
1

Abstract—This project consists of glasses worn to create the
perception of a three-dimensional view of a ray-traced scene in
the user's mind. The glasses in this project utilize shutter
stereoscopy methods. The glasses are made with liquid crystal
displays (LCD). The project consists of three core components.
The first is a program sends signals to the shutter LCDs and
displays images from the raytracer on a monitor. The second part
is an amplifier stage. The amplifiers increase the voltage of the
synchronization signal. The third part is the LCD shutter glasses.
The pair of glasses shutter each eye at a certain frequency to
present a pseudo-3D image. Using this method, a user can see a
3D object from a 2D display.

I. MOTIVATION

 There are several 3D glasses on the market already such as
3D Vision Glasses by NVIDIA and a similar product by
3Dstereo, Inc. NVIDIA's glasses work with a variety of
DirectX games and 3D movies. Their product is by far the
most popular product in the field. They present clear vision
and depth perception effects very well. In order to use
NVIDIA's glasses, users need to have a computer running
Windows Vista or Windows 7. In addition, the glasses require
an NVIDIA GeForce 8500 or higher graphics card.[1]
 The other major product on the market now is 3D image
viewing goggles from 3Dstereo, Inc. These 3D goggles are
similar to what is presented in this paper. The 3D image
viewing goggles support both cathode ray tube (CRT) and
LCD monitors. The goggles work with a refresh rate of at least
70 Hz. 3Dstereo's solution supports Windows 95 or higher and
supports most of the graphics cards in the market now.[2]
 NVIDIA 3D vision requires high-end graphics cards and
Windows Vista or Windows 7 as the operating system. The
glasses themselves cost US$200. The user also needs to have a
dual-core processor. The video cards supported are only
available on desktop computers. Moreover, the glasses only
work with a 120 Hz refresh rate LCD display. As the list goes
on, costs of implementation continue to skyrocket. The cost is
too much for a typical family. In other words, the cost and the
computer requirement for using 3D vision goggles limits its
market share. On the other hand, 3D image viewing goggles
from 3Dstereo cost just over US$100. They can run on most
Windows-based machines and most LCD displays. Most
NVIDIA graphics cards and ATI graphics cards can work with
these glasses. However, the price of this solution is still
considered expensive for typical users.
 One of the motivating factors for this project is to determine
the minimum requirements in hardware, software, and cost to
accomplish good-quality stereo vision with the computer.

II. FUNCTIONALITY

 The idea which presents in this project to achieve 3D vision
is stereoscopy method. Although there are several methods to
present 3D vision such as autostereograms or anaglyphs, we
choose stereoscopy because this method does not effect the
original images but the other two methods would. Basically,
the way stereoscopy works is by presenting correct side of

image to the correct eye. The glasses block the right eye while
the screen display the left eye image and vice-versa. In
addition, the frequency of switching images have to be 60 Hz
or more in order to present clear 3D vision.

