sure about, we will decide on the desired answer as a group to keep
the project moving along.

5.4.4 Getting thingsto work

Perhaps the most important part will be to get everything working the way it should, we
plan on working as a team to get this project finished, allowing all of usto come to each
other for help if there is something we are absolutely stuck on.

6 Risk Mitigation

The risks that Bryon may encounter are limitations found within the cell Arduino. While coding
the device cellular specific code and other code should be made modular. In the case that the
memory or shortage of pins becomes an issue the following tasks need to take action. If this
occurs we will need to purchase the Arduino mega 2560 which will act as an expansion port. The
moving of modules over to the mega 2560 should then be done. At this point Greg will need to
help Bryon in catching up to the tasks found.

There will be issues with the Arduino trying to get so many things running on a single board. To
fix this we will be using threads to control each of the different reading and writing parts of the
board. We will aso need to incorporate some thread controls to make sure that certain more
important threads finish. The thread control also needs to make certain that it doesn’t “choke’
any other thread from being able to do its job.

Another risk we have is the Arduino only has a single serial communications port. To fix thiswe
will need to use serial software and other pins to make software based serial communications to
the other devices.

There may be issues getting the P communication to work between the Arduino and the cell
phone. If that become the case Simon will need to get text based communication working on the
cell phone and Bryon will need to decrypt those messages on the Arduino board.

We will select Phil’s Contour as our vehicle. There is no security to bypass and the ODB2 and
other connections on the car are easily available. If the case happens that we fry circuitry on the
car we will need to find an alternative backup or demo our project on something less expensive.
The CAN bus communication will only happen once all other components are working well. The
CAN bus will need to be interfaced using a specia interfaced designed by Phil. If at any point

we run out of time or cannot get it to work we will revert back to the functioning version without
CAN bus support.

There have been reported issues regarding the voltage regulator on the Arduino Cell Shield
causing chip malfunction. As we understand it the GSM chip overheats from over voltage. This
defect requires some more investigation but Phil will fix this by getting a good heat sink on the
chip and also making sure that the voltage regulator is always within a safe range for the board.
There is a'so aworry that security may be an issue. To fix this we will need to work on a basic
encryption method for the cell and Arduino that will encrypt the message based on a number that
we will place on the Arduino. Also in this case Simon will need to make for the ability to enter
both the phone number of the receiving Android in the interface as well as the android’s secret
encrypting number.

7 Bill of Materials:

Arduino Processor Card:

Free

Check out from the U of U

Arduino Cell Shield:

$99.95
http://www.sparkfun.com/products/9607
Cell Shield Antenna:

$6.99
http://www.cutedigi.com/product_info.php?cPath=242 263& products id=4180
Android phone:

Free

Gregory Beck

Sim card:

$5.95

AT&T Store

Wires and cabling:

$10.00 ?

Warnock Engineering Building Supply Shop
Relays:

$8.99 each bank
http://www.radioshack.com/product/index.jsp?productl d=2049722& CAWEL A1D=10759
6643

Lab Power Supply for testing:

Free

Engineering Lab at U of U

ODBII Connector:

$5.00
http://www.carplugs.com/products.html
Project Boxes:

TBD

To Be determined based on size of final project
GPS Antenna (if applicable):

$35.90

http://www.cutedigi.com/product_info.php?cPath=248& products _id=4289

