
Cameron Currey
Sam Nazari

Tim Pruss
December 12, 2008

iCarTunes Project Report

iCarTunes Introduction

Imagine driving in a car and the most amazing song begins playing on the radio. The
artist and song name is unknown, but you want to hear the song again as soon as possible.
With the press of a button on a steering wheel, your car connects to iTunes through a
satellite connection and downloads the song directly to your iPod. The iCarTunes project
makes this possible.

iCarTunes is a project developed to be installed in the dashboard of automobiles. A small
display screen on the dashboard shows the user interface the user can interact. The user
can control the system with two simple buttons installed on the steering wheel of the car.
One button navigates through the menus, and the other button makes selections. The user
is able to save the current song title and artist playing on the radio to a download list.
The user is able to select one of the saved songs from the download menu. The system
will automatically purchase and download from the iTunes network through a satellite
Internet connection. The user then has the option to load downloaded songs onto an iPod
connected to the system. There is also an option to sync the newly downloaded songs to
an iTunes library on a home computer. The song will be transferred through the satellite
Internet connection to a home computer connected to the Internet and store the song into
iTunes.

External Components and Networks

iCarTunes makes use of two external networks explained here. These are described to
help the reader understand the functionality of iCarTunes.

• iTunes

iTunes is a popular music download network developed by Apple. Users can download
nearly any song in m4a format for a small fee. The advent of iPod technology has made
iTunes one of the most useful and popular music networks, which is why iCarTunes
interfaces with it to download songs.

• RDS – Radio Data System

RDS is is a communications protocol standard for sending small amounts of digital
information using conventional FM radiobroadcasts. Several radio stations use RDS to
transmit song title and artist information when playing music. iCarTunes utilizes this
information being transmitted by using an RDS demodulator chip. The data is extracted

from the FM transmission from the bits known as RT (Radio Text) and the software
decodes the information and interfaces it with iTunes.

Hardware Schematic, Design, and Functionality

Below is a diagram of all the hardware and software components used to develop
iCarTunes and all the interconnections. This section describes each component and how
it functions in the entire architecture of the project.

• FM Radio Receiver

The FM radio receiver is a typical car stereo connected to a car’s power connection to the
battery. The antenna picks up FM transmissions containing RDS data and plays the
songs on the connected car speakers. A VRCD220FD radio by VR3 was used for the
iCarTunes project.

• RDS Data Extraction Circuits

The circuits designed consist of four parts: voltage demodulator, RDS demodulator chip,
amplifier circuit, and an inversion circuit. The voltage demodulator is a simple circuit
consisting of just one chip, LM340T5.

Voltage Demodulator to Provide Voltages for Components

Every car has a 12V battery, but the other three circuits require 5V, which is provided by
this demodulator chip.

The RDS chip circuit takes in the MPX signal found in the radio. To get it from the radio
the CD player in the console was removed. The following photo shows where the MPX
signal is found in the VRCD220FD radio.

MPX Signal found on the VRCD220FD radio.

RDS Demodulator Circuit – As Shown in the Overall Schematic

The RDS demodulator chip is the essential component for the software to decode the
song currently playing. The RDS demodulator chip is a TDA7330B chip. The RDS
demodulator chip extracts the RDS data from the MPX signal found in the FM circuitry
on the radio. The chip is powered by a 5-volt source and runs on a 4.332 MHz crystal.
Many external capacitors are connected to the chip to reduce the noise in the FM
transmissions as shown in the schematic. The chip has two outputs, the clock signal
running at 1187.5 Hz and the data signal. Every time the clock runs on the downward
slope the data output changes to either a high or low value. The data itself contains the
binary information being broadcast by the radio station.

The clock and data coming out of the RDS demodulator chip have amplitudes of 100 mV.
An amplitude of 5V is needed for the machine running the software to detect the signal
over the serial port. So these signals are piped into an amplifier circuit.

Amplifier Circuit to Amplify RDS Data to 5V

One separate amplifier circuit is required for the data and clock. The output goes to the
inversion circuit to invert the clock and to stabilize both signals.

Inversion Circuit to Invert the Signal

The inverter circuit consists of one digital inverter chip. The clock signal needs to be
inverted for the software, so it goes through the inverter once. The data signal just needs
to be stabilized, so it goes through the inverter twice. The outputs connect to the serial
cable at the specified slots.

• Serial Port Connection

The clock and data signal from the inverter chip are connected to pins 9 and 6 of a
standard RS-232 serial port. Pin 5 is connected to ground. The serial port is connected to
a Windows machine with .NET installed.

• Machine Running iCarTunes Software

Any computer with the Windows operating system and iTunes installed is able to run the
iCarTunes software. The final project used a Dell laptop with a 701 MHz AMD
processor with 128 MB of RAM. The laptop also had an internal wireless card that was
used to connect to the Internet through the University of Utah’s wireless access. An
actual implementation with proper funding would have used a 3G Internet card to
connect to the Internet. This machine was used because it had a serial port input that was
necessary for the decoding of the RDS data being input.

Two USB ports were also required. One port was used for the iPod USB connection and
the other port was used for the steering wheel column connected to the laptop to control
the software.

The application software was developed in C# and will be described in more detail in the
software section.

• Steering Wheel with Selection and Enter Buttons

The steering wheel is designed to act as a simple USB mouse. Inside the steering wheel
is a basic mouse circuit. The two buttons on the steering wheel (cruise and speed control)
were soldered to the corresponding mouse button wires on the USB mouse circuit. When
the user pressed either the cruise control or speed control buttons, they would close the
circuit on the USB mouse and act as a left or right click. The software was designed to
be fully interactive with simple usage of these two buttons. The left click mechanism
allowed the user to navigate the software, and the right click allowed for execution of the
current selection (more on this later).

