

SELF-AWARE UNMANNED AERIAL

VEHICLE

COMPUTER ENGINEERING SENIOR PROJECT

2010

http://pisco.flux.utah.edu/uav

GRANT E. AYERS

grant.ayers@utah.edu

NICHOLAS G. MCDONALD

nic.mcdonald@utah.edu

DECEMBER 23, 2010

TABLE OF CONTENTS

1.0 Abstract .. 1

2.0 Introduction ... 1

3.0 Overview .. 2

4.0 System Design .. 2

5.0 Three Modes of Flight .. 3

5.1. Mode 1 - Manual Flight ... 4

5.2. Mode 2 - Stabilized Flight .. 4

5.3. Mode 3 - Navigated Flight ... 4

6.0 Components ... 5

6.1. Power System & Power Supply Unit ... 5

6.2. Transmitter Interface Translator ... 5

6.3. Inertial Measurement Unit .. 6

6.4. Flight Controller ... 7

6.5. Link Controller ... 9

6.6. Global Positioning System ... 10

6.7. Ground Station .. 11

7.0 Development Difficulties ... 13

7.1. RF Spectrum Interference ... 13

7.2. Voltage Plane Disruption ... 14

7.3. Vibration Induced Sensor Data Corruption ... 14

7.4. Magnetic Field Induced Sensor Data Corruption .. 14

8.0 Results .. 15

9.0 Conclusion .. 16

10.0 Acknowledgements.. 17

11.0 Source Code ... 18

11.1. Ground Station .. 18

11.2. Link Controller ... 18

11.3. Flight Controller ... 18

11.4. Inertial Measurement Unit .. 18

11.5. Network Commands Generator .. 18

12.0 References ... 19

TABLE OF FIGURES

Figure 1 - UAV Helicopter ... 1

Figure 2 - Hardware Flow Diagram ... 2

Figure 3 - Software Flow Diagram ... 3

Figure 4 - Power Supply Unit (PSU) ... 5

Figure 5 - Transmitter Interface Translator (TIT) .. 5

Figure 6 - TIT Timing Diagram ... 6

Figure 7 - Inertial Measurement Unit (IMU) ... 6

Figure 8 - 3-Axis Magnetometer ... 7

Figure 9 - Flight Controller (FC) ... 7

Figure 10 - Modified PID Feedback Diagram .. 8

Figure 11 - Ultra-Sonic Range Finder .. 9

Figure 12 - Link Controller ... 9

Figure 13 - GPS Receiver ... 10

Figure 14 - Ground Station Main Window .. 11

Figure 15 - HeliTuner Window .. 12

Figure 16 - Debug Console .. 13

Figure 17 - Static Suppressor .. 14

Figure 18 - Flying 'No Hands' ... 15

Figure 19 - Flying Indoors .. 16

Figure 20 - L3 Communications... 17

Figure 21 - VIA Technologies ... 17

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 1

Figure 1 - UAV Helicopter

1.0 ABSTRACT

Unmanned Aerial Vehicles (UAVs) are used for many purposes when employing a pilot is
impossible, dangerous, or too expensive. They rely on an array of environmental sensors to replace a
pilot’s awareness of the world and time-critical analysis of sensor data to make complex decisions in
real-time. Without this capability, no UAV could remain stable, safe, or airborne. We present a sensor
and analysis system to enable self-aware, sensor-assisted unmanned flight on a UAV using only
commodity hardware.

2.0 INTRODUCTION

Unmanned Aerial Vehicles are used in a variety of applications spanning large-scale military
grade hunter-killer surveillance vehicles to smaller personal and industrial vehicles. Small-scale UAVs
with limited range are sometimes controlled through direct commands by a person on the ground
within a line of sight. However, many applications exist which prevent the use of a human pilot in the
air or on the ground. Any UAV that requires traveling more than a few hundred meters, with negative
visibility, or under conditions where human presence is dangerous or impossible must be able to sense
its own environment and make time-critical flight decisions unassisted. Accomplishing this requires
enough sensors and computational capability to fully substitute a human pilot. We have achieved this
using common and low-cost hardware.

In typical flight scenarios, a pilot gathers environmental information through his or her own
senses with supplemental instrumentation data. Our system supplies all environmental information
through the use of three accelerometers, three gyroscopes, three magnetometers, a GPS receiver, and
an ultrasonic range finder. This data is sent periodically to a flight control system, which analyzes it and
replaces a pilot’s decision making with its own software routines. These routines include a flight
stabilization unit, hardware control, and an interface to accept commands from and send status
messages to a ground station. With the proper synchronization between all of these systems stable,
safe, and continuous flight is possible.

