Spring

11

Computer Numerical Control Machine
Project Proposal

Anh Luong luong@eng.utah.edu
Willis Lutz Ibzinuse@gmail.com
Jared Pringle jaredpringle86(@gmail.com
Ashton Snelgrove snelgrov(@eng.utah.edu

Website:
http://www.eng.utah.edu/~luong/Anh_Luong/Team_Teal/Team_Teal.html

Scrum:
https://teamteal.scrumd.com/

University of Utah - Computer Engineering

mailto:luong@eng.utah.edu
mailto:lbzinuse@gmail.com
mailto:jaredpringle86@gmail.com
mailto:yashton@gmail.com
http://www.eng.utah.edu/~luong/Anh_Luong/Team_Teal/Team_Teal.html
https://teamteal.scrumd.com/

Table of Contents

TABLE OF CONTENTS wottitismisisss sessassssssssssses 2
1. INTRODUGCT ION uttuiususesssssssssssssesssssssssssssssssssssssssess sesss s sss 3
2. PROJECT DESCRIPTION wousiissssmsmsssssssssssssssmssasssssssssssassssssssssssnsss 3
R T T PPN 3
2.1.1 SVG 3
2.1.2 G-code. 3
2.1.3 Algorithm 3
2.1.4 Enhanced Machine Control 4
2.1.5 GUI 4

2.2 HARDWIAREctrertetressestsessestsesssssssesssssssesssssssssssssssssssssessssssesssssssssssssssassssssasssssssnssssssassssssasssssssssssssssssssssssassssesssssssessasassssass 5
2.2.1 Microcontroller. 5
2.2.2 Analog Circuit. 5
2.2.3 Stepper Motors 6
2.2.4 Positional Feedback System 6
2.2.5 Motor Housing 6
2.2.6 Frame and Screws 7
] G T 8

L Y I S I T\ . 9
AL SCHEDULE ..cooustetreueectressessssess s ssesssssssessssssssssssssssssssssssssssssnsssssssssssssssnssssesssssssssssessessssessessssassessssessnssssessssassessssnssessesastessnsnssessneas 9
4.2 TASK DESCRIPTIONS ...covueesessessesessessessessessessessessessessesssssesssssssssssssssssssssssssssssessessesssssessessssssssssassassassssssssssassssssssassasesssasesseas 10
4.2.1 Micro-controller 10
4.2.2 Analog Circuit 11
4.2.3 Positional Feedback System and Motor Housing 11
4.2.4 Frame 12
4.2.5 Software 12

5. POINT PERSON cucuiutcusssessasssssmsssassss ssssssssssssssssssssmassssssssssssssssssssssess 13
6. BILL OF MATERIALS cststiusss s ssassssssass sessssssesssss ssssssssssssssssssess 14
7. REFERENCES ..ocistscsiss st sssssssssssssssssssss st sesssss sesssss seassss st ssssass ssssssssssssss sssss s snsssssssssess 15
APPENDIX A: ANALOG CIRCUIT DESIGNS...coimmmmsssssmssmsssmssasssssssssssssases 16
APPENDIX B: PROJECT GANTT CHART oooicmssmsssmsssasssssssssssnsses 18

1. Introduction

This proposal outlines the planned construction of a three-axis Computer Numeric Control (CNC)
machine, for the purpose of rendering two dimensional vector graphics. The CNC machine and control
software will take vector image input in the form of Scalable Vector Graphics (SVG) files, and render
the image onto a medium. The medium will be a flat surface, such as conventional paper, white board,
or light reactive surface. The machine will be able to move on three axes and will (if design time
permits) be capable of drawing with multiple instruments, i.e. pencil, laser, etc. The machine should
meet the goals of balancing high precision and speed, use-limited resources and as many recycled parts
as possible, and be reproducible by a hobbyist.

2. Project Description
2.1 Software

2.1.15VG

Scalable Vector Graphics (SVG) is a World Wide Web Consortium (W3C) standard for describing two
dimensional vector image files. Vector images consist of shapes, line vectors and style information
instead of the arrays of pixels available in raster images like JPEG or PNG. SVG files are ASCII text
documents in XML format, and can be manipulated with a drawing program (such as the open source
editor Inkscape) or with a text editor as plain text. The open standard and XML format allows the files
to be read in as text and then parsed into a usable data structure by our image conversion software.

2.1.2 G-code

G-code is a industry standard for a machine control instruction set, specified in several international
standards including RS274D and ISO 6983. G-code files are ASCII text files, consisting of a sequence
of command codes. Each command code is, in general, a single alphabetical character followed by
numeric parameters. While standards exist, many proprietary extensions and modifications are
introduced by manufacturers for their specific machines. The G-code produced by our machine will
conform to the standard expected by EMC2.

