
Proposal for an Open Source Proposal for an Open Source
Flash Failure Analysis Flash Failure Analysis

Platform Platform
(FLAP)(FLAP)

By Michael Tomer, Cory Shirts, By Michael Tomer, Cory Shirts, SzeHsiangSzeHsiang
Harper, Jake JohnsHarper, Jake Johns

http://code.google.com/p/uofu2009-2010clinicteam/

IntroductionIntroduction

• Cory

IntroductionIntroduction
• Flash Memory prevalence

– Cell Phones, MP3 Players, Cameras, Hard
Drives

• Still a new Technology
– NAND flash memory has a limited number of

read/write cycles, its behavior past this limit
has not been widely analyzed

• Goals
– Create a open source system to test NAND

flash memory

Bill of Materials

• Provided through the University
– Altera-DE2 Development & Education Board
– USB Cables

• Provided by Micron
– NAND Flash storage
– NAND Flash Daughter Board

Bill of MaterialsBill of Materials

• Software (Free Downloads)
– LibUSBDotNet (SourceForge)

– Visual Studio Express (C# version)
– Altera Quartus II Web Edition Verilog dev.

environment
– Altera Nios II Embedded Design Suite

Daughter Board / Memory Daughter Board / Memory
Controller and FPGAController and FPGA

• Jake

FPGAFPGA

• Altera DE2 Development Board
Includes:
– System On a Programmable Chip (SOPC)
– NAND Controller
– Clock Generator
– Reset De-Bouncer
– On-chip dual port RAM
– Parts integrated using Verilog

NIOS 2 Embedded processor

• Programmed with C
• Controls Interfaces

– USB
– To the GUI on the computer

– To the Daughtboard

• Controls Displays
• Stores test results.

NAND ControllerNAND Controller

• Direct Interface for controlling the NAND flash

• Runs with 66 MHz clock.
• Deals with the commands:

– Read
– Program
– Erase
– Read ID
– Reset
– Read Status

OnOn--chip port RAMchip port RAM

• Used as a buffer
– Receive data

– Sending commands

• Controlled by two signals
• Used by:

– NIOS 2

– NAND Controller

Reset De-Bouncer

• Hardware reset
• Debounces reset
• Waits for the clocks to be valid

USB interfaceUSB interface

• Sze

USB interface

• FPGA USB interface
– Communicates with the host PC

– Is programmed in firmware
– Responsible for:

• receiving commands from the host PC
• Transmitting results back to the host PC

GUI � USB
Uses the LibUSBDotNet C# libraries to instantiate
the device and communicate over the USB
endpoints

–Don’t have to write a Windows driver!
–Driver runs using managed code in user space

32 byte command sent from GUI to firmware
0: opcode
1: seed
2: algorithm
3: debug level
4-7: cycles
8-11: start address

{ 00, block(12), page(6), column(12) } = 32 bits
12-15: end address

{ 00, block(12), page(6), column(12) } = 32 bits
16-31: reserved

USB � GUI

• Debug Endpoint
–Sends information about

firmware state according to the
“debug” level sent in command

• Status Endpoint
–Returns periodic status

information about the progress
of the job

USB � Firmware

State Machine for USB portion of firmware:

Receive Job from GUI
(Interrupt)

Add Job to FIFO Queue

Wait for next Job/
Process NAND FSM

To NAND FSM…

USB � GUI

• Result Endpoint
–Sends the results of jobs as XML

data
<job id="4" opcode="128" seed="0" algorithm="0" cycles="10000"

startAddress="0x00000000" endAddress="0x000FC000" debug="0">
<data>U3VjayBteSBiYWxscyE=</data>
<error count="1" address="0x0x000FC000">

<byte index="23" received="35"/>
<byte index="444" received="255"/>

</error>
<time days="0" hours="0" minutes="0" seconds="7" millisec="519"/>
<done failureCode="0" failures="1"/>

</job>

USB interface

• USB interface on host PC stores results in
a SQL database
– using the ActiveX Data Objects Classes of the

.NET framework to communicate with the
database

• Normalized database
• T-SQL (Transactional SQL)

– extension to the SQL database programming language

• Initially SQL database will store basic info but can
be expanded

Graphical User Interface on the PCGraphical User Interface on the PC

• Mike

GUI

• 2006-2007 Team completed a very basic
GUI

• They were unable to fully test it because of
the problems with the USB

Graphical User Interface on the PCGraphical User Interface on the PC

• Need to expand on 2006-2007’s interface
• Automated Testing patterns can be specified

– range of blocks to test
– Number of cycles to run for
– Can use specific memory patters or randomly generated

patterns for testing.

• Options for connecting to the database
• Loading the firmware onto the FPGA

•Importance of data normalization
•Non-Normalized data

•Data is duplicated across many items

•This leads to problems when updating and querying data and adding
additional fields

•If there is time we are planning to store additional information in
the database

•Uses more space

•Space is critical because of the amount of data being stored.

Database Structure

•This improves some.

•More improvements can be
made

GUI

•Ensuring database normalization will make it easy for programs like Microsoft
Access to access the data.

•Access is a relatively simple interface that will enable engineers to create
custom charts and graphs that will suit their needs

Risks, Timeline, ConclusionRisks, Timeline, Conclusion

• Hartman

RisksRisks

• Previous team(2006-2007) was unable to
get full system working.

• They were only able to get the interface
between the daugterboard and the fpga
operational

• We will need to test and debug their
interface for full functionality

RisksRisks

• The previous team was unable to get USB
working properly

• We may still have significant issues with
usb connections
– Hopefully using libusbdotnet will solve this

RisksRisks

• We will need to complete quickly enough
so that we can run tests on memory and
determine failure patterns and rates

Implementation TimelineImplementation Timeline

ConclusionConclusion

• Using data generated by the FLAP it will
be possible to:
– Find the best algorithms to correct errors

– How many spare blocks per chip are
necessary

– Predict failure rates for specific use patterns
(server vs. workstation use, etc)

