
Real-Time Human Tracking through Single-Channel Video Feeds

Benjamin Martin

Abstract – In order to effectively process,

locate, and track human forms real-time in

a video feed requires not only a strong

hardware base but adaptive and intelligent

software solutions. Likewise, in order to

locate objects in 3d space with a single

channel video feed requires additionally

intelligent software. This project strives to

develop a system that performs all of these

things via attention-specific systems,

camera calibration techniques, and facial-

bounding-box detection algorithms.

Introduction – Real-time video processing

and automated surveillance has been of

large interest in many fields. It is most

often thought of us practical for intelligence

and security, but it has many more

potential applications. This document

attempts to develop a practical and

inexpensive solution for a somewhat

“interactive” video monitoring system. This

will allow, in particular, performing arts to

be able to track and location of a performer

on stage and program an automated

response. An example of this would be a

light following a dancer on stage.

Traditional methods require either

personnel to manually operate a spotlight –

which has its own set of limitations, or for

the dancer to move to pre-recorded

movements. This project attempts to

create a solution which will be able to

follow the dancer in three dimensions,

allowing for error or improvisation in the

case of pre-recorded movement. This also

hold as a benefit over manual lighting

control, as it can operate any number of

systems simultaneously and account for

depth, which most manual systems lack.

This document will outline the anticipated

methods of research and hypothesis for the

general detection of human forms.

Objectives – The objective of this project is

to design and implement a system which

tracks human forms on a stage. It also will

be designed to be able to provide a user

with the 3-dimensional coordinates of any

given dancer on the stage. A major

proponent of this design is to be able to

interface this data with additional

applications that will use the geometric

coordinates of the detected people to

produce artistic effects. This will require an

external api to be implemented.

Hazards – Several hazards exist in this

project. The first real hazard is that of

camera data rates. A typical USB camera

has a small lag between the time the

camera’s sensor detects the image and the

transmission to the PC is complete. This lag

can be potentially very hazardous if the

performer is moving quickly. Research will

have to be done prior to implementation to

determine whether or not this lag will be

acceptable, as when the camera is far away

from the object the small delay will have a

less pronounced effect. This research will

either conclude that the USB camera is

acceptable, or a faster camera will have to

be found. The goal of this project is to

produce a result that is not only simple but

very cost effective, thus an Ethernet or

Firewire based camera will be acceptable,

but not ideal.

The second hazard is accuracy. At this

point in the design phase, and going along

with the project goal of being both cheap

and simple, one camera will be ideal. This

presents a very technical challenge in

accuracy. It will require additional

calibration of the camera in order to

accurately determine their position along

the z-axis. While this will work fairly cleanly

in theory, it may be found that in reality the

accuracy just isn’t there. At that point a

design decision will have to be made

regarding the utilization of an additional

camera to produce two reference frames.

A final hazard is resolution and frame rate

of the camera, as this will determine

hardware requirements. For a system to be

fast enough to track a performer reliably,

estimated frame rates of 15 – 30 FPS will be

needed. If the camera cannot this frame

rate at the full resolution, lesser resolutions

will need to be selected at the price of

accuracy. As stated in the hardware

section, potential lossy frame rates or low

resolution will require that additional

hardware will need to be used.

Hardware Components – The hardware

design required for this project is largely

dependent on the specifications of the

camera used. If it tends to have low frame

rates or resolution, a converter will have to

be implemented or purchased in order to

allow a generic composite signal from a

video camera to be recognized as a

webcam by the PC. This will allow for much

higher frame rates and resolution, and thus

much higher accuracy. A second

component necessary will be an RF link

between the video capture device and the

PC. The preferred protocol will either be

Wireless USB or Bluetooth, as both are

fairly cheap to implement, range

depending.