2.1.3 Algorithm

The image conversion software will take SVG image file on standard input and output G-code on
standard input. The Python programming language has been chosen to write the software, due to ease
of use, ubiquity, and integration as a scripting language in third party applications such as Inkscape and
EMC. Our algorithm for conversion will consist of several conversion stages, each stage providing a
transformation towards G-code.

The first step will be to de-sugar the SVG file. SVG is a complex format, allowing advanced constructs
like embedded bitmap images, text and font effects, and stroke and fill styles. To make the rendering

3

feasible, all the extraneous elements will be removed or simplified to basic paths. Some of these
simplifications, such as text to path conversion of text or polygon to path conversion, may be
performed as scripted actions inside the Inkscape editor. This step may consist of several independent
reductions.

Once the SVG file has been simplified, the resulting XML will be parsed into a data structure
consisting of a set of paths. A series of object classes will be defined to provide a convenient storage
medium for the variety of paths descriptions used (e.g. Bezier curves, simple Cartesian lines).

Next, the paths will be ordered into a render priority queue. One simple algorithm would be to define a
starting location for the write head, locate the path closest in distance to this location, and add it to the
render queue. Calculate the location of the write head at the end of this path, and add the next nearest
path from that location. Repeat this process until there are no line segments. This greedy algorithm
should provide good performance by limiting movement between paths. Drawing closely located
elements would also provide an aesthetically pleasing rendering process, as the write head will not
simply scan down the page, but instead render the drawing in a more varied way.

Finally, the priority queue will be used to generate the actual G-code paths. Each path will generate a
pen down command and a sequence of movement instructions, followed by a pen up command a move
instruction to the starting location of the next path. G-code supports a variety of control codes, and will
be better understood once we have written a series of test G-code scripts. The completed G-code
instruction file will be output on standard input.

2.1.4 Enhanced Machine Control

The G-code instructions would then be sent to Enhanced Machine Control (EMC), an open-source
machine control suite. EMC provides a G-code interpreter and a low level hardware abstraction layer.
The hardware abstraction layer emits simple controls signals for motor steps and direction, and allows
the configuration of signal layout to be sent the CNC machine over a serial or parallel connection.

2.1.5GUI

We plan on implementing a GUI interface for the user of the CNC machine which will interface with
the EMC2 open source software. This GUI will enable the user to upload an SVG image from file into
our algorithm where it will be converted to G-code and sent into the EMC2 software which will send
commands to the microcontroller. The GUI will feature an easy interface that will allow the user to
view data retrieved from the EMC2 software such as current X, Y, and Z positions. If we have time
and are able to, we would also like to implement an interface to Inkscape or some similar SVG image
drawing program so that the user could draw an image in Inkscape and then push a button which would
send their drawing into our GUI so that the CNC machine could reproduce it.

2.2 Hardware

2.2.1 Microcontroller

The Atmel AVR family Atmega328p has been selected as the micro-controller for this project. This
micro-controller provides a variety of features needed for the project, while being cheap and readily
available. The controller has 1Kb of RAM and 32Kb of program flash, 23 general purpose 10 lines, as
well as a variety of hardware features such as in-system programming and RS-232 and SPI serial
communications. The AVR family is well supported by the gcc-avr project and the Eclipse C
development environment.

The hardware abstraction layer of the EMC software will send signals over either serial or parallel
connection from the host computer to the micro-controller. Serial communication over RS-232 is built
into the controller, while parallel communications are supported over general 10 pins.

The controller will interpret the control signals from the computer and send control signals to each of
the three motor drivers. Each motor will require three output control lines: enable, drive, and direction.
Each position feedback system requires two input control lines for the quadrature encoded signal. The
total number of control lines is fifteen, leaving eight remaining 10 pins available for parallel or serial
communications.

The EMC software supports positional feedback from the controlled machine, so the option exists to
pass the signals directly to the control software and allow the control software to make adjustments.
The other option also exists to do any positional compensation internally on the micro-controller.

2.2.2 Analog Circuit

An analog circuit allows for control of one stepper motor. The circuit is essentially the stepper motor
driver. The circuitry that we will use will be based around the L297 and L298 stepper driver combo.
The L297 takes the signals from the microcontroller and translate them into stepping signals to send to
the L298. The L298 is the actual driver of the stepper motor. The L298 provides a capacity of 2A of
current per coil. The L297 is also great for its ability to sense the amount of current flowing through the
coils and will chop the signal to the L298 chip so that the average current flow is more desirable. This
allows custom current to fix the motor. A couple of different circuit configurations are shown in
Figures 5, 6 in Appendix A.