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 2

3.0 OVERVIEW

Our vehicle is a small helicopter with a length of 3.8 feet and a rotor diameter of 4.4 feet [1]. It
can carry a payload of over five pounds, which includes all of the sensor and computational hardware.
The helicopter carries eleven sensors and four independent microcontrollers. All sensor data is brought
into the onboard flight control system either directly or through these intermediary microcontrollers.
The flight control system is responsible for controlling the servos of the helicopter based off of sensor
readings, ground commands, and parameters sent from a ground station. The ground station is a
standard computer running software which connects to the helicopter through a wireless link. The
system also supports a safety mode which overrides the autonomous flight control system and allows
the pilot to directly control the helicopter through a handheld transmitter. The helicopter is capable of
stabilizing any combination of roll, pitch, yaw, heading, ground distance, rate of ascent, and absolute
position. When all of the stabilization modes are enabled, the helicopter is able to move to and remain
in specific 3D locations relative to earth.

4.0 SYSTEM DESIGN

Servo
Servo

Servo
Servo

2 Cell LiPo4 Cell LiPo6 Cell LiPo

Electronic
Speed Control

Motor

Power Supply Unit

Link Controller

Flight Controller

Inertial
Measurement Unit

Gyro
scopes

Magnet
ometer

s

Acceler
ometer

s

Ultra-Sonic
Range Finder

Receiver

Transmitter
Interface

Translator

12V 5V 3.3V

GPS Receiver,
RS232 Conversion,

&
Battery Backup

802.11a Transceiver

PWM Break-
Out Board

Figure 2 - Hardware Flow Diagram

Our system hardware design utilizes several processing devices that run parallel to each other.
The basic flow of the aircraft hardware is a central processing unit with numerous coprocessors assigned

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 3

to specific tasks. All sensor data is attached to one of the processing units. Many complex data
protocols are used to synchronize the timing of these processors and transfer data from one device to
another.

TCP Command/Status Router

TCP Command/Status Router

Main Status Window Helicopter Tuning Window Debug Console

LI
N

K

GPS Interface Flight Controller Interface
Flight Controller

Controller

Inertial Measurement Unit

Transmitter Interface
Translator

G
ro

u
n

d
 S

ta
ti

o
n

A
ir

cr
af

t

Figure 3 - Software Flow Diagram

Data originates on the ground in the Ground Station software. The Ground Station software is a
high level graphical user interface that allows a pilot to control the helicopter. Data is then transferred
wirelessly from the ground to the air. On the helicopter, the data is captured in a high-level software
suite that processes the data before it reaches critical helicopter components. Once the data is
validated, it is forwarded on to the lower level processors that control the aircraft. Data also flows in
the exact opposite direction using the same methodology. The lower-level software on the helicopter is
spread across several processing devices. Each low-level processing device contributes to the overall
stabilized control of the helicopter.

5.0 THREE MODES OF FLIGHT

The pilot can choose one of three modes of flight using a 3-way switch found on the transmitter.
Each mode of flight is controlled in the software that resides on the aircraft. The three modes of flight
are as follows:

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 4

5.1. MODE 1 - MANUAL FLIGHT

Flight mode 1 is a very basic flight mode which resembles the flight style of a typical RC
helicopter. The cyclic control (similar to an airplane’s aileron and elevator controls) are set manually by
the pilot. The tail is auto-stabilized such that the transmitter tail control sets a desired yaw rate and the
helicopter’s actual yaw rate matches it. To fly in this mode the pilot must have a lot of training and
experience driving RC helicopters. Helicopters are inherently unstable and this causes the pilot to
continuously make corrections to the aircraft’s attitude using visual feedback.

5.2. MODE 2 - STABILIZED FLIGHT

Flight mode 2 is a highly stabilized flight mode typically only found in military helicopters. The
pilot sets the desired aircraft attitude using the transmitter. The aircraft’s Flight Controller translates
the raw transmitter signals into desired aircraft attitude angles. The flight control system then sets the
aircraft at the desired angle. Piloting in this mode is much easier because the transmitter sticks always
reposition themselves to the center when not being physically moved. This means that the pilot can
simply let go of the cyclic control stick which will make the aircraft level with the horizon and stop any
rotational velocity. The only manual flight control needed to fly in mode 2 is the collective pitch. This is
the control that sets the aircraft’s ascent/descent rate. Given that the rest of the system is fully
stabilized, controlling the collective pitch is very easy.

