
Dynamic Source Filtering
Sunglasses

University of Utah
Computer Engineering Senior Project December 2009

Dynamic Source Filtering Sunglasses Page 2

Dan Parker
Torrey Atcitty
Dana Todd

Jason Hansen
TABLE OF CONTENTS

Introduction 3

Project Overview 3

Software and Hardware Design Overview 4

Pupil Response Time 5

Bill of Materials 6

Microcontroller 7

Digital Cameras 8

Interfacing the Components 8

Dynamic Source Filtering Sunglasses Page 3

Interface Issues 9

Testing 10

Appendix A

References 11

Appendix B

LCD Specs 12

Appendix C

Camera Specs 13

Appendix D

Microcontroller Specs 14

Appendix E

The Complete System on the FPGA 15

Appendix F

The Shadow Pipeline 16

Appendix G

The Camera Controller 17

Appendix H

The Frame Buffer 19

Appendix I

The Overscan Unit 22

Introduction

The result of this project was the development of intelligent sunglasses. The goal of the
sunglasses was to dim bright lights while leaving a person’s remaining field of view
undisturbed. These sunglasses are far superior to standard sunglasses in situations where the
distribution of light is uneven. For example light is unevenly distributed when either driving
into the sun or driving into oncoming headlights. The presence of bright lights causes the eye to
adjust which makes the surrounding area darker by comparison. By dimming the bright spots,
the eyes can remain dilated and continue to detect details from the surrounding area with much

Dynamic Source Filtering Sunglasses Page 4

greater accuracy. The glasses consist of four major components: clear Liquid Crystal Display
(LCD) screens, digital cameras, microcontrollers/processors, and chassis. The design consists of
two separate systems that are functionally identical, where each system is dedicated to one eye.

Project Overview

The basic procedure the glasses go through starts with the glasses using a camera to take
a picture of what the viewer sees. The camera streams that data to the microcontroller that
processes each pixel and determines whether dimming is necessary or not. Inside the
microcontroller is a dedicated pixel pipeline that has the 2D transformations from camera
coordinates to screen coordinates in hardware. In parallel to the screen transforms is the
brightness comparison logic. If dimming is needed, the pipeline has already calculated the
position on the LCD screen that corresponds to the position of the bright spot. It writes data out
to the dual ported frame buffer where the LCD controller will read it upon refreshing the screen.
Between the LCD controller and the Frame buffer is an Overscan unit that can calculate if a
bright spot exists near (or on) the current pixel. If so, the pixel is dimmed to block the light
appropriately. This happens repeatedly and rapidly so that new lights are dimmed and light
sources that have disappeared are no longer dimmed. The project is split into three design
categories: physical placement and design, hardware component design, and software design.

The physical placement required all components to be mounted on a person’s head so
that they can look around. The main chassis is mounted on a construction helmet with all
microcontrollers, LCDs, and cameras securely mounted to the helmet either by screws or copper
wiring. The LCD screens are held in front of the viewers eyes so that a large portion of their
field of view is through the screens. The cameras are mounted pointing in the same direction as
the viewer is facing and are as close to the LCD screens as possible. The microcontroller and
other components are mounted on the sides of the helmet.

The hardware component design is based mainly on the minimum function requirements
of the system. The LCD can not inhibit light transmission to the point of being impossible to see
through and the system must have a quick response time to any change in lighting. Also, all
parts must be able to communicate with one another efficiently. Special camera and LCD
controllers were designed to ensure both components can be used to their full potential in terms
of response time. In order to guarantee that the microcontroller could satisfy the full output of
the camera, a special pixel pipeline was designed. It has five stages of adds, multiplies, and
compares. The values used to add, multiply, and compare are stored in registers that are
accessible by the microcontroller through memory-mapped I/O. This way the microcontroller
has the throughput required, and is also dynamically adjustable. Another specialized component
was the Overscan unit and frame buffer. In order to check nearby pixels for brightness, the
frame buffer needed to be split into 16 block RAMs. Each block RAM corresponds to lines on
the screen that alternate through all 16. This way, any 16 adjacent lines can be read
simultaneously by the Overscan unit. In order to check if pixels to the left and right are bright,
the Overscan unit merely reads the leading edge of the area prior to arriving at a pixel and then
shifts that information out as it passes. The actual design has 9 rows of shift registers to store

Dynamic Source Filtering Sunglasses Page 5

the current window of data. It then does a logarithmic compare to find the brightest value and
dims the current pixel accordingly. That information is then passed to the LCD controller.

The software design required code to be programmed for an embedded microcontroller.
The microcontroller is a modified CR-16 instruction set and all of the code was programmed in
assembly language. The only function of the microcontroller is to change the values used in the
pixel pipeline based on user input. It has a loop that consists of checking the inputs, calculating
the new values, and storing them (repeat). A few complications arose due to the ability to zoom
in and out at non-integer levels. In order to allow those operations, we needed a fractional
multiply. And in order to bound the screen, we needed to write a fractional divide routine in
software.

Software and Hardware Design Overview

A critical aspect of the glasses’ operation relied on the relative positions between the
camera and the screen. The fundamental problem is that what the camera can see is slightly
different from what the person wearing the glasses can see. This phenomenon is referred to as
parallax and can be used to measure distances, but in the sunglasses it is perceived as a variable
error that is dependent on distance. The error is more apparent in objects close to the viewer and
less apparent in objects at a large distance. The ideal location for the camera was exactly in the
same place as the eye; this is obviously unfeasible as the eye occupies that space. The next most
ideal location was in the center of the screen, or at least along the center line of the person’s
vision. This made the center of the camera the same as the center of the screen; unfortunately,
this was also unfeasible as it would obscure the person’s field of view. There was no perfect
location for the camera to reside, but there were a few optimal locations given the previous
physical constraints: above or below the screen in the center and to the left or right in the center.
Each of these positions shares a center line with the human’s eye and therefore minimizes either
the side to side error or the up and down error (parallax). The camera position that was the most
effective for this project was above the screens in the center as that was the most convenient for
construction and the least likely spot to be accidentally damaged.