We also found another solution which is a SOIC package that would require surface soldering. Two
chips that we found and could use are the Allegro A3967 or Allegro A3982, which are stepper motor
drivers with translators all in one chip. The sample schematic of the Allegro A3982 is shown in Figure
7 in Appendix A. The advantage is having only one chip to solder instead of the two chips. It also has
better DMOS technology, and no extra heat sink or cooling solution is required. We don't have to create
a diode array because there are built-in diodes and synchronous rectification. L297 and L298 chips are
rare to find, and the L297 is extremely expensive and low on sources, L298 even though replacement

chips are available, the chip is still extremely expensive (see Bill of Materials for pricing). Another
benefit of the Allegro chips is that they are smaller in size. One down side is it is difficult to solder and
chip replacement in case of burn out or defects would be expensive.

2.2.3 Stepper Motors

Stepper motors are more precise for a task like routing for CNC machines such as the one we are
building for our project. Unlike DC motors, the stepper motors are brushless, synchronous electric
motors that can divide a full rotation into a large number of steps. This allows for precise control
without any feedback system depending on the size of the project and application. The stepper motors
are constant power devices. As speed increases the torque decreases, so we'll have to try to find a
happy medium for the need to drive our CNC machine. Stepper motors come in different types,
unipolar which are easy to drive but have low torque and speed, and bipolar which are hard to drive but
have high torque and high speed.

We are looking for a motor with high speed and high precision capabilities and could carry a
reasonably sized object-so the bipolar would be a reasonable choice. Since we have an available
transformer that allows 24V, we'll look for that with our motors. We will be using a 2A driver board so
the motor should only take 2 amps of current per phase. Micro stepping with 1.8 degrees and 200 steps
per revolution would be great for speed and also the precision that we wanted.

2.2.4 Positional Feedback System

The positional feedback system that we will use to track the position of all three stepper motors at any
given time will come from a track ball mouse. The position of a track ball mouse is determined by
spinning wheels that are attached to the actual tracking ball as the ball is moved, the wheel attached to
the ball spins. This wheel is situated between a light emitting diode and a light sensor. The wheel itself
has slots cut into it around the circumference of the wheel at regular intervals so that when the wheel
spins, the led light is picked up by the light sensor. This information can then be used to determine
how much the wheel has spun. We will attach this feedback system to our spinning stepper motor shaft
via our motor housing. We can then use this data to calculate how many turns the screw attached to the
motor housing has rotated. By knowing the threads per inch on the screw we can then calculate how
far in a given direction the sled attached to the screw has moved.

2.2.5 Motor Housing

The motor housing will be very basic design with a plate that has holes for mounting a stepper motor to
the plate. There will be a hole that will allow the shaft of the stepper motor to poke through to the
other side of the plate and move freely. Beside the stepper motor, there will be a gear mounted to a
screw on one side and a shaft on the other side. The shaft will be inserted into a hole in the plate next
to the stepper motor shaft which we will also mount a gear onto. Attached to another shaft next to the
screw gear will be our positional feedback system which will spin as the screw gear spins. We are also
planning for the possibility of needing more intermediary gears between the stepper motor and the
screw gear if necessary to reduce torque by gearing down to the screw gear, or gearing up to the screw
gear to increase the speed at which the screw rotates. We will base our gearing around the abilities of

6

the stepper motor we decide to use. Each axis (X, Y, and Z) will have a motor housing unit.

2.2.6 Frame and Screws

The CNC machine is created around the ability to draw on a canvas. This canvas is 12 inches by 12
inches. We needed the machine to have tolerances that meet and exceed 12 inches on each side so it
would be able to travel 15 inches in each direction, giving it 1.5 extra inches of room on each side.

19+ X —avic g A

Figure 1: Top View

The sled is shown in Fig. 1 and is a 12 x 12 inch plate. It moves along the Y axis, secured in place with
two rails. The rails are 36 inches long allowing the sled to travel smoothly. The sled needs to be light
as possible so it will be constructed out of Plexiglas, allowing as little torque to turn the threaded rod
that move the canvas up and down. A side profile shown in fig. 2 shows a better view of the sled
movement in the Y-axis.

Figure 2: side view

7

The movement of the writing instrument will be attached to a block. This block will be able to move
along the X-axis shown in fig. 1 by a threaded rod. This block is secured to two rails that allow it to
glide from side to side approximately 16 inches. A frontal view of the frame, shown in figure 3, shows
the block in the middle with the two rails and the threaded rod in the middle. Because our writing
instrument is only a pencil or pen, we can bring the instrument close to the canvas and lift it only a few
millimeters off of the canvas. This can be done with a small motor or actuator.