5.3. MODE 3 - NAVIGATED FLIGHT

Flight mode 3 is a fully autonomous flight mode that has the ability to navigate to any 3D
coordinate. The only use of the transmitter during this mode is to set the mode. All other controls are
set using the custom ground station software. In this mode the aircraft accepts positional commands
from the Ground Station. The position control system is based around global positioning system (GPS)
satellites and an onboard GPS receiver.

The navigation software onboard the flight control system uses a distance magnitude crossover
system. When the aircraft is within the distance threshold set by the Ground Station, it uses a
directional navigation algorithm that controls the aircraft’s roll and pitch to navigate to the desired
location. In this navigation mode the tail control is always zero and the helicopter has no rotational
velocity. When the aircraft is above the threshold, it uses a pointing navigation algorithm that controls
the aircraft’s pitch and yaw rate but keeps the roll at zero. In this mode the helicopter points in the
direction it needs to go and uses its pitch to drive forward. Once the helicopter is below the threshold
again it switches over to the directional navigation mode.

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 5

6.0 COMPONENTS

6.1. POWER SYSTEM & POWER SUPPLY UNIT

Figure 4 - Power Supply Unit (PSU)

Our UAV design utilizes Lithium-Polymer (LiPo) batteries for powering the various parts of the
aircraft. LiPo batteries can store an extremely large amount of energy while having a relatively low
weight. This large amount of energy comes at a cost, namely, LiPo batteries have a very strict voltage
range of operation. Allowing a LiPo battery to become overcharged will result in an explosion or fire.
Allowing a LiPo to become undercharged will result in permanent damage in which the battery will no
longer hold charge. The voltage of any cell of a LiPo battery must be within 3.0V to 4.23V.

Our design uses three LiPo batteries: 2100mAh 20C 2-Cell, 2500mAh 30C 4-Cell, and 5000mAh
30C 6-Cell. The 2-Cell battery is used only for powering the servos and electronic speed control (ESC).
The 4-Cell battery is used to power all other onboard electronics. The 6-Cell battery is used only for
powering the motor.

Due to the strict voltage requirements of LiPo batteries, our Power Supply Unit (PSU) needed to
supply voltage status signals as well as the different voltage sources for the system. The only battery
that needed further regulation is the 4-Cell battery. Our power distribution system on the PSU takes the
varying 4-Cell voltage of 12V to 17.2V and regulates it to 3 supply voltages: 3.3V, 5V, and 12V. The PSU
also takes the 3 battery voltages and uses a voltage divider to create a reference voltage signal between
0V and 5V. These voltages can then be monitored by the flight control system and be sent to the
Ground Station.

6.2. TRANSMITTER INTERFACE TRANSLATOR

Figure 5 - Transmitter Interface Translator (TIT)

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 6

The Transmitter Interface Translator (TIT) is a custom microcontroller circuit designed
specifically to capture the seven pulse width modulation (PWM) channels that the standard receiver
outputs. For this design we chose the 8-bit ATmega328P AVR microcontroller [2] for its unique ability to
simultaneously capture pin change interrupts across an entire port.

This component is necessary because capturing seven channels of PWM across 20 milliseconds
uses a substantial amount of processing time in which interrupts are used. We decided to have this
processing done separate from the main Flight Controller (FC) in order to parallelize the computation.

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Sync Pulse

Figure 6 - TIT Timing Diagram

After a bit of testing, we found that the receiver always outputs the seven channels in the same
order and always separates the beginning of each frame by 20 milliseconds. The pin change interrupt
system of the AVR microcontroller has the ability to execute the interrupt code for any pin that changes
logic levels on a given port. We designed an 8-stage finite state machine (FSM) for determining the
pulse width of each channel. We made the FSM self-synchronizing by resetting it anytime the width was
above a certain threshold.

After gathering an entire frame of data (seven channels), the TIT asserts a control signal that
tells the FC that a packet is available. The result of this control signal becomes a 50 Hz synchronizing
pulse. We decided to synchronize the entire system to this pulse. This strategy allows us to have a
highly parallel system while not worrying about timing constraints.

The communication between the TIT and FC is an I2C bus in which the TIT is a slave at a fixed
address and the FC is the master. The TIT simply reports the pulse width for each of the 7 channels.

6.3. INERTIAL MEASUREMENT UNIT

Figure 7 - Inertial Measurement Unit (IMU)

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 7

To accomplish any kind of stabilization, the aircraft must know its current attitude. We decided
to use an Inertial Measurement Unit (IMU) for determining aircraft attitude. We purchased a board that
has an 8-bit ATmega328P AVR microcontroller, triple-axis accelerometer, dual-axis gyro, and a single-
axis gyro [6]. We also purchased a triple-axis magnetometer and attached it to the top of the IMU
board.