The cameras were placed as close to the LCDs as possible, but it was hard to know the
exact measurements before they were physically set in place. Because the error was so heavily
dependent on the exact location of the cameras, a simulation was required so that the camera’s
location could be changed and the respective error observed. In the simulation the viewer’s eye
was represented three inches behind the screen and the camera was represented an inch above
and an inch forward from the screen. In the simulation there was one light source that could be
moved around. Figure 1 shows this simulation. To represent what the viewer could see, the light
source was projected onto the LCD screen. The light source was also projected onto a ¼ inch
screen at the camera location and superimposed on top of the image on the LCD screen. This is
shown in Figure 2. From there, the change in error could be observed depending on where the
light source was located. Beyond one mile, the error is nonexistent; the camera sees exactly
what the viewer sees. The sun would fall into the category of objects that will have no error

Dynamic Source Filtering Sunglasses Page 6

between what the camera sees and what the viewer sees. On objects 7 feet away, the error
becomes so significant that what the viewer sees is in a completely different location than what
the camera sees. To account for this the sunglasses overscan what the camera sees to cover more
area. The overscan could not be too great because it would obscure vision. A width of 2
millimeters, or 10 pixels, darkened in a border around the bright object would not be obtrusive
to vision and would allow the LCD glasses to block light sources as close as 12 feet accurately.
If the cameras were to be placed closer, that distance could be further decreased, but 12 feet was
the worst case scenario.

Because the cameras send data to the microcontroller at a high frequency, we initially
thought the processing time could be an issue if it was longer than the time it takes for the pupil
to react. It turned out not to be a problem with the implementation of the pixel pipeline.

Pupil Response Time

A research study for the IEEE Engineering Medical Biology Society provided
information on papillary response time. The group tested the papillary response time of subjects
exposed to a single flash of light. The pupil response time was recorded for three seconds. The
results are shown in Figure 3.

Dynamic Source Filtering Sunglasses Page 7

Fig. 3 Pupil response and parameters measure (1-Latency time to reach the plateau, 2-Latency time to the
beginning of constriction, 3-Duration of constriction, 4-Latency time to maximum constriction, 5-Radius
of pupil before flash, 6-Radius of pupil at maximum constriction, 7-Radius of pupil at teaching plateau).

The research group found that the latency time from the single flash exposure to the start
of pupil constriction was (240±36ms). They also found that the time to total pupil constriction
was between 0.6 and 0.7 seconds.

This data means that the code will have to be optimized so that the system processing
time will fall below 240ms. The worst case scenario for the system’s processing time will have
to be shorter than the time it takes the eye to completely constrict which is between 0.6 and 0.7
seconds.

Bill of Materials

The sunglasses were comprised of a few parts from different manufacturers. They
required LCDs, microcontroller boards, cameras, physical hardware for mounting, and various
electrical components for interfacing. Table 1 shows the components and project costs.

Table 1: Projected Project Costs
Product Quantity Manufacturer Price

LCD Screen
LCD35VGAN

4 AIE Components $977.00

Dynamic Source Filtering Sunglasses Page 8

LCD Screen
PT0353224-
A102

2 Palmtech $50.00

Digital Camera
C3188A-6018

3 OmniVision $57.00

Spartan-3 FPGA
Board

2 Digilent Inc. $119.00

Physical Head
Mounting
Hardware

1 Industrial Supply
Salt Lake City

$40.00

Assorted
Electrical
Components

1 - $40.00

Total $1283.00

The total project cost was 1283 dollars. We initially went with the PT0353224-A102
LCDs from Palmtech and acquired them early on in the project. As time went on however we
were not able to interface with them. The Palmtech LCD pins were 0.5mm spaced and we were
not equipped to handle such small spacing. We attempted but were not able to etch a fanned, pin
out for them. We then went with the LCD35VGAN LCDs instead. Due to time constraints, we
required an LCD module that contained a much easier interface but was also transmissive so
that we could look through it. The LCD35VGAN LCDs worked perfectly as they were fully
contained modules that were capable of VGA output. Shortly before we began mounting the
LCDs onto the helmet we noticed that they were not responsive 100 percent of the time. We
figured that due to abusive handling, the ribbon cables connecting the LCDs to their
components began showing signs of metal fatigue (e.g. the wires inside cracked and would no
longer make a reliable connection). We ordered two more LCDs and carefully mounted them to
the helmet. Once in place the ribbon cables were secure and we encountered no further
problems with them.

Microcontroller

The microcontroller was implemented using a field programmable gate array (FPGA).
The FPGA was purchased from Digilent Inc. in the Spartan-3 Board package. The FPGA design
was essential for the sunglasses due to their ability to sustain multiple parallel processing
pipelines in the same package. The standard microcontroller, such as the HCS12 from
Freescale, did not have the data throughput required for the sunglasses. The FPGA contained a
50 MHz crystal oscillator with 20 Block Rams containing a total of 360kbits of Block Ram.
This allowed for high processor speed as well as memory for the camera and LCD data buffers.