• The iPod

An 80 GB iPod Classic was used for the project demonstration. The iPod was able to
receive the songs being downloaded from iTunes through the USB connector. The iPod
itself was connected to an auxiliary RCA port in the FM receiver so songs loaded onto
the iPod could be played back in the car. This component of the hardware was necessary
for the full demonstration of iCarTunes functionality.

• Home PC Running iCarTunes Server Software

Any Windows machine with an Ethernet connection was capable of running the
iCarTunes Server Software. The PCs in the Senior Hardware Lab at the University of
Utah were used for the demonstration of the project for receiving songs.

Software and Functionality

The software running on the Dell Laptop was central for computing RDS data being
input, interfacing with iTunes for downloads, and displaying a user interface for the user
to interact with. The software was developed in C# using Visual Studio 2005 as a
Windows Application.

iCarTunes Main Application Interface

The software would run idle and display the screen until the user selected one of the
menus with the steering wheel. Once a menu was selected, critical sections of the code
were executed. This section describes what each section of the code does and how it
functions in the entire design.

• Save Song

When the user selects the “Save Song” button, the software deciphers the RDS data being
input on the serial port. The RDSDX utility package deciphers the data and save the
“Radio Text” bits to a file. The software then reads that file and displays the song
currently playing and saves the information to a list. The song is displayed on the bottom
of the application, or an error is reported if the data could not be decoded.

Song Decoded from RDS and Displayed.

• Download

When the user selects “Download”, a new menu is displayed. The menu shows all the
songs that have been saved and are available to be downloaded. The user is able to select
which saved song they want to download then download it by selecting the “Download”
button.

Download Menu Displaying Saved Songs

When “Download” button is selected, an AutoIt script is executed to interface with the
iTunes Store. AutoIt is a scripting language that provides automatic commands in
Windows, such as mouse clicks, window resizing, and typing.

First the script disables all input from the user. Mouse clicks are not available while the
script is preparing iTunes for downloads. The script then types the search query in the
iTunes Store.

Once the search completes, if there are any relevant search results, the script selects the
most relevant one.

AutoIt Script Making a Purchase from the iTunes Store

iTunes then uses the active Internet connection and to download the song from iTunes
using the default account information and charges the user for the purchase. Once the
download is complete, it minimizes iTunes and restores control back to the main
application.

• Sync iPod

The “Sync iPod” button utilizes the iTunes Software Development Kit downloadable from
www.apple.com. The iTunes SDK provides an API for programs to interact with iTunes.
When the “Sync iPod” button is selected, the application uses the SDK code for syncing
iPods connected to a USB port. If no iPod is connected an error message is provided,
otherwise all songs that have been downloaded are loaded onto the iPod.

• Eject iPod

This option only appears when an iPod is actually connected. A timer in the code checks
every 5 seconds to see if an iPod has been connected to display this option.
The “Eject iPod” button is similar to the “Sync iPod” button in functionality. When
selected, it calls an iTunes SDK function to eject the iPod and allowing the user to
disconnect the iPod from the machine without loss of any song data.

• Sync Library

The Sync Library button transmits all the newly downloaded songs files to a computer
connected to the Internet running the application called “iHomeCarTunes”.

iHomeCarTunes running on a PC connected to 155.98.71.124

Every time a song is downloaded, it is saved to a list. When the “Sync Library” button is
pressed it attempts to open a socket connection with the software running on the PC. To
specify the IP address of the software, the user selects “Sync Library” and presses and
holds the button for 5 seconds to display the following menu.

User Entering IP Address of Home Computer

Using the steering wheel the user can specify the IP address. Once the IP address is
entered, the files downloaded are transferred. First an acknowledgment message is sent
over the socket connection. Once iHomeCarTunes receives the message it sends an
acknowledgement back to iCarTunes. iCarTunes then begins reading the file and reads
enough bytes to send in a packet and a byte to acknowledge if more data is being sent.
iHomeCarTunes receives the packet, writes the data to a file, then sends back a response
requesting for the next packet. iCarTunes reads the next amount of bytes to fill the
packet, sends the data and the process continues until all the bytes in the file have been
transmitted. Once iHomeCarTunes has received all the files, it copies the files to the
iTunes directory and uses the iTunes SDK to load them into the library.

Final Project Demonstration

A wooden display was built to house all the components and demonstrate the
functionality of the iCarTunes project. The display was designed to resemble the
dashboard of a car. It held a place for the antenna, FM Radio receiver, a screen for the
laptop, the steering wheel, and all the interconnections running behind.

iCarTunes Project Display

Applicability and Possibilities for Improvement

iCarTunes had a lot of expensive components: laptops, iPods, $0.99 for each download,
cables, and connectors. The price of all these components limited the amount able to be
implemented. The original design of iCarTunes was to run on a microcomputer to fit
easily into a dashboard. The design also included an external display to display the user
interface.

Another problem with iCarTunes is its reliance on RDS data transmissions. RDS is not
widely used in the United States, and many radio stations are inconsistent on updating
broadcast information. The project was demonstrated using 94.9 FM since it is the most
reliable radio station for RDS data in the Salt Lake Valley. The project design could
easily be extended to support XM radio as originally intended. XM radio has similar
functionality of transmitting song information. However, XM radio requires a monthly
subscription fee, so the design incorporated the cheaper RDS format. Hopefully radio
stations would be more consistent on updating RDS data in radio transmissions if
iCarTunes was ever commercially developed.