III. HARDWARE COMPONENTS

 There are three separate hardware components that make up
the system, excluding the computer displaying the image.
These components are the USB Microcontroller (which is
marketed and sold under the trade name "USB Bit Whacker"),
the signal converting circuit, and the shutter glasses.
 The USB Bit Whacker has the responsibility of transferring
a signal from the software to the power circuit for signal
modification. The USB Bit Whacker connects to the PC via
USB, and pre-compiled drivers create a serial port in the OS
with which to communicate to the USB Bit Whacker.
 The USB Bit Whacker is actually a PIC18F2553 USB
Microcontroller, soldered onto a board with some LEDs used
for debuging, with fourteen pins in addition to ground, power,
and RS232 RX/TX lines. The microcontroller is
programmable via USB, but the USB Bit Whacker distributer,
SparkFun Electronics, preloads the USB Bit Whacker with
functional firmware for basic control of the output pins over a
serial connection. On a FreeBSD based Unix system, the bit
whacker appears as cu.usbmodem411 in the /dev directory.
 This preloaded firmware proved to be sufficient for the
needs of this project. The USB Bit Whacker provides two
alternating square wave signals in sync with the image on the
screen. At first the team was worried that the delay caused by
serial communication and serial command decoding would
prove too much, and the ability to create a phase change
between switching the image on the screen and sending serial
commands would be required. This fear proved to be
unfounded. Once software-controlled commands were
successfully sent and the square wave was detected on the
oscilloscope, the speed limits of the communication were
tested. We found that we can send over 800 commands per
second without any commands being dropped, effectively
generating an 800 Hz square wave. As the USB Bit Whacker
would never be required to create a signal greater than 60Hz,
any sort of phase shifting was unnecessary.
 In the final implementation, a single serial command was
sent that toggled two separate alternating signals
synchronously. This caused the signal for the left eye to switch
ON at the exact same time as the right eye switched OFF.
These two signals, along with the pin for ground were pulled
off the board and used by the two stage amplifier. This
amplifier contains two operational amplifiers which produce a
negative unity gain amplifier in the first stage and a gain of
negative five amplifier as the second stage. Because the output
signal from USB is a square wave with the amplitude of
0v-5v, we need the amplifier with offset to achieve the
required voltage difference which is amplitude of 3v-25v. The
design of the amplifier is an inverting amplifier with some
non-inverting input. The mix of inverting gain and non-

Senior Project Report
Cory Klein, William Lee, Lorenzo Swank, Michael Yang

2

inverting gain can amplify 5v to 25v and 0v to 3v in order to
fulfill the requirement of LCD shutter glasses which turns the
LCD all the way black or all the way transparent.
 We choose Pi-cell LCDs because they are able to switch on
and off at a faster rate. In general, LCDs are turned on and off
by applying a voltage to them. When no voltage is applied, the
liquid crystal molecules in the LCDs are aligned in a certain
way to allow light pass through the LCDs. However, when
enough voltage is applied, the alignment of liquid crystal
molecules in the LCDs are changed so that lights can not pass
through. The liquid crystal molecules in the Pi-cell LCDs are
aligned in a special way so they are able to changed at a faster
rate than other LEDs. The voltage we need to make them
transparent and black are 3 and 25 volts respectively.
 We built an amplifier in order to pump the voltage out from
the USB to 25 volts. It is built by connecting multiple TC7660
charge pumps together. It works when we input 5 volts from
the voltage supply. But when it is connected to the USB it
does not pump the voltage up to 25 volts. That was because
the USB does not provide enough current. To solve this
problem, we will need to find a way to get more current.

IV. SOFTWARE COMPONENTS

 There are three software components that are used. The first
is the raytracer, the second is the front end for the ray tracer,
and the third is the display program.
 Raytracing is a method of generating computer graphics by
which rays are sent from a camera through every pixel in the
image into a scene. These rays bounce around from object to
object. For each object that the ray intersects, the ray inherits
some properties from that object. These properties determine
what color is assigned to the pixel through which the ray
entered the scene. If the ray intersects a light source, it will be
brighter. If the ray intersects a region which does not have a
path to a light source, it inherits only those ambient light
characteristics of the scene, and is thus in shadow. If a ray
intersects a perfect mirror, it does not inherit any color
characteristics from that object, but merely bounces off of the
object. This is done recursively.
 The raytracer was written over a period of several weeks,
with only minor refinements made in the later stages of the
project. Scene files are from a course on raytracing taught by
Peter Shirley and Steven Parker.
 The front end for the ray tracer consists of mechanisms to
set up dual cameras appropriately in a scene. First, a scene file
is read in. An instance of the raytracer is instantiated for the
scene file. A bounding volume hierarchy is constructed to
serve as the first level acceleration structure for the raytracer.
The primary camera is saved as a reference camera and
popped off of the camera stack. Two cameras are then created
with parallel target vectors, spaced an equal distance from the
reference camera origin along the right-direction vector. These
cameras are then pushed onto the raytracer camera stack.
 The front end software allows the user to modify the
distance between the cameras. Since there is not a standard
unit of measurement in the ray tracing community, not every
scene file will have the same scale. Each scene file may
require the camera distance to be slightly different. Building
for the common case means exposing this functionality in the

easiest way possible. Consequently, this is one of the few
features that is exposed as a graphical user interface element.
 The third component is the display program. The display
program initializes a serial/USB interface, loads images from
disk, and displays images while sending synchronization
signals to the serial port.