Digital Cameras

Dynamic Source Filtering Sunglasses Page 9

The digital cameras that we purchased were model C3188A-6018 manufactured by
Omnivision. The cameras were capable of operating at a resolution of 320x240 pixels at 60
frames per second, and a resolution of 640x480 pixels at 30 frames per second. High frame rates
were ideal for fast response time (preventing blindness), and high resolutions were desirable for
wide angle viewing and increased accuracy. The cameras were capable of outputting data in the
YCrCb format, a format which allowed information regarding the brightness value of a pixel to
be separated easily. The sunglasses only relied on the brightness (Y) values from the color
vectors for processing. We also used some custom lens to get a wider field of view from each
camera. A dark lens was also placed in front of each camera to simplify the calculation of the
threshold for dimming pixels. This was mainly done to inhibit the cameras from gamma
correcting.

Interfacing the Components

A few standard wires and adapters were required to interface each component together.
The LCDs, Cameras, and FPGAs all communicated using a 3.3v TTL standard. There were also
a few knobs and buttons required for individual adjustments. This was necessary since eye
distance changes from person to person. The knobs controlled five variables: zoom in/out,
up/down, left/right, threshold, and contrast. A photo of our adjustment control is shown in
Figure 4. The total cost of miscellaneous electrical components was 40 dollars.

Fig. 4 Personal control unit
The sunglasses needed physical mounting gear in the form of a helmet with brackets to

hold the LCDs and cameras in a rigid position. We chose a construction helmet since it was
wearable by most people for demonstration purposes. The construction helmet was also durable

Dynamic Source Filtering Sunglasses Page 10

enough for us to drill screws into it. The screws held two platforms on each side of the head to
hold the microcontroller components. We used copper piping ties to mount the LCDs and
cameras to the front of the helmet. Since we needed a gentle connection we used weather
stripping to form a connection between the components and the copper. Once we were satisfied
with the camera positions above the LCDs we soldered them into place. We also soldered the
darkening glasses over the cameras to account for the gamma correct from the cameras. A photo
of our components interfaced together is shown in Figure 5. Most parts involved in the physical
construction were purchased at home depot and the total cost was 40 dollars.

Fig. 5 Interfaced Components. Left: FPGA control Right: LCDs and Cameras with Gamma correction lenses.

Interface Issues

Several interface issues were discovered while performing initial project scoping. One
such issue definitely affected our ability to interface with our LCD screens. Our initial LCD
solution interfaces through 54 pin ribbon cable with a 0.5mm spacing. We quickly found that
we were not able to interface with the 0.5mm spacing and chose to go with the LCD35VGAN
LCD modules instead. They allowed us to use a standard VGA interface to communicate to
them.

When connecting one of the cameras to the FPGA board, we noticed that there was
substantially more noise on its screen than its duplicate sister-system had. To fix this we
wrapped the cable in aluminum foil (used Chipotle wrappers) and grounded the foil. This
completely removed the noise.

Another issue presented itself in the form of interfacing with the camera
implementation. While attempting to make use of the I2C interface within the camera, we
noticed that we were not able to get the camera to accept any data that we were sending. The
use of the I2C interface was meant to control all aspects of the camera itself. Such settings as

Dynamic Source Filtering Sunglasses Page 11

Hue, Gamma Correction, Contrast, Saturation, and more are all determined by hardware
registers within the camera. Originally we had designed an I2C controller on our FPGA in order
to disable gamma correction within the camera but were unable to figure out why the camera
was not accepting commands. To counter this, we attached dark sunglass lenses to the front of
the cameras to disable gamma correction externally for our purposes.

Testing

 The error on the sunglasses was small enough so that is didn’t obscure the vision of the
wearer and didn’t miss light that required coverage. The error was measured using one main
light sources: A 500 watt work lamp. The work lamp was used in lab testing as a variable
distance light source to test the error on objects ranging from five to 30 feet away.

Testing was also performed on the physical head gear that was used to mount the LCDs,
camera’s, etc. This testing on the helmet or glasses apparatus was on all 4 members of the group
as well as several students chosen at random from either the Warnock or Merrill Engineering
Buildings to ensure a good fit across multiple head sizes.

Because the LCDs we eventually used had a VGA interface, testing them consisted of
loading a program that was known to have a working VGA output and observing that on the
screens. After we confirmed that we could communicate, we loaded a program that had a black
spot in an otherwise white background. We looked through that scene at lights to confirm that
the black was dark enough, and the white was clear. At that point we knew the LCDs worked in
the way we needed, and we knew could interface to them with ease.

Testing on the camera modules initially consisted of observing waveforms on an oscilloscope to
ensure that the camera was indeed set to a default setting that we were familiar with, YUV.
After the data was found to be correct with our own intuition, we resorted to manual
observation of the data the camera was outputting. In order to do this, we designed a camera
controller within our FPGA and attached the camera to the board. Once we verified that we
could capture data by lighting up debug LEDs on the project board, we integrated the controller
to our project so that we could make use of the frame buffer and VGA controller to actually
observe, in real-time, the images the camera was seeing on an external CRT monitor in the
hardware lab. After we were able to observe actual images being displayed on an external
monitor, all subsequent testing of the camera simply involved observing the actual frames that
the camera sent to the FPGA.

Dynamic Source Filtering Sunglasses Page 12

Appendix A - References

Ferrari GL, Marques JL, Gandhi RA, Emery CJ, Tesfaye S, Heller SR, Schneider FK, Gamba HR., An approach
to the assessment of diabetic neuropathy based on dynamic pupillometry., Conf Proc IEEE Eng Med Biol Soc.
2007;2007:557-60.