Figure 8 - 3-Axis Magnetometer

An accelerometer measures static acceleration typically due to gravity. Actual aircraft
acceleration causes the readings to be inaccurate. A gyro measures angular velocity on a rotational axis.
Gyros cannot give an absolute attitude because they measure a rate rather than an angle. A
magnetometer measures the magnetic field on one axis. Our IMU system measures three axes of
gyroscopic velocity, three axes of acceleration, and three axes of magnetic field.

No sensor alone can provide enough information to determine the current aircraft attitude. We
used the direction cosine matrix (DCM) algorithm [7] for fusing the 3 sensors together to produce
aircraft attitude. The DCM algorithm works by using gyroscopic magnitudes to determine the priority of
each sensor. As the gyro reading increases in velocity, the DCM algorithm increases the gyro priority
and decreases the accelerometer priority. This makes intuitive sense because accelerometers are good
for reading static acceleration and gyros are good at reading objects in motion. On all the axes of
measurement, the gyro is used to estimate the position by integrating the gyro output. When the
aircraft is not in rapid motion, the accelerometer and magnetometer are used to correct the gyro
estimation error.

Our IMU system (IMU board with the attached magnetometer) was designed to be a
coprocessor to the FC due to the high computational effort needed to compute the DCM algorithm. The
onboard microcontroller gathers the sensor data, computes the DCM output, and reports the aircraft
attitude to the FC. The values reported are: roll, pitch, yaw, and heading. This computation is indirectly
synced with the 50 Hz signal generated by the TIT.

6.4. FLIGHT CONTROLLER

Figure 9 - Flight Controller (FC)

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 8

 The Flight Controller (FC) is the central control processing unit for the aircraft. All sensor data
converges on this unit. The hardware chosen for its implementation is an 8-bit ATmega1280 AVR
microcontroller development board [2]. This microcontroller is well suited to be the central processor
because it has many serial I/O ports. Each coprocessor of our system communicates to the FC using
some serial communication protocol.

Besides serial protocol interrupts, this microcontroller is running only one thread for all its
processing. This control thread self-synchronizes with the 50 Hz signal generated by the TIT. The result
of this is that the control functions generated by the FC update the system at 50 Hz.

The first task of the FC is to gather all the data from the coprocessors. It first receives the
transmitter data from the TIT and then receives the attitude data from the IMU. It then decides which
stabilization features to implement based on the selected flight mode. For example, if the pilot has
selected flight mode 1, the FC only computes the stabilized output for the tail signal. The rest of the
signals are output in the same way the pilot set them using the transmitter. If the pilot has selected
flight mode 2, the FC computes the stabilized output for roll, pitch, and yaw signals based on angles set
by the transmitter controls and settings on the Ground Station. If the pilot has selected flight mode 3,
the FC computes the stabilized outputs based on GPS position and altitude rather than transmitter
input. The desired 3D position is selected on the Ground Station.

 P)(teK p

 I 
t

i deK
0

)(

 D
dt

tde
Kd

)(

∑ ∑ Error Process OutputReference

+

-
--

Error

Figure 10 - Modified PID Feedback Diagram

The stabilization system of the FC is based around modified proportional-integral-derivative
(PID) feedback controllers. For each axis of stabilization needed, there is a PID controller that can be
utilized to control the aircraft. The proportional, integral, and derivative gains are set using the Ground
Station software. These settings are stored in EEPROM so that the optimized values are not lost after
each flight.

After all the controls have been decided and computed, they must pass through a mixing
algorithm tailored to our helicopter’s cyclic/collective swash plate. This algorithm is called cyclic
collective pitch mixing (CCPM). The swash plate on the T-Rex 600 ESP helicopter has 3 points of
connection separated by 120° each. The aileron, elevator, and pitch controls all get put into this
algorithm. The purpose of the algorithm is to translate these three signals into three signals that will
directly control the three servos connected to the swash plate. We designed our algorithm to work only
with this type of swash plate. The output of the CCPM algorithm was sent directly to the servos using
pulse width modulation (PWM).

The FC has numerous settings that the pilot can set from the Ground Station software. Many of
these are stored in EEPROM so that the settings will not be lost between flights. The FC implements a
custom command/status protocol over a standard UART. The Link Controller sets the interface between

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 9

the FC and the Ground Station. The FC was set up to be able to handle 35 command or status packets
per second because much of the data collected by the FC would be requested frequently by the Ground
Station for the user interface. The pilot could then see what the aircraft is doing in real-time.