Software Components – Software

development will make up the bulk of the

project. Several software components will

need to be implemented as follows:

Image Extraction - This component will be

Camera Calibration – This component will

be the critical point in accurate depiction of

the coordinates of an object. It will require,

first off, the calibration of the stage. By

identifying four concrete points on the

stage, a depth can be determined and

likewise other objects will be able to

compared on the same scale.

GUI – While a majority of the low-level

processing will be written in C++ for the

sake of performance, the GUI will be built

through ActionScript. This will allow the

GUI to be built more quickly and efficiently,

while not compromising much in the way of

performance.

Motion Detection – Motion detection will

be performed through background

subtraction. The resulting regions will then

have a threshold applied to eliminate any

noise, and passed through for object

recognition.

Object Recognition – In particular, facial

recognition will be relatively complicated.

At this point in the design, the chosen

algorithm will be based off of a neural

network that has been trained with several

front and side view faces. It will then

analyze the regions in which a moved object

was detected, and determine if a face is

contained within the region.

Object Tracking – Tracking the faces is very

straightforward, as points will need to be

stored at a given resolution-defined

interval. Trends can then be found by

finding linear regressions and

approximations on the curve.

Inverse Projection – The most intensive part

of the project will be to derive a method for

accurately determining a given object’s

coordinates. While the x and y component

of the object will can be easily found

through inverse projection, the z-

component will require a system for

calibrating based on extracted head size.

By utilizing a transformation matrix and two

or more calibration points for a person or

object, the z dimension will be able to be

extracted.

API – This system is designed exclusively to

work with other pieces of software to add

the artistic elements to a performance. As

such, an API will need to be implemented in

order to communicate the findings. For

scalability reasons, the API will be

implemented via network interfaces. A TCP

connection will be established and the

client will be required to poll the existing

state for locations or events.

Attention Selection – Due to the fact that

extra faces will not be found within close to

80% of the visual field, a simple algorithm

can be used in order to ease the processor

load. By only analyzing the edges of the

field and tracking formerly detected faces, a

large percentage of the field will not have

to be analyzed.

Workflow – The entirety of the project is

expected to take approximately two and a

half months. It is expected to be broken

into essentially four sprints. Each sprint will

entail the typical Scrum model of

development and testing per sprint. They

are outlined as follows.

Sprint 1: Motion Detection – This sprint will

be two weeks long and set up the basic

framework for which the rest of the sprints

depend on. The goal for sprint 1 is to

develop an application that can accurately

track human faces over time. It is also will

support a frame rate over 30 FPM (leeway

is needed as the inverse projection phase

will also be fairly processor intensive).

Sprint 2: Inverse Projection – The goal of

this sprint is to implement a theoretical

method for determining the x, y, and z

positions for an object given known

reference points and the calibrations of the

camera. This sprint will be the longest,

taking upwards four weeks.

Sprint 3: Camera Calibration, Video

Transmission – Camera calibration methods

and research will be developed over this

sprint. It will have to be integrated with the

previous sprint, as both have some degree

of codependence on one another. The

video transmission component of this

project will be the design and

implementation (or purchased, budget

depending) of the short-range wireless

video link.

Sprint 4: Integration/API – Once the basic

system is in place, the final step is

integration and the API development. The

API will be very straightforward and not

take more than one week to construct.

Integration, however, will make it evident

whether or not design considerations need

to be changed. This will likely take upwards

one month.

The workload of this project will be

completed mostly by myself, with

assistance and guidance in implementation

from Dr. H. James de St. Germain. Periodic

checks and detailed scrum models will help

to gauge progress and determine if design

requirements can be pushed forward or

back.

Skin Detection Hypothesis – Based on

several studies performed in the area of

human skin detection, it is going to be

assumed that the most efficient method for

isolating human forms will be to use color

modeling of human skin. It is apparent

from these that regardless of race, human

skin can most easily be represented by the

HSV color scheme, which isolates the hue,

saturation, and intensity (value). This

allows for detection in harsh lighting

conditions, as the hue is irrespective of

shadows or highlights. It was mentioned

prior that race is not an issue with this

proposed model, as it has been determined

through several statistical studies that the

only legitimate difference between dark

skinned persons and their caucasion

counterparts is the saturation of the hue.