Dynamic Source Filtering Sunglasses Page 13

APPENDIX B - LCD Specs

Dynamic Source Filtering Sunglasses Page 14

APPENDIX C - Camera Specs

Dynamic Source Filtering Sunglasses Page 15

APPENDIX D – Microcontroller Specs

Dynamic Source Filtering Sunglasses Page 16

APPENDIX E – the Complete System on the FPGA

Dynamic Source Filtering Sunglasses Page 17

APPENDIX F – The Shadow Pipeline

Dynamic Source Filtering Sunglasses Page 18

APPENDIX G – The Camera Controller

module CameraController(
input PCLK_IN,
input FastClk,
input [7:0] Y_LUMA,
input HREF,
input VSYNC_IN,
input RESET,
output reg WE,
output reg [15:0] data,
output reg [15:0] x ,
output reg [15:0] y,
output reg gotplk = 0,
output reg gotvsync = 0,
output reg gothref = 0

);
reg [15:0] HsyncCount = 0;
reg [15:0] VsyncCount = 0;
reg [25:0] PclkCount = 0;

always @(posedge FastClk)
if (PCLK_IN)
 gotplk <= 1;

always @(posedge FastClk)
if (VSYNC_IN)
 gotvsync <= 1;

always @(posedge FastClk)
if (HREF)
 gothref <= 1;
//Resolution = 640x480
 //10bits for 640 dec representation
//9bits for 480 dec representation
//Y is within range 16 < Y < 235

reg prevH;
always@(posedge PCLK_IN)
begin

if(RESET == 1)
begin

prevH<=0;
x<=0;
y<=0;

end
else
begin

prevH<=HREF;
if(HREF == 1)
begin

x <= x + 1;
end
else if(VSYNC_IN)
begin

Dynamic Source Filtering Sunglasses Page 19

x <= 0;
y <= 0;

end
else if(HREF == 0 && prevH== 1)
begin
 y <= y + 1;
 x <= 0;
end

end
end
always @ (posedge FastClk)
begin

WE<=HREF;
data <= {8'b00000000,Y_LUMA};

end

endmodule

Dynamic Source Filtering Sunglasses Page 20

APPENDIX H – The Frame Buffer

endmodule module OverscanFrameBuffer(
 input [7:0] PipelineDataIn,
 input [3:0] PipelineWriteEnableIn,

 input PipeLineValid,
 input PipeLineDrawEnable,
 input PipeLineClear,

 input PipelineClkIn,
 input [10:0] PipelineAddressIn,
 output [127:0] LCDDataOut,
 input [175:0] LCDAddressIn,
 input LCDClkIn,

 input reset
);

wire we;
assign we=PipeLineValid & PipeLineDrawEnable;
wire [7:0] colorValue;

assign colorValue=PipelineDataIn & {8{PipeLineClear}};

reg [7:0] Line0 [1999:0];
reg [7:0] Line1 [1999:0];
reg [7:0] Line2 [1999:0];
reg [7:0] Line3 [1999:0];
reg [7:0] Line4 [1999:0];
reg [7:0] Line5 [1999:0];
reg [7:0] Line6 [1999:0];
reg [7:0] Line7 [1999:0];
reg [7:0] Line8 [1999:0];
reg [7:0] Line9 [1999:0];
reg [7:0] Line10 [1999:0];
reg [7:0] Line11 [1999:0];
reg [7:0] Line12 [1999:0];
reg [7:0] Line13 [1999:0];
reg [7:0] Line14 [1999:0];
reg [7:0] Line15 [1999:0];

initial
begin
$readmemh("blankFrameBuf.dat", Line0);
$readmemh("blankFrameBuf.dat", Line1);
$readmemh("blankFrameBuf.dat", Line2);
$readmemh("blankFrameBuf.dat", Line3);
$readmemh("blankFrameBuf.dat", Line4);
$readmemh("blankFrameBuf.dat", Line5);
$readmemh("blankFrameBuf.dat", Line6);
$readmemh("blankFrameBuf.dat", Line7);
$readmemh("blankFrameBuf.dat", Line8);
$readmemh("blankFrameBuf.dat", Line9);
$readmemh("blankFrameBuf.dat", Line10);
$readmemh("blankFrameBuf.dat", Line11);
$readmemh("blankFrameBuf.dat", Line12);
$readmemh("blankFrameBuf.dat", Line13);
$readmemh("blankFrameBuf.dat", Line14);

Dynamic Source Filtering Sunglasses Page 21

$readmemh("blankFrameBuf.dat", Line15);
end

reg [7:0] Line0out;
reg [7:0] Line1out;
reg [7:0] Line2out;
reg [7:0] Line3out;
reg [7:0] Line4out;
reg [7:0] Line5out;
reg [7:0] Line6out;
reg [7:0] Line7out;
reg [7:0] Line8out;
reg [7:0] Line9out;
reg [7:0] Line10out;
reg [7:0] Line11out;
reg [7:0] Line12out;
reg [7:0] Line13out;
reg [7:0] Line14out;
reg [7:0] Line15out;

assign LCDDataOut={Line15out,Line14out,Line13out,Line12out,Line11out,Line10out,
 Line9out,Line8out,Line7out,Line6out,Line5out,Line4out,

 Line3out,Line2out,Line1out,Line0out};

reg [15:0] individualWE;
always @(*)
begin
case({we,PipelineWriteEnableIn})
 5'b10000: individualWE <= 16'b0000000000000001;
 5'b10001: individualWE <= 16'b0000000000000010;
 5'b10010: individualWE <= 16'b0000000000000100;
 5'b10011: individualWE <= 16'b0000000000001000;

 5'b10100: individualWE <= 16'b0000000000010000;
 5'b10101: individualWE <= 16'b0000000000100000;
 5'b10110: individualWE <= 16'b0000000001000000;
 5'b10111: individualWE <= 16'b0000000010000000;
 5'b11000: individualWE <= 16'b0000000100000000;
 5'b11001: individualWE <= 16'b0000001000000000;