——— — s -~ A

g — . 2 pas
] | | fo ||
B o |
t PR e
j | 3
: 4 W
e =

Fig.3: Front view

3. Risks

In the bill of materials, we have couple parts that are hard to find like L297 and L298. We could find
some replacement like L297/1 for L297, for the L298 there are two options: L298N or L298P, these are
a little easier to find than the L297 chip but still very rare.

We might have to find more, motors on top of the three we minimally need, in case of emergency and
to have as replacements in case of failure. Salvaged motors tend to not have data sheets which will
make it difficult for us to determine which motors will meet the needs of our project. We need to find at
least two salvaged motors with the same specs for the X and Y directions of our frame.

The analog circuitry is quite confusing, and there are many different configurations to choose from. We
just have to understand enough to make the circuit work for our own needs. Duplicating a working
circuit is easy but we will have to figure out our analog circuit prototype first.

The structure tolerances in the final motor housing and the precision of the screw rods and motors may
not be high enough forcing us to buy more expensive parts. This could up materials costs to less
manageable levels than we are planning on spending.

8

The timings of motor controls might not be synchronized right between the 3 axes. Also, micro-
controllers are quite powerful, but the complexity of the task may be too demanding of the limited
resources that the micro-controller has available to it. Low level C programming also introduces
significant challenges to programmers, from which mistakes could easily arise.

The algorithm for the image conversion software is complex, and we have to figure out how to create
our own. Since we have coding experience, developing the algorithm will be the challenge at this step.

Integration has also proved to be a challenge in past work and we have to make sure we have
everything working perfectly together. Minor or major adjustments will cause delays and could hinder
project progress.

Multiple communicating parts allow for good modularization, allowing testing in isolation but causing
increased complexity during integration.

4. Milestones
4.1 Schedule

& 'ru.;;lnuu.-- |J.rl=m |5un Firish [T : |.|:||-| - I::rr| . .J_au'm_ I.rum:- e IIOn-::-(. = II‘wamh-
1 —. Micro-controller SGdays Mon 5211 Mon 7/18/1 e e
T e Maotor/Micro-controller interface 1ldays Mon5/2/11 Sum 5/15/11 (N
[| AVR Development tools 1ldays Mon5/2/11 Sun 5/15/11 B
4 [Serial port communications 12days Mon 5/16/11Tue 5/31/11
Ll Motor pulse signals 12days Mon 5/16/11Tue 5/31/11
& W Concurrent motor signals 10days Wed 6/1/11 Tue 6/14/11
T @ Interpretation of contral signals 12days Wed B/15/11Thu 630,11
" [integration testing with motor dircuits 10 days Fri 7411 Thu 7/14/11
@ integration testing with pos. feedback 12 days Fri7/1/11 Mon 7/18/11)
e Analog Circuit 55 days Mon 5/2/11 Fri 7f15/11
1 | Acquire parts 11ldays Mon5/2/11 Sun 5/15/11
1 W CAD design and pSpice simulation 11days Mon5/2/11 Sun 5/15/11 (="
1 W Circuit constrsction 12days Mon 5/16/11Tue 5/31/11 %E
Ml | Dscilloscope testing 10days Wed B/1/11 Tue 514,11
= e Integration testing with motor 12days Wed B/15/11Thu 5/30/11 E
B W Integration testing with 23days Wed Fri 7/15/11 S
micro-controller E/15/11
17 2 Positional Feedback Systemn & Motor 65 days Mon 5/2/11 Sun 7/31/11
Housing
W W Construct Cirouit 22 days Mon 5/2/11 Tue 5/31/11 E=&
¥ | | Software for PFS input signals 10days Wed 6/1/11 Tue 6/14/11
W W Integration testing of PFS with 1ldays Fri7/1/11 Fri?f15/11 -
micro-controdler
I Design mator housing 1ldays Fri7/1/11 Fri#/15/11
2 @ Build and test motor hausing 12days Sat 7/16/11 Sem 7/31711 %
“ [Frame 65 days Mon 5/2f11 Sun 7/31/11
M [Design frame and draw blueprints 11 days Mon 5/2/11 Sen 5/15/11 W
B WY Lead screw construction 22days Mon 5/16/11Tue 6/14/11
¥ [Build the frame 12days Wed 6/15/11Thu 6/30/11
T W Screw and guiding rod alignments 1idays F7/4/81 Fri7/15/11
m Build and test mator hausing 12days Sat 7f16/11 Sum 7/3111
5 [2 Software Thdays Sat 71611 Mon 10,31/
| * M De-sugar conversion of SVG 12days Sat 7/16/11 Sem 7/31/11 [|
| % [Parsing of XML 22days Sat 7/16/11 Sun 8/14/11
bl Wirite G-Code test cases 11ldays Mon£/1/11 5Sun 8714711
[| Mlgorithm development 13day: Mon B 15/11 Wed 8/31/11]
| ¥ W G-Code conversion 22days Thu9fLf1l Fri%fa0/11 -
= @ au 22days Sar 10V1/11 Mon 10/31/1) EE——
% 2 Documentation 131 days Mon 5/2/11 Man 10/31/
B W \Wirite documentation as tasks ane 131 days Mon 5/2/11 Man
completed 10731711