Figure 11 - Ultra-Sonic Range Finder

The FC also has the ability to interface with stand-alone sensors such as ultra-sonic range
finders, temperature sensors, and other such devices. Our system uses an ultra-sonic range finder
underneath the aircraft to measure the distance to ground. This is useful for autonomous take-off and
landing. More range finders can be attached to create a collision detection system.

6.5. LINK CONTROLLER

Figure 12 - Link Controller

The Link Controller provides data communication between the Ground Station and the onboard
GPS receiver and Flight Controller. It’s a VIA ARTiGO A1000 microcomputer with a 1GHz VIA C7
processor and 512MB of memory [3]. This is essentially a small embedded version of an x86 system you
might find on your desk. This unit is lightweight and includes four USB ports. While running, the
ARTiGO draws approximately 15 watts.

We originally chose this unit for its ability to support 802.11 WIFI and GSM/CDMA 3G data links
between the ground and air. Many USB adapters exist which support these types of data links.
However, the majority of them have closed-source drivers that only operate in specific environments.
Due to this limitation, we chose to install Windows XP on the Link Controller because of its nearly
universal driver support. This allowed us to focus on other project goals instead of reverse engineering
binary drivers for USB devices. Because of the lack of stability and timing guarantees in a Windows XP
system, we designed all of functionality of the Link Controller to be as fast as possible but not time-
critical. We also allowed for the Link Controller to crash without destroying the flight control system of
the helicopter. Despite the disadvantages of using a non-real-time operating system (not to mention
Windows), the speed offered by the 1GHz CPU allowed us to be confident about its computational
capabilities.

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 10

The Link Controller’s functionality is contained within a single air support program which runs
continuously. At a high level, the program is a three-point data router with the Ground Station, GPS
receiver, and Flight Controller as the endpoints. The implementation is accomplished with
approximately 3,000 lines of C# source code which define the GPS, Flight Controller, and Router
interfaces using over ten synchronizing threads. The Router interface contains a connection handler
which maintains contact with the Ground Station over TCP, and takes the appropriate action when this
connection is interrupted or lost. A standardized data packet can be sent between the ground and air
through the Router. This data contains a GET or SET command and any applicable data. The Router
forwards the data to either the GPS or Flight Controller interface. Likewise, these two can send a data
packet to the Router which will automatically be sent to the Ground Station.

The design of the Link Controller software was methodical and tedious, but provided a very
stable system upon which we could confidently rely. The hardware was equally dependable.

6.6. GLOBAL POSITIONING SYSTEM

Figure 13 - GPS Receiver

The majority of the sensors on the helicopter report information about relative motion, but
provide no reference for absolute position. Even with the aid of the magnetometer and range finder,
which provide limited absolute heading and distance-to-ground, the combined collection of sensors
would be too inaccurate to enable the helicopter to hold a position or fly to a specific location without a
three-dimensional absolute coordinate position system. The Global Positioning System (GPS) allows for
this.

Our approach to incorporating GPS into the flight system is based on relative referencing. The
GPS interface first records an absolute GPS position as the origin when a valid lock becomes available.
From there the GPS interface can calculate its position relative to the origin based on current GPS
readings. Calculating the distance between two GPS coordinates, however, is non-trivial. One must take
into account that the earth is neither flat nor spherical, but rather an approximate oblate spheroid. The
coordinate system is most definitely not a simple 2D or 3D Cartesian space. There are several formulae
which attempt to simplify this problem by making gross mathematical assumptions, but many of these
lack real accuracy. We decided to use the Bowring Distance Formula which enables distance calculation
to within a millimeter accuracy anywhere on earth for distances less than 150km [4]. It greatly simplifies
a full conversion by reducing the required operations by more than half. The GPS Interface uses this
formula to then keep track of its origin and current position North, East, and “Above” relative to the
origin in units of feet.

Our design uses a u-blox 5H-based GS407 GPS receiver with the Sarantel SL1206 active antenna
[5]. This module normally runs on 3.3V and draws approximately 70mA. It is excellent at finding a 3D

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 11

lock within less than a minute from a cold start, and even detects a strong signal indoors. All commodity
GPS receivers support the Coarse Acquisition (CA) L1 frequencies, which only enable position pinning to
within several meters at best. This module has support for the Wide Area Augmentation System (WAAS)
as well, which enables it to receive correctional data from specific North American satellites (currently
PRN #135 and PRN #138) yielding a position pinning accuracy within two meters based on testing with
this device. The u-blox module is very configurable, and includes support for its own binary data format
instead of the ASCII-based NMEA output format. We set the device to report a valid lock only when 3D
and within 10 meter accuracy estimates. We also filtered its drift with a static hold threshold of 0.1
meters/second.