5'b11010: individualWE <= 16'b0000010000000000;
 5'b11011: individualWE <= 16'b0000100000000000;
 5'b11100: individualWE <= 16'b0001000000000000;
 5'b11101: individualWE <= 16'b0010000000000000;
 5'b11110: individualWE <= 16'b0100000000000000;
 5'b11111: individualWE <= 16'b1000000000000000;
default: individualWE <= 16'b0000000000000000;
endcase
end

always@(posedge PipelineClkIn)
begin
 if (individualWE[0])
 Line0[PipelineAddressIn] <= colorValue;
 if (individualWE[1])
 Line1[PipelineAddressIn] <= colorValue;
 if (individualWE[2])
 Line2[PipelineAddressIn] <= colorValue;
 if (individualWE[3])
 Line3[PipelineAddressIn] <= colorValue;
 if (individualWE[4])
 Line4[PipelineAddressIn] <= colorValue;
 if (individualWE[5])
 Line5[PipelineAddressIn] <= colorValue;
 if (individualWE[6])
 Line6[PipelineAddressIn] <= colorValue;
 if (individualWE[7])
 Line7[PipelineAddressIn] <= colorValue;
 if (individualWE[8])
 Line8[PipelineAddressIn] <= colorValue;
 if (individualWE[9])
 Line9[PipelineAddressIn] <= colorValue;

Dynamic Source Filtering Sunglasses Page 22

 if (individualWE[10])
 Line10[PipelineAddressIn] <= colorValue;
 if (individualWE[11])
 Line11[PipelineAddressIn] <= colorValue;
 if (individualWE[12])
 Line12[PipelineAddressIn] <= colorValue;
 if (individualWE[13])
 Line13[PipelineAddressIn] <= colorValue;
 if (individualWE[14])
 Line14[PipelineAddressIn] <= colorValue;
 if (individualWE[15])
 Line15[PipelineAddressIn] <= colorValue;
end

always@(posedge LCDClkIn)
begin

Line0out <= Line0[&LCDAddressIn[10:0] ? 1999 : LCDAddressIn[10:0]];
Line1out <= Line1[&LCDAddressIn[21:11] ? 1999 : LCDAddressIn[21:11]];
Line2out <= Line2[&LCDAddressIn[32:22] ? 1999 : LCDAddressIn[32:22]];
Line3out <= Line3[&LCDAddressIn[43:33] ? 1999 : LCDAddressIn[43:33]];
Line4out <= Line4[&LCDAddressIn[54:44] ? 1999 : LCDAddressIn[54:44]];
Line5out <= Line5[&LCDAddressIn[65:55] ? 1999 : LCDAddressIn[65:55]];
Line6out <= Line6[&LCDAddressIn[76:66] ? 1999 : LCDAddressIn[76:66]];
Line7out <= Line7[&LCDAddressIn[87:77] ? 1999 : LCDAddressIn[87:77]];
Line8out <= Line8[&LCDAddressIn[98:88] ? 1999 : LCDAddressIn[98:88]];
Line9out <= Line9[&LCDAddressIn[109:99] ? 1999 : LCDAddressIn[109:99]];
Line10out <= Line10[&LCDAddressIn[120:110] ? 1999 : LCDAddressIn[120:110]];
Line11out <= Line11[&LCDAddressIn[131:121] ? 1999 : LCDAddressIn[131:121]];
Line12out <= Line12[&LCDAddressIn[142:132] ? 1999 : LCDAddressIn[142:132]];
Line13out <= Line13[&LCDAddressIn[153:143] ? 1999 : LCDAddressIn[153:143]];
Line14out <= Line14[&LCDAddressIn[164:154] ? 1999 : LCDAddressIn[164:154]];
Line15out <= Line15[&LCDAddressIn[175:165] ? 1999 : LCDAddressIn[175:165]];

end
endmodule

Dynamic Source Filtering Sunglasses Page 23

APPENDIX I – The Overscan Unit

module OverscanUnit(
 input [127:0] FrameBufferDatain,
 output reg [175:0] PixelAddresses,
 input LCDClkIn,

 input reset,
 input startNewLine,
 output[7:0] color,
 input [15:0] LCDX,
 input [15:0] LCDY

);

reg [15:0] Xline0;
reg [15:0] Xline1;
reg [15:0] Xline2;
reg [15:0] Xline3;
reg [15:0] Xline4;
reg [15:0] Xline5;
reg [15:0] Xline6;
reg [15:0] Xline7;
reg [15:0] Xline8;
reg [15:0] Xline9;
reg [15:0] Xline10;
reg [15:0] Xline11;
reg [15:0] Xline12;
reg [15:0] Xline13;
reg [15:0] Xline14;
reg [15:0] Xline15;

always @ (*)
begin
Xline0 <= LCDX;
Xline1 <= LCDX;
Xline2 <= LCDX;
Xline3 <= LCDX;
Xline4 <= LCDX;
Xline5 <= LCDX;
Xline6 <= LCDX;
Xline7 <= LCDX;
Xline8 <= LCDX;
Xline9 <= LCDX;
Xline10 <= LCDX;
Xline11 <= LCDX;
Xline12 <= LCDX;
Xline13 <= LCDX;
Xline14 <= LCDX;
Xline15 <= LCDX;
case (LCDY[3:0])
 0:begin

 Xline12 <= LCDX+1;
 Xline13 <= LCDX+3;
 Xline14 <= LCDX+3;
 Xline15 <= LCDX+4;
 Xline0 <= LCDX+4;
 Xline1 <= LCDX+4;