Another flaw with the design is the iTunes Store interface. Much research was involved
in figuring out how to actually download from iTunes. The iTunes SDK provides a lot of

functionality to interface with iTunes, but almost no support for downloading. In
researching this issue online, Apple specifically designed it this way to prevent malicious
applications from accessing sensitive account information. Apple did announce in an
article from www.apple.com that in 2009 they would release an iTunes Store SDK for
applications on the popular iPhone.

iCarTunes is a great commercial idea. Apple has become dominant in the music industry
and iTunes is the most popular music seller in the world. iCarTunes would be a great
addition to the iTunes market and increase the potential of when and where iTunes users
can purchase songs for downloads.

Source Citing and Thanks

AutoIt Scripting Software for Interfacing with iTunes
 http://www.autoitscript.com/autoit3/downloads.shtml

RDSDX Software Utility for Decoding RDS Data

http://home.scarlet.be/~wijnherm/rdsdxdownload.htm

iTunes Download for Downloading from the iTunes Store
 http://www.apple.com/itunes/download/

iTunes Software Development Kit for Interfacing with the iPod and iTunes
 http://developer.apple.com/sdk/

C# Examples for File Transfers
 http://www.csharphelp.com/archives2/archive335.html

Appendix I: Bill of Materials

RS-232 Serial Cable…………………………………………………………Hardware Lab
Dell Laptop………………………………………………………….Tim Pruss Donatation
iPod and USB Connector………………………………………Cameron Currey Donation
Car Speaker…………………………………………………………Tim Pruss Donatation
Car Radio Model #VRCd220FD……………………………………............................ $50
FM Radio Power Connector……………………………………………………………$20
Radio Antenna………………………………………………………………………….$20
Resistors, Capacitors, Wire, and Clock………………………………………………...$10
RCA Audio Input Connector…………………………………………………………...$20
Steering Wheel and Rear View Mirror…...…………………………………………….$10
2x4 Studs, Screws, and Spray Paint for Display………………………………………..$20
iTunes purchases during Debugging and Demo………………………………………..$25
Lessons Learned While Building iCarTunes……………………………………..Priceless
__
Total $175

Appendix II: iCarTunes C# Source Code (Critical Sections Only)

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Collections;
using System.IO;
using iTunesLib;
//stuff for file transfers
using System.Net;
using System.Net.Sockets;

//Threading stuff
using System.Threading;

namespace iCarTunes
{
 public partial class MainForm : Form
 {
 //A list of songs that we have saved away and wish to download
 private List<Song> songs;
 //A list of all the songs we have successfully downloaded
 private List<Song> downloads;
 //The connection to the itunes interface
 private iTunesApp itunes;
 //bool to keep track whether an ipod is connected to the
machine, updates every 5 seconds
 private bool ipodConnected;

 //Server IP address
 string serverIP;

 //Creates a new MainForm and new song list.
 public MainForm()
 {
 InitializeComponent();
 songdisplayLabel.Text = "";
 //Reads all the saved songs from the file.
 songs = new List<Song>();
 StreamReader reader = new StreamReader("songs.txt");
 string song = reader.ReadLine();
 while (song != null)
 {
 int ampPos = song.IndexOf("&&");
 string artist = song.Substring(0, ampPos);
 string title = song.Substring(ampPos + 2, song.Length -
ampPos - 2);
 songs.Add(new Song(title, artist));
 song = reader.ReadLine();
 }
 reader.Close();

 //Reads all the saved downloads from the file.
 downloads = new List<Song>();
 StreamReader read = new StreamReader("downloads.txt");
 song = read.ReadLine();
 while (song != null)
 {
 int ampPos = song.IndexOf("&&");
 string artist = song.Substring(0, ampPos);
 string title = song.Substring(ampPos + 2, song.Length -
ampPos - 2);
 downloads.Add(new Song(title, artist));
 song = read.ReadLine();
 }
 read.Close();

 //Reads the saved away IP address from the file
 serverIP = "";
 StreamReader readIP = new StreamReader("IP.txt");
 serverIP = readIP.ReadLine();
 readIP.Close();

 //Set up itunes application
 itunes = new iTunesApp();
 try
 {
 if (itunes.Sources.Count == 2)
 {
 ipodConnected = true;
 ejectButton.Visible = true;
 }
 else
 ipodConnected = false;
 }
 catch (Exception)
 {
 }
 }

 //Executed when Save Song button is pressed. Extracts data from
 //the hardware serial cable and adds the Song to the list.
 private void saveSongButton_Click(object sender, EventArgs e)
 {

 //Delete all files from previous screen dumps
 DirectoryInfo directory = new
DirectoryInfo("RDSDX\\ScreenDumps");
 FileInfo[] files = directory.GetFiles();
 foreach (FileInfo fi in files)
 {
 fi.Delete();
 }

 String artist = "";
 String title = "";

 saveSongButton.BackColor = System.Drawing.Color.Gray;

 //Execute the song data gathering script
 System.Diagnostics.Process script =
System.Diagnostics.Process.Start("getsongscript.au3");

 //Run idle until the script finishes execution
 while (!script.HasExited)
 {
 System.Threading.Thread.Sleep(2000);
 }

 //Read the Title and artist from the file
 try
 {
 DirectoryInfo foo = new
DirectoryInfo("RDSDX\\ScreenDumps");
 FileInfo[] playing = foo.GetFiles();
 StreamReader read = new
StreamReader(playing[0].OpenRead());

 string readline = "";
 //Read until we get to the line containing PI ÿ
 while (!readline.Contains("PI � "))
 {
 readline = read.ReadLine();
 }
 //Read two more lines
 readline = read.ReadLine();
 //readline now contains the line with the song data.
 readline = read.ReadLine();

 int index = readline.IndexOf("94.9 Z-Rock - ");
 //Readline now has the radio station off
 readline = readline.Substring(index + 14,
readline.Length - 15 - index);
 index = readline.IndexOf(" - ");
 title = readline.Substring(0,index);

 //readline = readline.Substring(
 readline = readline.Substring(index + 3,
readline.Length - 4 - index);
 artist = readline.Trim();
 read.Close();