Figure 1 - It can be seen from this figure that

there are two real clusters of hue (the x-

axis) and saturation (the y-axis). The

cluster on the left if the general range for

skin tones on illuminated skin, while the

right section is that of skin in a reflected

shadow.

The values to be used in isolating the skin

tones have been found through making a

skin map of several people, and plotting the

respective H and S values (we will ignore V

as it only tells us how bright the image is).

By plotting these respective to one another,

a very narrow clustering of values can be

found, and as such threshold values can be

determined. Upon thresholding the image,

basic histogram analysis may be used in

isolating the eye locations.

Histogram Analysis – The histogram

analysis portion uses a basic heuristic that

will be developed to cheaply isolate the

eyes given a general face mask grayscale

image. This is possible due to the face that

the eyes are always the darkest point on

the face (with the exception of similarly

dark points at the nostrils). By inverting

and equalizing the image and applying a

dynamic thresholding operator on the

image, several distinct points emerge. At

this point a histogram is generated in both

the x and the y direction. Since the eyes

are brighter than the surrounding skin

regions, it is known that there will be a

relative peak in the histogram. By analyzing

the image strips at each peak, we can

perform some basic operations that will

allow us to locate the exact point of the

eye.

Eye Detection – Upon generation of the

image strips, another horizontal histogram

is created. Since it is known that there will

be two bright points surrounded by dark

space on either side and in the middle, the

peak that is associated with the eyes is used

to compute the basic bounds of the eye.

From this point, if low accuracy is desired

these bounds may be used. Otherwise, the

peak at which the brightest point occurs is

most likely the center of the pupil.

Validation – This method, while very cheap,

shows many false positives (eyes detected

where they do not exist). The anticipated

method to remedy this is to perform several

sanity checks on the list of potential eye

points. The first is the use of the center of

mass. By finding the center of mass of the

skin mask, the general center of the face

will be found (though this value will be

slightly low due to the presence of the neck

or other limbs in the frame). By using

general proportions of human features,

several of these values may be eliminated.

Such conditions as the angle between the

eyes may not be over sixty degrees, the

eyes must be approximately the same size,

and that they are within 25% of the head’s

height from the center are a few that will

be used. Preliminary tests show that these

conditions eliminate most false positives.

Object Tracking – Once a lock on a face has

been established, a method needs to be

utilized to allow the face to be tracked in

real time. To do so requires an algorithm to

be implemented that will a very small

portion of the CPU. The algorithm we will

use will be a derivation of the Mean Shift

algorithm, as proposed by Intel in 1998.

The implementation and description of this

algorithm will be highlighted in the

following section.

Though object tracking is not the original

purpose of the mean shift algorithm, in

color video streams it proves a very

computationally inexpensive method for

tracking relatively solid-colored objects.

The point at which this algorithm fails is

that it can really only track objects of a

consistent size. In a video stream with live

objects, however, distance from the camera

is directly proportional to the perceived size

of the object. With this in mind, it is clear

that an object that changes its position

along the z-axis will appear to change in

size. This requires us to extend the mean

shift algorithm as proposed by Intel. The

extension relies on continually adapting size

of the search window, allowing the position

along the z-axis to not only be mitigated,

but to be calculated and used in control

applications.

Continuously Adaptive Mean Shift - As was

aforementioned, the continuously adaptive

mean shift algorithm revolves around color

histogram analysis. The first step, then is

clearly to define the appropriate ranges of

color.

As was stated in the section regarding

human skin tones in the HSV color

spectrum, a very narrow band can be

isolated and utilized as a sort of background

subtraction, eliminating the necessity for

additional background subtraction.