Dynamic Source Filtering Sunglasses Page 24

 Xline2 <= LCDX+3;
 Xline3 <= LCDX+3;
 Xline4 <= LCDX+1;
 end

 1:begin
 Xline13 <= LCDX+1;
 Xline14 <= LCDX+3;
 Xline15 <= LCDX+3;
 Xline0 <= LCDX+4;
 Xline1 <= LCDX+4;
 Xline2 <= LCDX+4;
 Xline3 <= LCDX+3;
 Xline4 <= LCDX+3;
 Xline5 <= LCDX+1;
 end

 2:begin
 Xline14 <= LCDX+1;
 Xline15 <= LCDX+3;
 Xline0 <= LCDX+3;
 Xline1 <= LCDX+4;
 Xline2 <= LCDX+4;
 Xline3 <= LCDX+4;
 Xline4 <= LCDX+3;
 Xline5 <= LCDX+3;
 Xline6 <= LCDX+1;
 end

 3:begin
 Xline15 <= LCDX+1;
 Xline0 <= LCDX+3;
 Xline1 <= LCDX+3;
 Xline2 <= LCDX+4;
 Xline3 <= LCDX+4;
 Xline4 <= LCDX+4;
 Xline5 <= LCDX+3;
 Xline6 <= LCDX+3;
 Xline7 <= LCDX+1;
 end

 4:begin
 Xline0 <= LCDX+1;
 Xline1 <= LCDX+3;
 Xline2 <= LCDX+3;
 Xline3 <= LCDX+4;
 Xline4 <= LCDX+4;
 Xline5 <= LCDX+4;
 Xline6 <= LCDX+3;
 Xline7 <= LCDX+3;
 Xline8 <= LCDX+1;
 end

 5:begin
 Xline1 <= LCDX+1;
 Xline2 <= LCDX+3;
 Xline3 <= LCDX+3;
 Xline4 <= LCDX+4;
 Xline5 <= LCDX+4;
 Xline6 <= LCDX+4;
 Xline7 <= LCDX+3;
 Xline8 <= LCDX+3;
 Xline9 <= LCDX+1;
 end

 6:begin
 Xline2 <= LCDX+1;
 Xline3 <= LCDX+3;
 Xline4 <= LCDX+3;
 Xline5 <= LCDX+4;
 Xline6 <= LCDX+4;
 Xline7 <= LCDX+4;
 Xline8 <= LCDX+3;
 Xline9 <= LCDX+3;
 Xline10 <= LCDX+1;
 end

 7:begin

Dynamic Source Filtering Sunglasses Page 25

 Xline3 <= LCDX+1;
 Xline4 <= LCDX+3;
 Xline5 <= LCDX+3;
 Xline6 <= LCDX+4;
 Xline7 <= LCDX+4;
 Xline8 <= LCDX+4;
 Xline9 <= LCDX+3;
 Xline10 <= LCDX+3;
 Xline11 <= LCDX+1;
 end

 8:begin
 Xline4 <= LCDX+1;
 Xline5 <= LCDX+3;
 Xline6 <= LCDX+3;
 Xline7 <= LCDX+4;
 Xline8 <= LCDX+4;
 Xline9 <= LCDX+4;
 Xline10 <= LCDX+3;
 Xline11 <= LCDX+3;
 Xline12 <= LCDX+1;
 end

 9:begin
 Xline5 <= LCDX+1;
 Xline6 <= LCDX+3;
 Xline7 <= LCDX+3;
 Xline8 <= LCDX+4;
 Xline9 <= LCDX+4;
 Xline10 <= LCDX+4;
 Xline11 <= LCDX+3;
 Xline12 <= LCDX+3;
 Xline13 <= LCDX+1;
 end

 10:begin
 Xline6 <= LCDX+1;
 Xline7 <= LCDX+3;
 Xline8 <= LCDX+3;
 Xline9 <= LCDX+4;
 Xline10 <= LCDX+4;
 Xline11 <= LCDX+4;
 Xline12 <= LCDX+3;
 Xline13 <= LCDX+3;
 Xline14 <= LCDX+1;
 end

 11:begin
 Xline7 <= LCDX+1;
 Xline8 <= LCDX+3;
 Xline9 <= LCDX+3;
 Xline10 <= LCDX+4;
 Xline11 <= LCDX+4;
 Xline12 <= LCDX+4;
 Xline13 <= LCDX+3;
 Xline14 <= LCDX+3;
 Xline15 <= LCDX+1;
 end

 12:begin
 Xline8 <= LCDX+1;
 Xline9 <= LCDX+3;
 Xline10 <= LCDX+3;
 Xline11 <= LCDX+4;
 Xline12 <= LCDX+4;
 Xline13 <= LCDX+4;
 Xline14 <= LCDX+3;
 Xline15 <= LCDX+3;
 Xline0 <= LCDX+1;
 end

 13:begin
 Xline9 <= LCDX+1;
 Xline10 <= LCDX+3;
 Xline11 <= LCDX+3;
 Xline12 <= LCDX+4;
 Xline13 <= LCDX+4;

Dynamic Source Filtering Sunglasses Page 26

 Xline14 <= LCDX+4;
 Xline15 <= LCDX+3;
 Xline0 <= LCDX+3;
 Xline1 <= LCDX+1;
 end

 14:begin
 Xline10 <= LCDX+1;
 Xline11 <= LCDX+3;
 Xline12 <= LCDX+3;
 Xline13 <= LCDX+4;
 Xline14 <= LCDX+4;
 Xline15 <= LCDX+4;
 Xline0 <= LCDX+3;
 Xline1 <= LCDX+3;
 Xline2 <= LCDX+1;
 end