Fig. 4: Project Gantt chart

A larger view of the project Gantt chart can be found in Appendix B.

4.2 Task Descriptions

4.2.1 Micro-controller

5/2 - 5/15 Motor/Micro-controller interface
Define the pin interface between analog motor driver circuit and micro-controller.
Produce a document describing the interface

5/2 - 5/15 AVR Development tools
IDE & SDK install for Atmega AVR development: Eclipse CDT, gcc-avr, avrdude.
Demonstrate programming of controller with demo code.

5/16 - 5/31 Serial port communications
Write software for transmit/receive over RS-232 and wire up level converter and controller.
Prereq: AVR Development tools
Demonstrate echo back of signals sent from a terminal.

5/16 - 5/31 Motor pulse signals
Write software to periodically generate motors signals
Demonstrate signals being correctly output on an oscilloscope.
Prereq: Motor/Micro-controller interface

6/1 - 6/14 Concurrent motor signals
Generate multiple motor driver signals concurrently.
Demonstrate signals correctly output on an oscilloscope.
Prereq: Motor pulse signals.

6/15-6/31 Interpretation of control signals
Install EMC on test machine.
Write software to interpret serial signals sent from EMC and produce motor driver signals.
Demonstrate signal output on oscilloscope for one and three motors using manual control signal
input over terminal.
Prereq: Concurrent motor signals

7/1-7/14 Integration testing with motor circuits
Wire the motor driver circuit to the controller.
Test with digital control signals from micro-controller, drive the motor through analog circuit.
Demonstrate control signals from controller driving the motor.
Prereq: Interpretation of control signals, Motor Circuit Testing

7/15-7/31 Integration testing with positional feedback
Integrate the positional feedback into the motor control software.
Demonstrate the system attempting to compensate movement when PFS provides missing
signals and normal operation.
Prereq: Software for PFS input signals, Interpretation of control signals

10

4.2.2 Analog Circuit

5/2 - 5/15 Acquire parts
Purchase the L297/L.298 (get from DSL Lab)

5/2 - 5/15 CAD design and pSpice simulation
Demonstrate pSpice simulation and the circuit diagrams.

5/16 - 5/31 Circuit construction
Demonstrate a complete circuit board.
Prereq: Motor/Micro-controller interface
Prereq: Acquire parts, CAD design of circuit and pSpice simulation.

6/1 - 6/14 Oscilloscope testing
Provide input to the circuit manually using push-button switches.
Demonstrate control signal output on oscilloscope - output voltage and current should match
simulation.
Prereq: Circuit construction.

6/15 - 6/30 Integration testing with motor
Provide input to the circuit using push-button switches.
Demonstrate motor movement
Prereq: Oscilloscope Testing

6/15-7/15 Integration testing with micro-controller
Duplicate milestone from Microcontroller section.

4.2.3 Positional Feedback System and Motor Housing

5/2 - 5/31 Construct circuit
Obtain sensing phototransistors and photodiodes.
Wire circuit, provide power and ground connections.
Demonstrate the signal generated from the 2 output lines using oscilloscope.

6/1 - 6/14 Software for PFS input signals
Write micro-controller software to interpret quadrature encoded input signals.
Prereq: Construct circuit, Serial port communications.

7/1-7/15 Integration testing of PFS with micro-controller
Duplicate task from micro-controller section

11

7/1-7/15 Design motor housing
Draw schematic for motor house layout: position of motor shaft, mounting screws, PFS
gears/shaft, gear connection to screw, and screw connector.

7/16 - 7/31 Build and test motor housing
Demonstrate a working motor housing - smooth motion of gears, attach to shaft.
Prereq: Design motor housing.

4.2.4 Frame

5/2 - 5/15 Design the frame and draw blueprints
Provide a blueprint document, complete enough to allow construction

5/16 - 6/14 Lead screw construction
Demonstrate the finished screws.