Figure – This shows the narrow band of hue and

saturation for a given skinmap. The X axis

represents the hue, while the Y axis represents

saturation

It is noticed that there is a small cluster of

points on the rightmost side of the graph.

This is due to the fact that the hue band is a

circular measurement of degrees. That is,

the largest hue is really immediately

adjacent to the smallest potential hue. The

narrow window of hue and saturation is

quite resilient against both light intensity

and skin tones.

Converting RGB to HSV

� = max (�	
, �		�, ���)

∆ = max(�	
, �		�, ���)− min (�	
, �		�, ���)

� = ∆max (�	
, �		�, ���)

If (Red == V) � = 60 ∗ (���� !"��#∆)

If (Blue == V) � = 60 ∗ (2 + &�' ����∆)

If (Green == V) � = 60 ∗ (4 + &�' !"��#∆)

Figure – This shows the HSV values for a typical

image sampled by a webcam. It can be seen that

the human skin tones provide a sharp contrast from

the other regions

Once an image is converted to its respective

HSV color, an initial histogram must be

established so that the unrelated regions of

the image may be subtracted, By specifying

a probability distribution for each individual

pixel, large clusters of appropriately colored

images can be extracted. The following

figure shows the histogram distribution of

hue (which contains a very narrow

window), and saturation, which covers a

much broader base. By using these two

paramaters, a very reliable skin base can be

detected.

The skinmap image can be defined by the

following equation:

)"*+,+-�-./ 01,2� = 3 �(4, 5) ∗ �(4, 5)

By iterating over each pixel and using the

histograms as lookup tables, the product of

the hue and the saturation values are

placed into the corresponding locations.

The resulting image is a grayscale skinmap

that is used for the remainder of the

algorithm.

In our testing implementation, the user is

prompted for a color selection window as

an alternative to the traditional skin tones.

In order to use this histogram, a simple

filter is applied. This allows the

continuously adaptive mean shift algorithm

to track any uniquely colored object by

generating on-the-fly probability

distribution histograms.

Upon converting the HSV colormap image

to the skinmap, an initial search window

needs to be identified. This will allow the

search window to scale the probability

distribution and resonate over the actual

bounds of the image. The initial window,

due to the fact that the algorithm scales

and resizes, does not need to contain the

object. While selecting the actual object

increases the speed of the initial mean shift,

the efficiency of this algorithm is such that

on a 1.2 Ghz laptop with an XNA

implementation, the scaling of the window

to encapsulate the entire face took less

than 0.3 seconds.

The actual mean shift operation is a

repeated sequence of finding the centroid

of the search window, repositioning the

search window around the centroid, and

then rescaling the search window according

to the sum of the pixels within the search

window. By continually repeating this

operation until the search window stabilizes

around a particular location, the center of

the blob can be tracked and followed very

efficiently (in our test application 30 frames

per second were easily achieved).

Actually determining how to resize the

window is typically very dependent on the

object being tracked. Due to the fact that

we are targeting this application chiefly to

human faces, it can reasonably be assumed

that the objects being tracked will be

somewhat oblong. It is also assumed that

the faces are not tilted very far sideways,

and so a basic window can be set up using

the following formula:

6 = 27 899�:;�:��	6 + 1

With this in mind, our implementation

converted the image to 8-bit grayscale

values. Our denominator, then, was 2^8 +

1, or 256. By also assuming that the

windows is taller than it is wide, the actual

search bounds are set by claiming s as the

horizontal edge of the next search window.

The height, then, is experimentally

determined to work best at about 1.2 * s.

One of the largest benefits of this algorithm

is its near-immunity to noise and similar

objects within the scene. Upon correctly

sampling the skin colors, any deviations in

noise or lighting generally do not impair the

results dramatically. If other objects come

in or out of the scene, as well, the target is

still generally maintained. The only real

exception to this is if a similar sized and

colored blob overlaps the target’s face. If

this happens, the target is occasionally

“passed off”, and the new target becomes

the overlapping blob. This took a

considerable amount of effort to

accomplish, however, so the likelihood of it

happening accidentally in a typically scene

is minimal.