 15:begin
 Xline11 <= LCDX+1;
 Xline12 <= LCDX+3;
 Xline13 <= LCDX+3;
 Xline14 <= LCDX+4;
 Xline15 <= LCDX+4;
 Xline0 <= LCDX+4;
 Xline1 <= LCDX+3;
 Xline2 <= LCDX+3;
 Xline3 <= LCDX+1;
 end

 default:
 begin
 Xline11 <= LCDX+1;
 Xline12 <= LCDX+3;
 Xline13 <= LCDX+3;
 Xline14 <= LCDX+4;
 Xline15 <= LCDX+4;
 Xline0 <= LCDX+4;
 Xline1 <= LCDX+3;
 Xline2 <= LCDX+3;
 Xline3 <= LCDX+1;
 end

endcase
end

wire [15:0] Frame = LCDY[15:4] * 160;
wire [15:0] backwardFrame = Frame - (LCDY[3] ? 0 : 160);
wire [15:0] forwardFrame = Frame + (LCDY[3] ? 160 : 0);

always@ (*)
begin
 //By default the adress is all ones, which will return 'clear' from mem

PixelAddresses[10:0] <= 11'b11111111111;
PixelAddresses[21:11] <= 11'b11111111111;
PixelAddresses[32:22] <= 11'b11111111111;
PixelAddresses[43:33] <= 11'b11111111111;
PixelAddresses[54:44] <= 11'b11111111111;
PixelAddresses[65:55] <= 11'b11111111111;
PixelAddresses[76:66] <= 11'b11111111111;
PixelAddresses[87:77] <= 11'b11111111111;
PixelAddresses[98:88] <= 11'b11111111111;
PixelAddresses[109:99] <= 11'b11111111111;
PixelAddresses[120:110] <= 11'b11111111111;
PixelAddresses[131:121] <= 11'b11111111111;
PixelAddresses[142:132] <= 11'b11111111111;
PixelAddresses[153:143] <= 11'b11111111111;
PixelAddresses[164:154] <= 11'b11111111111;
PixelAddresses[175:165] <= 11'b11111111111;

 if (forwardFrame < 120*160 && forwardFrame >= 0) //if the the next frame is not off the end
begin
if (Xline0 >= 0 && Xline0 < 160 && ~startNewLine)

PixelAddresses[10:0] <=forwardFrame + Xline0; //if line15 is the current
index, line0 must advance to the next frame

Dynamic Source Filtering Sunglasses Page 27

if (Xline1 >= 0 && Xline1 < 160 && ~startNewLine)
PixelAddresses[21:11] <= forwardFrame + Xline1;

if (Xline2 >= 0 && Xline2 < 160 && ~startNewLine)
PixelAddresses[32:22] <=forwardFrame + Xline2;

if (Xline3 >= 0 && Xline3 < 160 && ~startNewLine)
PixelAddresses[43:33] <=forwardFrame + Xline3;

end
if (Xline4 >= 0 && Xline4 < 160 && ~startNewLine)

PixelAddresses[54:44] <= Frame + Xline4;
if (Xline5 >= 0 && Xline5 < 160 && ~startNewLine)

PixelAddresses[65:55] <= Frame + Xline5;
if (Xline6 >= 0 && Xline6 < 160 && ~startNewLine)

PixelAddresses[76:66] <= Frame + Xline6;
if (Xline7 >= 0 && Xline7 < 160 && ~startNewLine)

PixelAddresses[87:77] <= Frame + Xline7;
if (Xline8 >= 0 && Xline8 < 160 && ~startNewLine)

PixelAddresses[98:88] <= Frame + Xline8;
if (Xline9 >= 0 && Xline9 < 160 && ~startNewLine)

PixelAddresses[109:99] <= Frame + Xline9;
if (Xline10 >= 0 && Xline10 < 160)

PixelAddresses[120:110] <= Frame + Xline10;
if (Xline11 >= 0 && Xline11 < 160 && ~startNewLine)

PixelAddresses[131:121] <= Frame + Xline11;
if (backwardFrame >= 0 && backwardFrame < 120*160) //if the previous frame is not

negative
begin

if (Xline12 >= 0 && Xline12 < 160 && ~startNewLine)
PixelAddresses[142:132] <=backwardFrame + Xline12; //if line 0 is the

current line, line 12 must be one frame behind it
if (Xline13 >= 0 && Xline13 < 160 && ~startNewLine)

PixelAddresses[153:143] <=backwardFrame + Xline13;
if (Xline14 >= 0 && Xline14 < 160 && ~startNewLine)

PixelAddresses[164:154] <=backwardFrame + Xline14;
if (Xline15 >= 0 && Xline15 < 160 && ~startNewLine)

PixelAddresses[175:165] <=backwardFrame + Xline15;
end

end

wire [7:0] array [15:0];
assign array[0]=FrameBufferDatain[7:0];
assign array[1]=FrameBufferDatain[15:8];
assign array[2]=FrameBufferDatain[23:16];
assign array[3]=FrameBufferDatain[31:24];
assign array[4]=FrameBufferDatain[39:32];
assign array[5]=FrameBufferDatain[47:40];
assign array[6]=FrameBufferDatain[55:48];
assign array[7]=FrameBufferDatain[63:56];
assign array[8]=FrameBufferDatain[71:64];
assign array[9]=FrameBufferDatain[79:72];
assign array[10]=FrameBufferDatain[87:80];
assign array[11]=FrameBufferDatain[95:88];
assign array[12]=FrameBufferDatain[103:96];
assign array[13]=FrameBufferDatain[111:104];
assign array[14]=FrameBufferDatain[119:112];
assign array[15]=FrameBufferDatain[127:120];

wire [3:0] lineCurrentIndex = LCDY[3:0];

wire [3:0] lineUp4_index=lineCurrentIndex - 4;
wire [3:0] lineUp3_index=lineCurrentIndex - 3;
wire [3:0] lineUp2_index=lineCurrentIndex - 2;
wire [3:0] lineUp1_index=lineCurrentIndex - 1;
wire [3:0] lineCurrent_index=lineCurrentIndex;
wire [3:0] lineDown1_index=lineCurrentIndex + 1;
wire [3:0] lineDown2_index=lineCurrentIndex + 2;
wire [3:0] lineDown3_index=lineCurrentIndex + 3;
wire [3:0] lineDown4_index=lineCurrentIndex + 4;

wire [7:0] lineUp4In = array[lineUp4_index];
wire [7:0] lineUp3In = array[lineUp3_index];