The u-blox GPS module is incorporated into the flight system of the helicopter through an RS-
232 serial port into the Link Controller. The GPS Interface module of the air software system is in charge
of continuously reading current GPS information, computing relative distances, and presenting all of this
data to the rest of the flight system. This data includes but is not limited to the following: GPS current
and origin coordinates in DMS format, relative distances North, East, and Above the origin, velocity in
three and combined dimensions, atomic date and time, accuracy estimates for horizontal, vertical, and
3D position, the number of satellites currently being used in the computation, and other status
information such as the type of GPS fix and whether the WAAS is being utilized. The Ground Station can
request some or all of it, or initiate automatic updates from the GPS interface at specified rates. The
Flight Controller interface continuously polls portions of the GPS data and can use it with the
stabilization system to hold still or seek specific points. This is only possible when the other stabilization
systems are calibrated and functional.

6.7. GROUND STATION

Figure 14 - Ground Station Main Window

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 12

The Ground Station provides a wireless communication link to the helicopter. It enables
commands to be sent to the helicopter and receives flight information and other status messages. The
Ground Station consists of a WIFI router and laptop. The router was chosen to extend the wireless
range and signal strength when compared to an ad-hoc wireless configuration. We used a laptop for
portability but were otherwise unconcerned with the hardware specifications of the Ground Station.

We wrote the Ground Station software in C# using the Windows Presentation Foundation (WPF)
platform, which we found to have a high visual appeal to development time ratio. The purpose of this
software is twofold: first, to allow command and status information to be transmitted between the
ground and air, and second, to provide a visually-appealing presentation of the status data from the air.
We accomplished this with over 4,500 raw lines of code, or 6,200 including the XAML GUI support code.
However, as with most GUIs, much of the code is support for UI controls and is repeated throughout the
program.

Figure 15 - HeliTuner Window

The main window of the Ground Station software shows in-air flight information from the
helicopter, including roll, pitch, heading, yaw, altitude, ground distance, relative location, GPS location,
rate of ascent, and battery status. The “Heli Tuning” window allows the setting and polling of over 60
settings and tuning parameters of the helicopter such as PID gains, position offsets, update rates, and
filters. It also allows for positional commands when all stabilization units are active. The tuning window
was crucial to stabilizing the helicopter, since PID values, offsets, and other settings had to be
determined during flight. The “Debug Console” provides a way to look into the network traffic between
the Ground Station and Link Controller on the helicopter for debugging purposes.

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 13

Figure 16 - Debug Console

While the Ground Station software provides control and a thorough view of the helicopter, it is
not a necessary component of flight. We designed the flight system to operate with or without a link
from the Ground Station. In the event that a link is disrupted while in autonomous mode, the helicopter
will either hover or return to the origin depending on the configuration. While in manual mode, a
disrupted link does not affect the helicopter at all. This design approach allowed for great robustness
and flexibility while testing the system.

7.0 DEVELOPMENT DIFFICULTIES

After our UAV was designed and implemented, we ran into several problems. The major
problems we encountered during development are as follows:

7.1. RF SPECTRUM INTERFERENCE

The transmitter we have for the helicopter is a Spektrum Dx7 which operates on the 2.4GHz
band. The WIFI module we begun using was an 802.11g USB modem. Due to both wireless technologies
utilizing the 2.4GHz band, we had huge interference issues. Luckily the Dx7 transmitter transmits at a
higher power than the WIFI module. Typically the interference caused the Ground Station to drop
packets or become completely disconnected. A few unfortunate cases caused the RC receiver to pick up
corrupted packets which in turn caused extreme out-of-control behavior of the aircraft. Luckily, it didn’t
last long, and we never crashed.

We corrected our design by switching from 802.11g to 802.11a which utilizes the 5GHz band.
This was a great switch because most modern wireless technologies use the 2.4GHz band, and thus the
5GHz band is less congested.

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 14

7.2. VOLTAGE PLANE DISRUPTION

Figure 17 - Static Suppressor

After the system was set up, we found that the power system suffered significantly from static
electricity and other voltage noise sources. We created a chassis ground plane using all the large metal
sources found on the helicopter. This helped a little bit but the system was still vulnerable. We decided
to add a large capacitor bank as a static suppressor to the two main power supply outputs: 5V and 12V.
This device adds a 4700μF capacitor and a 1000μF to each voltage source. After adding the static
suppressor, the system became much more tolerant to static and other noise sources.