6/15 - 6/30 Build the frame
Construct the frame components and assemble.
Demonstrate the finished frame.
Prereq: Design the frame and draw blueprints

7/1-7/15 Screw and guiding rod alignments
Demonstrate movement of the sled and canvas by manually manipulating the screws.

7/16 - 7/31 Build and test motor housing
Duplicate of task in PFS/Motor housing

4.2 .5 Software

7/16 - 7/31 De-sugar conversion of SVG
Write script to control Inkscape to reduce SVG file into a SVG path-only subset
Demonstrate matching a series of test cases demonstrating correct behavior.

7/16 - 8/14 Parsing of XML
Define storage classes and object methods.
Determine library to be used for parsing.
Demonstrate a series of test cases proving correct object creation for XML object.

8/1-8/14 Write G-Code test cases
Write manual G-code to learn the commands.
Demonstrate working G-code interpreted correctly by EMC.
Prereq: working microcontroller/motor system

12

8/15-8/31 Algorithm development
Write code to prioritize render ordering.
Demonstrate a correct priority queue output of path selection algorithm.
Prereq: Parsing of XML

9/1-9/30 G-Code conversion
Addition unknown conversion steps between paths and G-code, create additional task
checkpoints at this date as requirements are better understood.
Demonstrate test cases from path to G-code.
Prereq: Algorithm development.

10/1-10/31 GUI
Prereq: installed EMC

5. Point Person

Analog Driver Circuit Anh

Frame Will

—_
w

6. Bill of Materials

Stepper Motors Ashton 3 Free Free
Positional
Feedback System DigiKey 3 2.99 8.97
— Track Mice

Coupling Home Depot 1 10.00 10.00
L297 Jameco/Mouser 3 8.95/11.29 26.85/33.87

Discrete
Components

ECE Stock Room 1 30.00 30.00

14

7. References

Advertisement. Home Improvement Made Easy with New Lower Prices | Improve & Repair with The
Home Depot. Web. 25 Apr. 2011. <http://www.homedepot.com/>.

"ATmegad8A/48PA/88A/88PA/168A/168PA/328/328P Datasheet." Atmel Corporation, Aug. 2010.
Web. 25 Apr. 2011. <http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf>.

Closed, Soldering Sj2. "Easy Driver Stepper Motor Driver." SchmalzHaus.com Brian Schmalz
Homepage. Web. 08 Apr. 2011. <http://www.schmalzhaus.com/EasyDriver/>.

Cnc Machine Manufacturers. Photograph. Review about Cnc Machine. Web. 25 Apr. 2011.
<http://www.cncmachine-details.info/cnc-machine-manufacturers.html>.

"Design Fundamentals for Phototransistor Circuits.” Fairchild Semiconductor, 30 Apr. 2002. Web. 25
Apr. 2011. <http://www.fairchildsemi.com/an/AN/AN-3005.pdf>.

"EMC2 Documentation.” Enhanced Machine Controller Project. Web. 25 Apr. 2011.
<http://www.linuxcnc.org/docview/html/>.

"Inkscape User Documentation.” Inkscape. Draw Freely. Web. 04 May 2011.
<http://inkscape.org/doc/index.php?lang=en>.

"Scalable Vector Graphics (SVG) 1.1 (Second Edition)." World Wide Web Consortium (W3C), 22 June
2010. Web. 25 Apr. 2011. <http://www.w3.0rg/TR/SVG11/>.

"Standard Cataloged Acme Inch Screw and Nut Quick Reference Chart - Nook Industries, Inc.
PowerAc Acme Screws and Nuts.” Nook Industries : Linear Actuators for Motion Control Ball
Screws, Screw Jacks, Lead Screws, Linear Slides, Acme Screw, Actuator. 25 Apr. 2011. Web. 25
Apr. 2011. <http://www.nookindustries.com/acme/AcmelnchAvailability.cfm>.