Dynamic Source Filtering Sunglasses Page 28

wire [7:0] lineUp2In = array[lineUp2_index];
wire [7:0] lineUp1In = array[lineUp1_index];
wire [7:0] lineCurrentIn = array[lineCurrent_index];
wire [7:0] lineDown1In = array[lineDown1_index];
wire [7:0] lineDown2In = array[lineDown2_index];
wire [7:0] lineDown3In = array[lineDown3_index];
wire [7:0] lineDown4In = array[lineDown4_index];

reg [7:0] lineUp4 [2:0];
reg [7:0] lineUp3 [6:0];
reg [7:0] lineUp2 [6:0];
reg [7:0] lineUp1 [8:0];
reg [7:0] lineCurrent [8:0];
reg [7:0] lineDown1 [8:0];
reg [7:0] lineDown2 [6:0];
reg [7:0] lineDown3 [6:0];
reg [7:0] lineDown4 [2:0];

integer i;

always @(posedge LCDClkIn)
begin

if (reset | startNewLine)
begin
for (i=0;i<3;i=i+1)

lineUp4[i]<=0;
for (i=0;i<7;i=i+1)

lineUp3[i]<=0;
for (i=0;i<7;i=i+1)

lineUp2[i]<=0;
for (i=0;i<9;i=i+1)

lineUp1[i]<=0;
for (i=0;i<9;i=i+1)

lineCurrent[i]<=0;
for (i=0;i<9;i=i+1)

lineDown1[i]<=0;
for (i=0;i<7;i=i+1)

lineDown2[i]<=0;
for (i=0;i<7;i=i+1)

lineDown3[i]<=0;
for (i=0;i<3;i=i+1)

lineDown4[i]<=0;
end

else
begin
for (i=1;i<3;i=i+1)

lineUp4[i]<=lineUp4[i-1];
for (i=1;i<7;i=i+1)

lineUp3[i]<=lineUp3[i-1];
for (i=1;i<7;i=i+1)

lineUp2[i]<=lineUp2[i-1];
for (i=1;i<9;i=i+1)

lineUp1[i]<=lineUp1[i-1];
for (i=1;i<9;i=i+1)

lineCurrent[i]<=lineCurrent[i-1];
for (i=1;i<9;i=i+1)

lineDown1[i]<=lineDown1[i-1];
for (i=1;i<7;i=i+1)

lineDown2[i]<=lineDown2[i-1];
for (i=1;i<7;i=i+1)

lineDown3[i]<=lineDown3[i-1];
for (i=1;i<3;i=i+1)

lineDown4[i]<=lineDown4[i-1];

lineUp4[0] <= lineUp4In;
lineUp3[0] <= lineUp3In;
lineUp2[0] <= lineUp2In;
lineUp1[0] <= lineUp1In;
lineCurrent[0] <= lineCurrentIn;
lineDown1[0] <= lineDown1In;
lineDown2[0] <= lineDown2In;

Dynamic Source Filtering Sunglasses Page 29

lineDown3[0] <= lineDown3In;
lineDown4[0] <= lineDown4In;
end

end

reg [7:0] up4Color;
reg [7:0] up3Color;
reg [7:0] up2Color;
reg [7:0] up1Color;
reg [7:0] currentColor;
reg [7:0] down1Color;
reg [7:0] down2Color;
reg [7:0] down3Color;
reg [7:0] down4Color;

wire [487:0] colors;
genvar k;
generate
begin

for (k=0;k<3;k=k+1) begin: part1
assign colors[k*8 + 7: k*8] = lineUp4[k];
end

for (k=0;k<7;k=k+1) begin: part2
assign colors[(k + 3)*8 + 7: (k + 3)*8] = lineUp3[k];
end

for (k=0;k<7;k=k+1) begin: part3
assign colors[(k + 10)*8 + 7: (k + 10)*8] = lineUp2[k];
end

for (k=0;k<9;k=k+1) begin: part4
assign colors[(k + 17)*8 + 7: (k + 17)*8] = lineUp1[k];
end

for (k=0;k<9;k=k+1) begin: part5
assign colors[(k + 26)*8 + 7: (k + 26)*8] = lineCurrent[k];
end

for (k=0;k<9;k=k+1) begin: part6
assign colors[(k + 35)*8 + 7: (k + 35)*8] = lineDown1[k];
end

for (k=0;k<7;k=k+1) begin: part7
assign colors[(k + 44)*8 + 7: (k + 44)*8] = lineDown2[k];
end

for (k=0;k<7;k=k+1) begin: part8
assign colors[(k + 51)*8 + 7: (k + 51)*8] = lineDown3[k];
end

for (k=0;k<3;k=k+1) begin: part9
assign colors[(k + 58)*8 + 7: (k + 58)*8] = lineDown4[k];
end

end
endgenerate

wire [7:0] tempColor;
FullColorChooser colorChoice (.colors(colors),.colorOut(tempColor));

reg [7:0] outColor;
always@ (posedge LCDClkIn)
begin
if (reset)

outColor <=0;
else

outColor <=tempColor;
end
assign color = ~outColor;

endmodule