V. PROBLEMS ENCOUNTERED

 Establishing initial communications with the USB Bit
Whacker were problematic. Most devices that communicate
over an RS-232 interface require a complex system of
handshakes. Although we could use a pre-existing serial
communications program such as Screen in Unix, or
HyperTerminal in Windows, to manually communicate with
the device, getting our own program to connect to the device
and perform the proper handshake was difficult. The board
didn't seem to respond to any sort of handshake request that
was tried. Detailed instructions concerning the preloaded
firmware, and custom programming of the microcontroller
were abundant, but documentation covering the actual RS-232
communication standards was sparse. We gathered from
online forums that the communication speed was 9600 baud,
but little else could be found. Eventually we found, by trial
and error, that the bit whacker did not require any handshaking
at all, which seems to be extremely uncommon for serial
communication. At this point, however, communication with
the USB Bit Whacker became simple.
 The single greatest difficulty that plagued the project for the
majority of development was our perceived inability to make
the LCDs get dark enough in a short period of time. Complete
redesigns of the circuit were made over and over until we
switched displays. Switching from one LCD to another LCD
exposed the root of the problem. Since both the LCD shutters
and LCD on our notebook computers are polarized arbitrarily
with respect to one another, it was impossible for us to get
light from the source to be blocked completely by the
receiving LCD shutter. Switching to a CRT monitor allowed
us to sidestep the issue.

VI. BILL OF MATERIALS

VII. FUTURE WORK

 In the demonstration, prerendered frames were displayed.
One of the first improvements to the software would be to
allow real time scene rendering. This would allow the user to
manipulate the image on the screen and see the changes in real

3

time. Optimizations would be required, and the
implementation would likely have to be scaled back to
produce an image with a framerate sufficiently fast enough.
Although the tearing that was present during the demo did not
prevent users from viewing the image in 3 dimensions, it did
significantly reduce the quality of the image. This problem,
however, seems to be rather difficult to solve. Double buffered
rendering was used, which should eliminate tearing, but it
didn't. Also, the tearing may have been aggravated by
harmonic oscillations with the vertical trace on the CRT
monitor. It is conceivable that either a hardware or software
solution may be possible, with preference toward the software
solution, which would allow the system to work for any
reasonably recent piece of hardware.
 One major problem of this project is that the 3D
visualization can only be viewed when we display image on
the CRT monitor. The issue happens because the light from
LCD monitor is polarized and from CRT monitor is not. When
we view the image through glasses to LCD monitor, the LCD
glasses are not completely off when signal is high. This
problem can be solved by adding a new layer of polarization
filter to the glasses so that all the light can be shuttered.
 The great majority of the code written for the project was
not platform specific. Specific implementations were catered
towards the Mac OS, but porting the system to Windows or
Linux should be relatively pain free. This may also be
beneficial in solving the tearing problem, as there were
suspicions that the problem was related to the OS graphics
calls or libraries. One platform that has great potential is the
mobile platform. Developers were recently given access to
hardware control on the popular iPhone. A small attachment
could be produced that allowed a user to plug in 3d shutter
glasses into their iPhone and play games or view graphical
visualizations in 3d on a mobile platform.

VIII. ACKNOWLEDGEMENTS

 Special thanks to Al Davis for his fearless leadership,
undying support, and for looking like the King of Rohan from
Lord of the Rings.
 William would like to thank Reid Harrison explanation of
the offset amplifier.
 Lorenzo would like to thank his parents for giving him life,
and William's parents, for letting him eat their food, sleep in
their house, use their , and kidnap their child while writing this
report.

REFERENCES

[1] NVIDIA, 3D vision, www.nvidia.com
[2] 3Dstereo.com, inc., “3D image viewing”, www.3Dstereo.com

http://www.nvidia.com/
http://www.nvidia.com/
http://3Dstereo.com/
http://3Dstereo.com/
http://www.3Dstereo.com/
http://www.3Dstereo.com/