 }
 catch (Exception)
 {
 //If we fail for some reason, report an error.
 songdisplayLabel.Text = "Invalid song playing. Please
try later.";
 songdisplayLabel.ForeColor = System.Drawing.Color.Red;
 saveSongButton.BackColor =
System.Drawing.Color.RoyalBlue;
 return;
 }

 //Add the song to the saved-song-list if it is not already
there
 //and update display
 bool inSongList = false;
 foreach (Song s in songs)
 {
 if (s.artist.Equals(artist) && s.title.Equals(title))
 inSongList = true;
 }
 if (inSongList)
 {
 songdisplayLabel.Text = "\"" + artist + "- " + title +
"\" already saved on list.";
 songdisplayLabel.ForeColor = System.Drawing.Color.Red;
 }
 else
 {
 songdisplayLabel.Text = "\"" + artist + "- " + title +
"\" saved.";
 songdisplayLabel.ForeColor =
System.Drawing.Color.Black;
 songs.Add(new Song(title, artist));
 }

 saveSongButton.BackColor = System.Drawing.Color.RoyalBlue;
 }

 //Executed when Download button is pressed. Displays the
download menu
 //And updates the list of songs if they were edited.
 private void downloadButton_Click(object sender, EventArgs e)
 {
 DownloadMenu menu = new DownloadMenu(songs, downloads,
itunes);
 menu.ShowDialog();
 songs = menu.songs;
 downloads = menu.downloads;
 }

 //Executed when Sync iPod button is pressed. Puts the
application
 //to sleep until the syncing is complete.
 private void ipodButton_Click(object sender, EventArgs e)
 {
 //Determine if an iPod is connected to this machine
 if (!ipodConnected)
 {
 songdisplayLabel.ForeColor = System.Drawing.Color.Red;
 songdisplayLabel.Text = " Sync Failed, no iPod
connected!";
 }
 else
 {
 //Update the display before syncing
 songdisplayLabel.ForeColor =
System.Drawing.Color.Black;

 songdisplayLabel.Text = " Syncing iPod. Please
wait...";
 ipodButton.BackColor = System.Drawing.Color.Gray;
 this.Update();

 //Put the application to sleep and Sync the iPod
connected.
 itunes.UpdateIPod();

 System.Threading.Thread.Sleep(5000);

 //This is to make the "Apple" Logo to reappear so the
script works again
 itunes.OpenURL("hi");
 System.Threading.Thread.Sleep(5000);
 if (itunes.CurrentTrack.Name.Equals("hi"))
 itunes.CurrentTrack.Delete();

 //Restore the display after syncing completes.
 songdisplayLabel.ForeColor = System.Drawing.Color.Red;
 songdisplayLabel.Text = " Sync complete!";
 ipodButton.BackColor = System.Drawing.Color.RoyalBlue;
 }

 }

 //Executed when Eject iPod button is pressed. Allows the ipod
 //to be connected.
 private void ejectButton_Click(object sender, EventArgs e)
 {
 //Gets an enumerator to move 2 down to eject that source.
 IEnumerator travel = itunes.Sources.GetEnumerator();
 travel.MoveNext();
 travel.MoveNext();
 IITIPodSource foo = (IITIPodSource)travel.Current;

 //Update display before ejecting
 ejectButton.BackColor = System.Drawing.Color.Gray;

 songdisplayLabel.ForeColor = System.Drawing.Color.Black;
 songdisplayLabel.Text = " Ejecting iPod. Please
wait...";
 this.Update();

 //Eject the iPod
 foo.EjectIPod();

 System.Threading.Thread.Sleep(37000);

 //Restore the display
 ejectButton.BackColor = System.Drawing.Color.RoyalBlue;
 songdisplayLabel.ForeColor = System.Drawing.Color.Black;
 songdisplayLabel.Text = "iPod ejected. It is safe to
disconnect.";

 }

 //selection keeps track of which button is highlighted
 //0 = saveSongButton
 //1 = downloadButton
 //2 = ipodButton
 //3 = syncButton
 //4 = ejectButton
 private int selection = 0;
 private void MainForm_Click(object sender, EventArgs e)
 {
 MouseEventArgs f = (MouseEventArgs)e;
 if (f.Button == MouseButtons.Left)
 {
 selection = selection + 1;
 if (selection == 4 && !ipodConnected)
 selection = 0;
 else if (selection == 4 && ipodConnected)
 selection = 4;
 else if (selection == 5)
 selection = 0;

 if (selection == 0)
 {
 saveSongButton.BackColor =
System.Drawing.Color.RoyalBlue;
 downloadButton.BackColor =
System.Drawing.Color.White;
 ipodButton.BackColor = System.Drawing.Color.White;
 syncButton.BackColor = System.Drawing.Color.White;
 ejectButton.BackColor = System.Drawing.Color.White;
 songdisplayLabel.Text = "";
 }
 if (selection == 1)
 {
 saveSongButton.BackColor =
System.Drawing.Color.White;
 downloadButton.BackColor =
System.Drawing.Color.RoyalBlue;
 ipodButton.BackColor = System.Drawing.Color.White;
 syncButton.BackColor = System.Drawing.Color.White;
 ejectButton.BackColor = System.Drawing.Color.White;
 }
 if (selection == 2)
 {
 saveSongButton.BackColor =
System.Drawing.Color.White;
 downloadButton.BackColor =
System.Drawing.Color.White;
 ipodButton.BackColor =
System.Drawing.Color.RoyalBlue;
 syncButton.BackColor = System.Drawing.Color.White;
 ejectButton.BackColor = System.Drawing.Color.White;
 }
 if (selection == 3)
 {
 saveSongButton.BackColor =
System.Drawing.Color.White;