7.3. VIBRATION INDUCED SENSOR DATA CORRUPTION

The first time we spun up the rotors with all our electronics connected we noticed that the IMU
data was completely corrupted. At first we assumed the motor was creating a large magnetic field
around it. We tried moving the IMU to different mounting places on the helicopter but nothing seemed
to help. We then put the IMU on the ground next to the helicopter but with no direct connection. This
test resulted with uncorrupted data. We then realized that the data corruption was not coming from
magnetic fields, but rather it was coming from high frequency vibration that resonates through the
helicopter chassis.

Along with destroying sensor data the vibration induced noise destroyed all communication
with the hard drive in the Link Controller. Due to this issue, we had to trick Windows into booting from
a USB thumb drive. After we figured out how to pull this off, we discovered that even though Windows
can boot from a USB device it still requires that at least one regular hard drive be attached, even if it
isn’t being used.

We attempted many mounting systems to rid the IMU of vibration induced noise. The strategy
that worked best was mounting the IMU inside upholstery foam. The best location for mounting the
IMU inside the foam was beneath the Link Controller. This is due to its relatively large mass and surface
area. Mounting in this location allowed us to use a lot of foam and keep the IMU centered and level.
This mounting location was great for vibration but introduced another data corruption issue.

7.4. MAGNETIC FIELD INDUCED SENSOR DATA CORRUPTION

After we found the ideal location to rid the IMU of vibration induced noise, we discovered that
the magnetometer was reporting a false heading. By moving the IMU around, we discovered that the
hard drive within the Link Controller was inducing a magnetic field on the magnetometer. Typical hard
drives have an electromagnet that moves along a magnetic field created by a rare-earth magnet. This
was the source of our magnetic field induced sensor data corruption.

At this point we knew that we couldn’t mount the IMU in the ideal location for vibration, and we
had a trade-off decision to make between vibration induced noise and magnetic field noise. We found a
mounting position for the IMU in a location with almost no magnetic noise. The location produced

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 15

some vibration induced noise but we were able to filter it out using a digital low-pass filter on our sensor
readings. We made the low-pass filter crossover point selectable via the Ground Station software so
that we could optimize the frequency response during flight.

8.0 RESULTS

Figure 18 - Flying 'No Hands'

Our system design and implementation was a huge success. Flying an unstabilized helicopter is
near impossible even for expert pilots. Having just one axis of stabilization, typically the yaw axis, results
in a much easier flight. Having several axes of stabilization causes the flight to seem near autonomous.

Having a complete ground station with an exhaustive set of features was invaluable during the
testing phase. Even though implementing these features took literally thousands of lines of code, we
would not have been able accomplish all that we did without the ability to change so many settings
during flight. Another priceless feature was the automatic connecting and negotiating data link
between the air and the ground. Our system allowed us to break any connection without causing errors
or restarts to initiate more connections. The link design was created to be extremely tolerant to low
latency connections and spurious connection drops. Had we not had this foresight, we would have
spent a lot of time in frustration.

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 16

Figure 19 - Flying Indoors

We were able to implement the full UAV functionality of the helicopter, however, we were not
able to calibrate and test all the methods of stabilization and navigation. An under sight on our part was
not knowing the vast amount of time it takes to calibrate each stabilization function. All of the
stabilization and navigation functions are implemented in the embedded software but without sufficient
time, we were unable to calibrate and test all of them. This was also due in part to the non-ideal
mounting location for the IMU which did not hold the IMU secure enough to keep consistent angular
offsets. We designed the software system to be ready to go only after sufficient calibration, and found
that our system worked exactly as planned once the proper calibration settings were made.

9.0 CONCLUSION

Modifying an aircraft to support sensor-assisted unmanned flight requires rapid sensor data
acquisition, frequent calibration, and time-critical computation. We developed a flight control system
which provides in-air stabilization and navigation to a helicopter using eleven environmental sensors
and four onboard microcontrollers. We implemented this system using only common inexpensive parts.
The result of our project is a fully-enabled UAV which implements control of roll, pitch, yaw, heading,
ground distance, rate of ascent, and absolute global positioning with or without support from a ground
station. It is capable of maintaining stable and directed flight between any set of geodetic coordinates
and provides a communication link through which status information and control commands may be
sent. While unmanned aerial flight is not a new concept, it has nevertheless been largely inaccessible to
the public due to cost and lack of implementation. Our project has broken these barriers by successfully
implementing a low-cost UAV described in full in this report.

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 17

10.0 ACKNOWLEDGEMENTS

Figure 20 - L3 Communications

We would like to thank L-3 Communications for generously lending us the T-Rex 600 ESP RC
Helicopter and Spektrum Dx7 Transmitter/Receiver pair. Without a high quality RC platform, we could
not have accomplished our project goals. We would also like to thank them for extending their array of
batteries to support our project. Working with only one battery would have made development near
impossible.