15

Appendix A: Analog Circuit Designs

L297/L298 Stepper Driver

= x = = =z 3 =
88 8.8 3.8, 8,.8
ST=rs % STaTs %$D
g - K
L% 111
_1es —te+
i.mr ICL g.mr
2 s GRD E s 5 e GND Fé
S 1 UREF RESET —tet if
4 5
19 4 pr asc ez
CH/CCH Sf uee AU e o o fo
Pl - cLOCK , 4 uss S8 |s |8
P Disable oD _[Bo@n(@+@ oD
=0 o L. eneLE -2 = eneeLe_n sena [laliojl ol
20 6] Senst D 1 eneees sene 2 A D
8‘0 OlL’) 13 4 5 12
’—o Oo—H SENS2 A INPUTL ouTL T
T N s 2] meurz oz B —t
| o £ P O
< L] svue L -2 1ol@ol@n [Pl
GND 5 iy 8l eup][] =)
- Hore w0 |2 2 ARARD
L2371 GhD
ko -
ko
Power In Connector o
=)
&)
SN St Mot D 1.2
8 epper O 1lor river V..
1
1@@nt +]1C8 18@n{ +]C2 g h n// k f / d_i 2
= = 223 ttp://make.rrrt.org/sm .
c5 188uF ci 1@auF @ '
| o
. License: GPLVZ
fzu
. -
. J2 Ji
i i
BHO oND 3= En
—“ =
Stepper Adjust _ = 2
8 [z _;IE Hinimun =t Masximum
> STEP 3 s nm "5 EE:I LB EE]
ENABLE 5 6 ___MIN Ve s 6 ueC s € &
MAX Fll DN & MIN = — MAx i a:‘.
N by ET} GND 8 GND] 9,N'—HU-E3.2
SU1 9 QUNT-HOLE3.2
9 13
$ QUNT-HOLE3.8
- P&
OUNT-HOLE3.2
Iz Ny 1c1
2 1 uee 2am 51 3 uee us [e = T 1S
20 | pegey urer |23 UBEF | ON_A 8 EnABLE—A—SEN ofRE w/RB /KB o o
. ON_B e I o Y] w ofun ofe ofe G;,’SZB
18 1 osc = T T 278
J_,,/ DIR 17 1 cuscen GND 5 npuTd uts 2 A ‘
- STEP 18 | ripek 1; INPUTZ| uT2 ?3 -
R11 i INFUTS nER: 2
33 0F L Sin——212 1 twesLe 12 NpuTH uts [4 98
1@pK EMNABLE sknp1 |22 a ¥
GND = T sfnpe |12 s g § § § £ :‘Ea [
3 L2398 i ol
T b |Lawce R 285 off oBf &3
- . 4K
oN_A e L syne [LSYNC 4K7
ON_B B | INHZ A
HOME ; R4 L L
2 { Gnp 1nr_L:an_ - EDNEELQ
L2587 C’-TCST Flsa]s

GND

Fig. 6: Improved Stepper Motor Driver Circuit

16

SRwaao

G%D X1

EasyDriver v4.4

An easy 1o use bipolar steppar mobor driver

Uise 4 wire, § wire o B wire sieper molors

From aboul 150mAJphass b aboul 750mAjphass
Defaills 1o 5V for Vec (logic supply), settabls 1o 3.3V
Supply BV lo 30V DC input on JP1

D0 ol conect or distonnsct molor

whilie EasyDriver is powsred

www.schmalzhaus.com/EasyDriver

TP1 - VREF inpd b deiver
Monilor s lest point wilh meter
8 you adjust currant adj pol
Valid range 1.0V 1o Ve

PFD intermediats voltags
VCT Change R12 and add in

Al VREF of 5V max current will be 833mA
Al VREF of 3.3V max current will ba 550mA
Al'VREF of 1V max surmanl will be 166mA

RIT o creale any vollage
on PFD for bast high

L
DEFAULT OPTIONS JPE Voo MM current gves smocthes! Microslaps ZZE gpeed perfomanca.
Sharl JPS, JPE. JPT pins E: TP Maxirum current gives highast innue
I GND o Wee io ovamide 1 i1 NOPOH]
77
SLEEP = Vi |awake) rer — A
M51 = Vec }ua microsbep RriT |L
MS2 = Vee (1/8 microstap JPE Aes Rey B GND
ENABLE = GND {enabled) 2 15
RESET = Vet (mol resal) 1 . — vee | o
PFD = Wi [slow dacay moda)) I 10K, LGS
"7 auTe ouria Bl OUTIE . 20K __E-a-u-pF
R . .
Eﬁ LOAD_SUPPLYZ LOAD SUPSLY o 4
Gho1 Gros | J_
18 GND
DHF s level sensilive L e i 75
Afiging edge on STEP 2 DIR —— Enseq |17 A
caLgas & sl ot SENEE SENEET e L
Both take OV o Viez - GND OUTIA ouria [OUT1A D
s 10K
STEP [ENABLE e
JP3 S s MVCC GuD
Coil 1 af motor semes —]+ ourie = LOGIC_SuPFLY .
OUT1B and OUT1A = ENTIE TN ey mez [msme Ma, pwee
Cail 2 of molor acioss -2 OUTZE Ri4 100
OUTZE and OUT2A putl ENETG O AIBETSLE
Power [npwt .
BV s 3OV (Vee = 5V) = SJ1 Normally Shaned
6.3V b 30V (Viee = 3.3V) Must wse LMIT Cal 1 usa your own
5 For 30V W+ input Vet souros from JP4 VCC
‘T . 1 Ve sulpul
Max 70mA used by EssyDriver
c3 J_C‘I c2 The resl yai mn?‘:\aw
JPd EasyDriver by Brian Schmalz is
GHND [100uF T quF W aZw GND licensed undis & Crealive Commans
E'S Attribition 3.0 US Licenss
o0 GND GND GND =5
Both C3 and C1 must = ed by Brian Schmalz
Be raled for >30V ¥ fe= Designed by
Lisk: Produce Fun Elecironics
v4.3 (12/09/2000) by Spark
w3 Added mounting holes GND ,
v (10/24/2010) TITLE: Easylriver_v44 ‘ SFE
Fied MINTMAX silkscreen e GND
All viss now 02" EFR 502 Nomal i < Veos5,0V . R
ETR 3 Nomaly Opan - Vo Document Mumber: REL:
GHD Date: 11/1/2p1@ 1:58:02 PM Sheet: 1/1