 downloadButton.BackColor =
System.Drawing.Color.White;
 ipodButton.BackColor = System.Drawing.Color.White;
 syncButton.BackColor =
System.Drawing.Color.RoyalBlue;
 ejectButton.BackColor = System.Drawing.Color.White;
 songdisplayLabel.ForeColor =
System.Drawing.Color.Black;
 songdisplayLabel.Text = "Press and hold to
configure synchronization.";
 }
 if (selection == 4)
 {
 saveSongButton.BackColor =
System.Drawing.Color.White;
 downloadButton.BackColor =
System.Drawing.Color.White;
 ipodButton.BackColor = System.Drawing.Color.White;
 syncButton.BackColor = System.Drawing.Color.White;
 ejectButton.BackColor =
System.Drawing.Color.RoyalBlue;
 songdisplayLabel.Text = "";
 }
 }
 else
 {
 //if a right click, call the callback for the
appropriate button press
 if (selection == 0)
 saveSongButton_Click(null, null);
 if (selection == 1)
 downloadButton_Click(null, null);
 if (selection == 2)
 ipodButton_Click(null, null);
 if (selection == 3)
 syncButton_Click(null, null);
 if (selection == 4)
 ejectButton_Click(null, null);
 }
 }

 //If a double click occurs, treat it as a single click
 private void MainForm_DoubleClick(object sender, EventArgs e)
 {
 MainForm_Click(sender, e);
 }

 //Keeps track of whether the mouse is currently up or down
(used for the timer)
 private bool mouseDown = false;
 private void MainForm_MouseDown(object sender, MouseEventArgs
e)
 {
 mouseDown = true;
 }

 private void MainForm_MouseUp(object sender, MouseEventArgs e)

 {
 mouseDown = false;
 }

 //This "tick" is called every 5 seconds
 private bool downLastTick = false;
 private int count = 0;
 private void connectionTimer_Tick(object sender, EventArgs e)
 {
 //Determine if an ipod is connected to the machine, we can
tell
 //by if there are 2 sources available in itunes.
 try
 {
 if (itunes.Sources.Count == 2)
 {
 ipodConnected = true;
 ejectButton.Visible = true;

 if(count < 2)
 {

 System.Diagnostics.Process script =
System.Diagnostics.Process.Start("minimizescript.au3");

 //Run idle until the script finishes execution
 while (!script.HasExited)
 {
 System.Threading.Thread.Sleep(2000);
 }
 count = count + 1;
 }

 }
 else
 {
 ipodConnected = false;
 ejectButton.Visible = false;
 count = 0;
 }
 }
 catch { }

 //The other thing we do is determine if the right click has
been held
 //down for 5 seconds. If it has, we activate the IP Menu
 if (mouseDown)
 downLastTick = true;
 else
 downLastTick = false;

 if (downLastTick && selection == 3)
 {
 mouseDown = false;
 IPForm ipform = new IPForm(serverIP);
 ipform.ShowDialog();
 serverIP = ipform.IP;

 }

 }

 //This occurs anytime the program is shutdown. Before it exits
 //It writes all the saved songs to a file as well as the server
IP.
 private void MainForm_FormClosing(object sender,
FormClosingEventArgs e)
 {
 StreamWriter writer = new StreamWriter("songs.txt");
 foreach(Song s in songs)
 {
 writer.WriteLine(s.artist + "&&" + s.title);
 }
 writer.Close();

 StreamWriter write = new StreamWriter("downloads.txt");
 foreach (Song s in downloads)
 {
 write.WriteLine(s.artist + "&&" + s.title);
 }
 write.Close();

 StreamWriter writeIP = new StreamWriter("IP.txt");
 writeIP.WriteLine(serverIP);
 writeIP.Close();

 //Close the itunes connection
 //itunes.Quit(); Commented to make debugging faster

 }

 //All threading and Network communication stuff goes here
 Socket serversocket;
 private System.Windows.Forms.Label label1;
 Socket clientsock = null;
 string[] cmdList = null;
 string[] DFSCommandList;

 private void syncButton_Click(object sender, EventArgs e)
 {
 songdisplayLabel.ForeColor = System.Drawing.Color.Red;
 try
 {
 serversocket = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);
 serversocket.Blocking = true;

 IPHostEntry IPHost = Dns.Resolve(serverIP);
 IPAddress[] addr = IPHost.AddressList;

 IPEndPoint ipepServer = new IPEndPoint(addr[0], 8090);
 serversocket.Connect(ipepServer);
 clientsock = serversocket;

 Thread MainThread = new Thread(new
ThreadStart(listenclient));
 MainThread.Start();

 }
 catch (SocketException se)
 {
 //Console.WriteLine(se.Message);
 }
 catch (Exception eee)
 {
 MessageBox.Show("Socket Connect Error.\n\n" +
eee.Message + "\nPossible Cause: Server Already running. Check the
tasklist for running processes", "Startup Error", MessageBoxButtons.OK,
MessageBoxIcon.Error);
 Application.Exit();
 }
 }

 void listenclient()
 {
 Socket sock = clientsock ;

 //Send a message with the file we want to transfer
 string cmd = "C:\\TEMP\\foo.m4a";
 FileInfo fi = new FileInfo(cmd);
 byte[] sender =
System.Text.Encoding.ASCII.GetBytes("FILE " + cmd + " " +
fi.Length.ToString()) ;
 sock.Send(sender, sender.Length,0) ;

 try
 {
 while (sock != null)
 {
 cmd = "" ;
 byte[] recs = new byte[32767];
 int rcount =
sock.Receive(recs,recs.Length,0) ;
 string clientmessage =
System.Text.Encoding.ASCII.GetString(recs) ;
 clientmessage =
clientmessage.Substring(0,rcount);

 string smk = clientmessage ;

 cmdList = null ;
 cmdList = clientmessage.Split(' ');
 string execmd = cmdList[0];

 sender = null ;
 sender = new Byte[32767];