Figure 21 - VIA Technologies

We would also like to thank VIA technologies for donating the VIA ARTiGO A1000 embedded x86
system. Having this unit helped us focus on aircraft-specific engineering without wasting time on driver
development issues. A small embedded computer that is capable of running operating systems with
large amounts of support was a very valuable.

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 18

11.0 SOURCE CODE

All of our source code is rooted at http://pisco.flux.utah.edu/uav/code. A map to each specific
section is provided below:

11.1. GROUND STATION

The Ground Station is a single Visual Studio 2010 project. All code is written in C# with
supporting XAML for the Visual Presentation Foundation GUI support. “Settings.cfg” is the configuration
file for the software and provides configuration information for the TCP/IP connection settings.

http://pisco.flux.utah.edu/uav/code/HeliGroundSoftware

11.2. LINK CONTROLLER

The Link Controller is also a Visual Studio 2010 project. “VIA.cs” is the top-level source file. It
links in the code for the Router, Flight Controller and GPS interfaces. “Settings.cfg” is the configuration
file for the software and provides configuration information such as serial port names and TCP/IP
connection settings.

http://pisco.flux.utah.edu/uav/code/Heli_VIA_Software

11.3. FLIGHT CONTROLLER

The Flight Controller software was written in the Arduino IDE. The environment is technically
C++ but we wrote all of our software to be C-compliant for use in other compilers. The project, or
“sketch” root file is “FlightController.pde,” and everything else comprises code and header files.

http://pisco.flux.utah.edu/uav/code/FlightController

11.4. INERTIAL MEASUREMENT UNIT

The Inertial Measurement software was also written within the Arduino IDE. This directory
contains “sketches” for the full IMU and individual components such as the ADC, compass, DCM
algorithm, and other supporting code.

http://pisco.flux.utah.edu/uav/code/InertialMeasurementUnit

11.5. NETWORK COMMANDS GENERATOR

The Network Commands Generator is the system we used while developing the communication
protocol between the ground and air. It allowed us to modify commands and automatically update the
Ground Station, Link Controller, and Flight Controller software packages.

http://pisco.flux.utah.edu/uav/code/NetworkCommandsGenerator

http://pisco.flux.utah.edu/uav/code
http://pisco.flux.utah.edu/uav/code/HeliGroundSoftware
http://pisco.flux.utah.edu/uav/code/Heli_VIA_Software
http://pisco.flux.utah.edu/uav/code/FlightController
http://pisco.flux.utah.edu/uav/code/InertialMeasurementUnit
http://pisco.flux.utah.edu/uav/code/NetworkCommandsGenerator

SELF-AWARE UNMANNED AERIAL VEHICLE

Page | 19

12.0 REFERENCES

[1] Assurance RC. 2010. T-REX ESP Superior KX016013A [Online]. Available:
http://www.alignrcusa.com/index.php?main_page=product_info&cPath=3&products_id=1491

[2] Arduino. 2010. Arduino [Online]. Available:
http://www.arduino.cc/

[3] VIA Technologies. 2010. ARTiGO [Online]. Available:
http://www.via.com.tw/en/products/embedded/artigo/a1000/index.jsp

[4] Surveying Engineering Department, Ferris State University. Direct and Inverse Geodetic
Problem [Online]. Available:
http://www.ferris.edu/faculty/burtchr/sure452/notes/direct-inverse.pdf

[5] u-blox AG. 2010. u-blox 5 GPS modules [Online]. Available:
http://www.u-blox.com/en/gps-modules/pvt-modules/previous-generations.html

[6] 3D Robotics LLC. 2010. ArduIMU+ V2 (Flat) [Online]. Available:
http://store.diydrones.com/ArduIMU_V2_Flat_p/kt-arduimu-20.htm

[7] Google Project Hosting. 2010. ArduIMU+ V2: Arduino based IMU & AHRS [Online]. Available:
http://code.google.com/p/ardu-imu/downloads/list

http://www.alignrcusa.com/index.php?main_page=product_info&cPath=3&products_id=1491
http://www.arduino.cc/
http://www.via.com.tw/en/products/embedded/artigo/a1000/index.jsp
http://www.ferris.edu/faculty/burtchr/sure452/notes/direct-inverse.pdf
http://www.u-blox.com/en/gps-modules/pvt-modules/previous-generations.html
http://store.diydrones.com/ArduIMU_V2_Flat_p/kt-arduimu-20.htm
http://code.google.com/p/ardu-imu/downloads/list