17

Fig. 7: Surface Mount Driver Schematic

Appendix B: Project Gantt Chart

-

#|-[-

B
E

=4

A

=
=

o

H| b

B

b
H

H

|

b:|ﬂ|2

H
=

H|3|H

=]
-}

33355503553 30%% %5538 o 335555055355 55%

H|!|:| t‘.'|l::

E)
ol

"
=

T

Interpretation of control signals

12 days

Integration testing with motor dircuits 10 days
Integration testing with pos. feedback 12 days

Analog Circuit
Acquire parts
CAD design and pSpice simulation
Circuit construction
Oscilloscope testing
Intesgration testing with motor
Integration testing with
micro-controller

Positicnal Feedback System & Motor

Housing
Construct Circuit
Saftware for PFS input signals
Integration testing of PFS with
micna-controller
Design mator hausing
Build and test motor housing
Frame
Design frame and draw blueprints
Lead soresw construsction
Build the frame
Serew and guiding rod alignments
Build and test motor housing
Software
De-sugar comversion of SWG
Parsing of XML
‘Wiite G-Cade test cases
Mgorithm development
G-Code conversion
Gl
Docurmentation
Wiite documentation as tasks are
completed

55 days
11 days
11 days
12 days
10 days
12 days
23 dlays

55 days

22 days
10 days
11 days

11 days
12 dlays
65 days
11 days
22 days
12 days
11 dlays
12 days
76 days
12 days
22 days
11 days
13 dlays
22 days
22 days

131 dawys Mon 52711 Mon 1031

7] T _u:.Iu: _u_i Friah
Micro-controdler 56 days Mon 5/2/11 Mon 7/18/1 !
Motor Micro-controller interface 11 days Mon 5/2/11 Sun 5/15/11
AR Development toals 11 days Mon 52711 Sunm 5715711
Sarial port communications 12 days Mon 51611 Tue 5/31711
Motor pulse signals 12 days Mon 51611 Tue 5/31711
Comcurrent motar signals 10 days Wed 6/1/11 Tue 6/14/11

Wed B/15/11Thu 63011
Fri /111 Thu 7/14/11
Fri 7/1/11 Mon 7718411

Mon 52711 Fri 7/15/11
Mon 5/23/11 Sun 5/15/11
Man 5/2/11 Sum 5/15/11
Maon 571611 Tue 5/31/11
Wed 6/1/11 Tue 6/14/11
Wed 6/15/11Thu 6/30y11
Wed Fri #/15/11

E/15/11

hon 5211 Sun 731111

Mon 5/2/11 Tue 5/31711
Wed 6/1/11 Tue 6/14/11
Fri 7/4/11 Fri 2715011

Fri 7/4/11 Fri 7715011
Sat 716411 Sun /31711

Mon 5/2/11 Swn 7731711
Man 5/2/11 Sun 5/15/11
Maon 571611 Tue 6/14/11
Wed 6/15/11Thu 6/304/11
Fri 7/1/11 Fri 7/15/11
Sat 7/16/11 Sun ¥/31711
Sat 7/16/11 Mon 103111
Gat 7/16/11 Sum 7/31711
Sat 7A16/11 Sum B/14/11
Maon 8/1/11 Sun 8714711
Mon B/15/11 Wed 8/31,/11
Thu 9/1/11 Fri §/30/11
Sat 10y1/11 Mon 10/3111)

131 days Mon 5/2/11 Mon

10/31/11

18