 //Send the file name to the server

 //We connected to the server just fine, so

 //Let's just begin sending the file now...
 /*if (execmd == "SERVER")
 {
 SERVER_DOWNLOADING(cmdList, sock);
 }*/
 }
 }
 catch(Exception Se)
 {
 string s = Se.Message;
 Console.WriteLine(s);
 }
 }

 void SERVER_DOWNLOADING(string[] cmdList, Socket s)
 {
 DFSCommandList = cmdList;
 //The number of files we are downloading.
 int cnt = 3;
 string[] mUploading = new String[5];
 Socket sock = s;

 string parm1 = "";
 string parm2 = "";

 for (int i = 1; i < DFSCommandList.Length - 1; i++)
 parm1 = parm1 + " " + DFSCommandList[i];
 parm1 = parm1.Trim();
 parm2 = DFSCommandList[DFSCommandList.Length - 1];

 try
 {
 FileInfo ftemp = new FileInfo(parm1);
 long total = ftemp.Length;
 long rdby = 0;
 int len = 0;
 string login_client_machine = "";

 mUploading[0] = parm1;
 mUploading[1] = total.ToString();
 mUploading[2] = "0";
 mUploading[3] = "";
 mUploading[4] = login_client_machine;

 //listView4.Items.Add(new ListViewItem(mUploading));

 byte[] buffed = new byte[1024];
 //Open the file requested for download
 FileStream fin = new FileStream(parm1, FileMode.Open,
FileAccess.Read);
 //One way of transfer over sockets is Using a
NetworkStream
 //It provides some useful ways to transfer data
 NetworkStream nfs = new NetworkStream(sock);

 //lock the Thread here
 // lock(this)

 while (rdby < total && nfs.CanWrite)
 {
 //Read from the File (len contains the number of
bytes read)
 len = fin.Read(buffed, 0, buffed.Length);
 //Write the Bytes on the Socket
 nfs.Write(buffed, 0, len);
 //Increase the bytes Read counter
 rdby = rdby + len;

 }
 //Display a Message Showing Sucessful File Transfer
 fin.Close();
 }
 catch (Exception ed)
 {
 Console.WriteLine("A Exception occured in transfer" +
ed.ToString());
 MessageBox.Show(ed.Message);
 }
 }

 //This handles the receiving of input over the serial port
 //previous is the time from the last received pin changed
 private long previous = 0;
 private List<int> incomingData = new List<int>();
 private void serialPort_PinChanged(object sender,
System.IO.Ports.SerialPinChangedEventArgs e)
 {
 long currentTime = 0; //Get the currentTime
 //the elapsed time (in seconds) of the last pin change.
 double elapsed = (currentTime - previous)/1000;

 //We are only interested in Pin 9 on the serial port.
 //If we read 00000000, then we know the value was low.
 //If we read 10000000, then we know the value was high.
 //dataread will have either a value of 1 or 0.
 int dataread = serialPort.ReadByte() >> 7;

 //Now we need to figure out how many 1s or 0s we've seen
over the elapse.
 //We know the RDS signal runs at 1186 Hz.
 int numberOfBits = (int)elapsed * 1186;

 //Now we store the data for later decoding. An RDS signal
is 120 bits.
 //So we keep running until we have reached a maximum of 360
bits for error
 //detection and finding the beginning and end of the
signal.
 for (int i = 0; i < numberOfBits; i++)
 incomingData.Add(dataread);

 //If we have gotten all the data we need, close the port
and stop reading
 //and decode the data.
 if (incomingData.Count > 360)

 {
 serialPort.Close();
 DecodeData();
 }

 previous = currentTime;
 }

 //Decodes the RDS signal and updates the iCarTunes display
 string[] charMap = {"A", "B", "C", "D", "E", "F", "G", "H",
"I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V",
"W", "X", "Y", "Z",
 "a", "b", "c", "d", "e", "f", "g", "h",
"i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v",
"w", "x", "y", "z",
 "1", "2", "3", "4", "5", "6", "7", "8",
"9", "0", "/", " "};
 private void DecodeData()
 {
 //First thing we need to do is to find the start and stop
of the signal.
 //We know we are listening to x96, so we loop through all
the bits
 //and find the 1011 DIS bits.
 for (int i = 0; i < incomingData.Count; i++)
 {
 //If this is the DIS bits we found it. Crop the data so
we're just dealing with one signal
 if ((incomingData[i] == 1) && (incomingData[i+1] == 0)
&& (incomingData[i+2] == 1) && (incomingData[i+3] == 1))
 {
 if ((incomingData[i + 120] == 1) && (incomingData[i
+ 121] == 0) && (incomingData[i + 122] == 1) && (incomingData[i + 123]
== 1))
 {
 //Also remove the first block and error code
 incomingData.RemoveRange(0, i + 24);
 incomingData.RemoveRange(103,
incomingData.Count - 1);
 }
 }
 }

 //Now let's begin decoding
 string artist = "";
 string title = "";

 //X96s protocol has the artist name on bits on Blocks 2 and
3
 int lookup = (int)(incomingData[0] * Math.Pow(2, 6) +
incomingData[1] * Math.Pow(2, 5) +
 incomingData[2] * Math.Pow(2, 4) +
incomingData[3] * Math.Pow(2, 3) +
 incomingData[4] * Math.Pow(2, 2) +
incomingData[5] * Math.Pow(2, 1) +
 incomingData[5] * Math.Pow(2, 0));

 //1st character, success
 artist = charMap[lookup];