Aside from the proposed uses for this

technology, there are countless others. The

concept of using facial recognition and

using this as a control interface for a given

system is monumental. The concept used

here, for instance, was implemented in an

XNA game. The game used facial tracking

to control a spacecraft that moved around a

galaxy in attempt to reach a landing

platform. By properly mapping the

appropriate controls to the head position in

the webcam, a pitch, yaw, and roll

controller was implemented that could

maintain respectively high frame rates on a

laptop running at a mere 1.2 Ghz. This

technology could also be widely used for

those with accessibility needs. For

example, by tracking the pupils of a person

and detecting a certain blink pattern as

clicks, the user could control the mouse just

be looking at the appropriate control on the

screen.

Risks – The largest risk for this project

revolves around the prospect of the cpu not

being able to handle the large number of

operations required to analyze and process

each frame. As this is not easily remedied

given the budget and project specifications,

the only alternative is to use very efficient

algorithms and eliminate any unnecessary

operations. One particular concept which

will be referred to as estimated vector

projection will be used. This system will

monitor a history of the movement of the

eyes of the subject. By doing so, the

system will be able to analyze a given

trajectory and reasonably estimate where

the eye will be in the next frame (given that

the eye will not move out of but a small

window given a 30 fps feed). By doing so,

only a small region will have to be examined

for eyes. That being said, this operation

will still require a “lock” to be acquired, but

once done will be incredibly efficient as the

image size will be reduced from 320x240 to

something more in the neighborhood of

50x16. It is certain that even the most

basic of mainstream cpu’s can operate on

an image this size in real-time.

An additional method for processor

offloading revolves around the fact that a

majority of the processing power will be

devoted to drive a GUI to help monitor and

debug the system. The GUI will also be

responsible for capturing webcam data, as

C++ does not have any inherently clean

methods for doing so. Because of this, a

client-server application will be developed.

This will also allow the operating system to

utilize several cores for the image

processing, further increasing the potential

frame rates.

Figure 2 – This flowchart shows the

relationship between the software

components to be used in the project. The

blue boxes represent custom software,

while the green is an operating system

component. These components operate

through an internal network connection

If in the case that accuracy is a problem and

the proposed algorithm fails, a basic eye

searching window will be able to be drawn

upon a successful lock and more

complicated and accurate techniques such

as haar object recognition or template

matching may be used to extract the eye

locations.

One particular hazard that we encountered

was due to the face that the project we

were using for overhead illumination did

not create a very large field, meaning the

dancer had something in the neighborhood

of a 36 square foot region to dance in. This

was unacceptable, so the right-angle

projector box that was used had to be tilted

so that the field was elongated. This had to

be corrected for in the code – the

implications being that we had to re-stretch

the camera’s view when detecting such

things as the positions of the dancers. In an

ideal situation, a projector with a wider

field would be used. Due to time

constraints for the final performance,

however, a new projector was not able to

be obtained.

Bill of Materials – The materials required

for this research project are fairly minimal.

Adobe Air

Gui - Client

C++ Server

Handles all image

processing

Webcam

Interface

All that will be needed is a webcam that is

capable of generating 30 fps at 320x240

resolution. Additionally, a CPU with

development environments including

Cygwin and Adobe Air will be used. For the

actual performance, several other

components will be needed. USB extension

cables will be required (at about 50 feet per

cable), a VGA extension cable, two

projectors with wide lenses, and two

webcams. Additionally, a mirror box will be

used for the downward projection.

Conclusion – Upon completion of this

project, a lot of research can be done in

terms of scalable systems to be used in not

only the Fine Arts industry, but in the

general computing and in particular the

gaming industry. It will allow for a new

generation of lighting effects, as well as be

extensible to other fields and industries.