 //The remaining bits are found in blocks 2 and 3, so l
 for(int i = 6; i < 32; i = i + 2)
 {
 lookup = decodeBinary(i, i + 1) + 26;
 artist = artist + charMap[lookup];
 }

 //Blocks 4 and 5 contain the title data
 //Let's clip everything to 0 so we don't have to worry
about it anymore
 incomingData.RemoveRange(0, 48);

 lookup = (int)(incomingData[0] * Math.Pow(2, 6) +
incomingData[1] * Math.Pow(2, 5) +
 incomingData[2] * Math.Pow(2, 4) +
incomingData[3] * Math.Pow(2, 3) +
 incomingData[4] * Math.Pow(2, 2) +
incomingData[5] * Math.Pow(2, 1) +
 incomingData[5] * Math.Pow(2, 0));

 title = charMap[lookup];

 //The reaminging bits are looped through to decode the
artist song
 for (int i = 6; i < 44; i = i + 2)
 {
 lookup = decodeBinary(i, i + 1) + 26;
 artist = artist + charMap[lookup];
 }

 //Update the display with the decoded information
 songdisplayLabel.Text = artist + " - " + title;

 }

 //Returns the int value of the 2 digit binary sequence in rds
signals
 private int decodeBinary(int first, int second)
 {
 if (first == 0 && second == 0)
 return 0;
 if (first == 0 && second == 1)
 return 1;
 if (first == 1 && second == 0)
 return 2;
 else
 return 3;
 }
 }
}

Download Menu Source Code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Collections;
using iTunesLib;

using System.IO;

namespace iCarTunes
{
 public partial class DownloadMenu : Form
 {
 //The list of songs.
 public List<Song> songs;
 //The list of downloaded songs
 public List<Song> downloads;
 //The itunes application interface.
 private iTunesApp itunes;

 //Initializes the gui with the list of songs
 public DownloadMenu(List<Song> songs, List<Song> downloads,
iTunesApp itunes)
 {
 InitializeComponent();

 this.itunes = itunes;
 this.songs = songs;
 this.downloads = downloads;
 //Add all the songs to the listbox
 foreach (Song s in songs)
 {
 songList.Items.Add(s);
 }
 if (songList.Items.Count > 0)
 songList.SelectedIndex = 0;
 }

 //Keeps track of which "button" is highlighted
 private int selection = 0;
 //Determines whether selecting buttons or a song from the list
 private bool inSelectMode = false;

 //This is executed any time the menu is clicked.
 private void DownloadMenu_Click(object sender, EventArgs e)
 {
 //If we are selecting a song from the listbox
 if (inSelectMode)
 {
 MouseEventArgs f = (MouseEventArgs)e;
 if (f.Button == MouseButtons.Left)

 {
 if (songList.SelectedIndex == songList.Items.Count
- 1)
 songList.SelectedIndex = 0;
 else
 songList.SelectedIndex = songList.SelectedIndex
+ 1;
 }
 else
 {
 selectButton.BackColor =
System.Drawing.Color.RoyalBlue;
 inSelectMode = false;
 }

 }
 else
 {
 //If we are selecting a button
 MouseEventArgs f = (MouseEventArgs)e;
 if (f.Button == MouseButtons.Left)
 {
 selection = selection + 1;
 if (selection == 4)
 selection = 0;

 if (selection == 0)
 {
 selectButton.BackColor =
System.Drawing.Color.RoyalBlue;
 downloadButton.BackColor =
System.Drawing.Color.White;
 deleteButton.BackColor =
System.Drawing.Color.White;
 exitButton.BackColor =
System.Drawing.Color.White;
 }
 if (selection == 1)
 {
 selectButton.BackColor =
System.Drawing.Color.White;
 downloadButton.BackColor =
System.Drawing.Color.RoyalBlue;
 deleteButton.BackColor =
System.Drawing.Color.White;
 exitButton.BackColor =
System.Drawing.Color.White;
 }
 if (selection == 2)
 {
 selectButton.BackColor =
System.Drawing.Color.White;
 downloadButton.BackColor =
System.Drawing.Color.White;
 deleteButton.BackColor =
System.Drawing.Color.RoyalBlue;

 exitButton.BackColor =
System.Drawing.Color.White;
 }
 if (selection == 3)
 {
 selectButton.BackColor =
System.Drawing.Color.White;
 downloadButton.BackColor =
System.Drawing.Color.White;
 deleteButton.BackColor =
System.Drawing.Color.White;
 exitButton.BackColor =
System.Drawing.Color.RoyalBlue;
 }
 }
 else
 {
 //If a right click, call the callback for the
selected button
 if (selection == 0)
 selectButton_Click(null, null);
 if (selection == 1)
 downloadButton_Click(null, null);
 if (selection == 2)
 deleteButton_Click(null, null);
 if (selection == 3)
 exitButton_Click(null, null);
 }
 }
 }

 //Executes when the "Select Song" button is pressed
 //Disables button presses, and allows to scroll through songs
 private void selectButton_Click(object sender, EventArgs e)
 {
 //If there is nothing in the songlist, just return
 if (songList.Items.Count == 0)
 return;

 //Signify we are now in select mode and update display
 inSelectMode = true;
 selectButton.BackColor = System.Drawing.Color.Gray;
 }

 //Executes when the "Delete Song" button is pressed.
 //Removes the selected song from the GUI and the list of songs
 //and updates the display to highlight something else.
 private void deleteButton_Click(object sender, EventArgs e)
 {
 if (songList.SelectedIndex < 0)
 return;
 songs.RemoveAt(songList.SelectedIndex);
 int index = songList.SelectedIndex - 1;
 songList.Items.Remove(songList.SelectedItem);
 songList.SelectedIndex = index;

 if (songList.Items.Count > 0 && songList.SelectedIndex == -
1)
 songList.SelectedIndex = 0;

 }

 //Executes when the "Back" button is clicked, closes the form
 private void exitButton_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 //Executes when the "Download Song" button is pressed.
 private void downloadButton_Click(object sender, EventArgs e)
 {
 //Make the button grey while we do our work
 downloadButton.BackColor = System.Drawing.Color.Gray;

 //Reads the entire download script and saves away the
targetline we're after
 List<String> fileContents = new List<String>();
 int targetline = 0;
 int count = 0;
 StreamReader reader = new
StreamReader("downloadscript.au3");
 String currentLine = reader.ReadLine();
 while(currentLine != null)
 {
 //Check each line as they are read. Save away the line
number after the "marker" ;; is found
 if (currentLine.Length > 2)
 if (currentLine.Substring(0, 2).Equals(";;"))
 targetline = count + 1;

 fileContents.Add(currentLine);
 currentLine = reader.ReadLine();
 count = count + 1;
 }
 reader.Close();

 //Change the targetline to the search query for the song
we're looking up
 string foo = songList.SelectedItem.ToString();
 fileContents[targetline] = "Send(\"" +
songList.SelectedItem.ToString() + "\")";

 //Write the updated script back into the file
 StreamWriter writer = new
StreamWriter("downloadscript.au3");
 foreach (String line in fileContents)
 {
 writer.WriteLine(line);
 }
 writer.Close();

 //Now we can open iTunes, and run the script to begin
downloading

 itunes.GotoMusicStoreHomePage();
 System.Threading.Thread.Sleep(5000);
 System.Diagnostics.Process script =
System.Diagnostics.Process.Start("downloadscript.au3");

 //Run idle until the script finishes execution
 while (!script.HasExited)
 {
 System.Threading.Thread.Sleep(2000);
 }

 //If the download completed successfully
 if(script.ExitCode == 0)
 {
 //Save the song we just downloaded to the download list
 downloads.Add((Song)songList.SelectedItem);

 //It successfully downloaded
 //remove song from the list, and save to the download
list
 deleteButton_Click(null, null);
 }

 //If we had an error and the download did not complete
 //Keep song in the list

 //Return the button to original color
 downloadButton.BackColor = System.Drawing.Color.RoyalBlue;
 }

 //If a double click occurs, treat it like a single click
 private void DownloadMenu_DoubleClick(object sender, EventArgs
e)
 {
 DownloadMenu_Click(sender, e);
 }
 //If the listbox is clicked, just treat it like a normal click
 private void songList_Click(object sender, EventArgs e)
 {
 DownloadMenu_Click(sender, e);
 }
 //If a double click occurs on the listbox, just treat it like a
normal click
 private void songList_DoubleClick(object sender, EventArgs e)
 {
 DownloadMenu_Click(sender, e);
 }
 }
}

Appendix III: AutoIt Scripting Code for iTunes Downloads

;This script will download a song from the itunes store

;This code is used for debugging purposes, keep it here
;Sleep(3000)
;$pos = MouseGetPos()
;$color = PixelGetColor($pos[0], $pos[1])
;MsgBox(4, "Color at:", "Color = " & $color & " X,Y = " & $pos[0] & ", " & $pos[1])

BlockInput(1)
Sleep(3000)

;Click search clear button, then click the search box, then begin typing our search query
MouseClick("left", 1241, 41)
Sleep(500)
MouseClick("left", 1126, 42)
;;Marker
Send("Jack's Mannequin - Annie Use Your Telescope")
Send("{ENTER}")

;Wait 15 seconds for the search to complete, if it doesn't, Exit
$seconds = 0
Do
 Sleep(1000)
 $seconds = $seconds + 1
 if($seconds = 15) Then
 MsgBox(4, "Connection Timed Out", "The iTunes store is unable to
connect. Please try again later.", 5)
 ;Set the mouse back to the iCartunes App
 MouseMove(937, 571)
 WinSetState("iTunes", "", @SW_MINIMIZE)
 BlockInput(0)
 Exit 10
 EndIf
Until PixelGetColor(646, 54) = 4934212

Sleep(1000)
;Once our search is complete, 1 of 4 things can happen
;If there was no result found, exit
if(PixelGetColor(386, 144) = 16777215) Then
 MsgBox(4, "No Search Results Found", "The iTunes does not have your desired
song. Sorry!", 5)
 ;Set the mouse back to the iCartunes App
 MouseMove(937, 571)

 WinSetState("iTunes", "", @SW_MINIMIZE)
 BlockInput(0)
 Exit 10
EndIf

;If there is just one line on blue bar, click the song in the right location
if(PixelGetColor(1062, 414) = 12829635) Then
 MouseClick("left", 826, 429)
Else
 ;If there is a podcast bar on the bottom, click the right space
 if(PixelGetColor(1229, 562) = 13158600) Then
 MouseClick("left", 843, 579)
 Else
 ;Else click the bottom button for downloads
 MouseClick("left", 843, 558)
 EndIf
EndIf

;Wait 20 seconds for things to get squared away, and exit erroroneously or exit
$seconds = 0
Do
 Sleep(1000)
 $seconds = $seconds + 1
 if($seconds = 20) Then
 MsgBox(4, "Connection Timed Out", "The iTunes store is unable to
connect. Please try again later.", 5)
 WinSetState("iTunes", "", @SW_MINIMIZE)
 BlockInput(0)
 Exit 10
 EndIf
Until PixelGetColor(639, 42) = 5197128

;Minimize iTunes, display success message, and let control be handed back to our C#
code
WinSetState("iTunes", "", @SW_MINIMIZE)
MsgBox(4, "Download Successful", "Your song is downloading.", 5)

;Set the mouse back to the iCartunes App
MouseMove(937, 571)
BlockInput(0)

