
Don DeLaMare 
Kevin Brown 
Brian Faires  
 
 

Cell Phone Controlled Security System  

Project Proposal   

Project Description  
Introduction  

     Home security and home automation are wonderful features that everyone would like to enjoy if they 
weren't so expensive to install and maintain.  A less expensive alternative is an automated security system 
that the owner monitors himself.  This is made possible through the use of a cell phone and a home phone 
line.  The home phone line is used to contact the owner at specified phone numbers in the event of security 
problems.  For example, if the user is not home and the window sensor is tripped, the system will call the 
owner indicating that the window sensor was tripped.  The owner can then listen to what is happening inside 
the home with the help of microphones near each sensor that transmit through the phone line when that 
sensor is triggered.  The owner can then communicate with whoever is inside the house through the use of a 
speaker.  Then they have the options of setting off the siren or calling a neighbor to check on the house.  If 
the system cannot contact the owner, it will use an internal ordered list of other numbers to make backup 
calls.  When there is a security problem the owner should be the first to know and have the ability to be in 
control of the situation with the use of their cell phone.  

Design Overview  

     The phone line and each of the security devices will be interfaced with a microcontroller.  The security 
devices include a door sensor, window sensor, motion sensor, smoke alarm, security keypad, LCD screen, 
microphones, speaker, and siren.  The keypad, LCD screen and one microphone will be mounted together 
near the door sensor.  The microcontroller will be located in a safe place.  If the window sensor is tripped 
while the alarm is armed, the system immediately calls the owner.  The smoke sensor will trigger a call to the 
owner regardless of the armed/unarmed state.  If the door sensor is triggered, the microcontroller prompts the 
keypad near the door for an access code.  If a correct code isn't entered within 30 seconds (or whatever time 
is specified), the owner is called.  Further action is determined by user-specified siren logic.  Other user 
options, which can be set via the keypad or phone line, include: edit primary password, add/delete secondary 
passwords, edit primary phone number, add/delete secondary phone numbers, and set siren logic.  

     The system will also interface with any typical answering system the owner may have.  The 
microcontroller will use a relay to control the answering machine.  If the owner calls in and wishes to access 
the system, they can enter a code.  Depending on the validity of the code, the microcontroller will use the 
relay to enable/disable the answering machine.  

    Home automation features are not currently included in the design.  If time permits, a thermostat control 
and temperature sensor will be added, so the owner can change temperature settings remotely. 

 



 

Risks     
Hardware  

    The hardware risk we have is if we can not wire up all our devices to the microcontroller.  We are trying to 
eliminate unnecessary wires.  We are doing this by sending only the signals we need to the microcontroller, 
tying other controls high or low, and wiring up the power or ground separately.  We are also trying to do 
serial communication instead of parallel communication wherever possible.  We may need to use a serial to 
parallel converter.  We will also use decoders and/or encoders to eliminate wires.  

Software  

    If the program takes up too much space and cannot fit on 32k bytes of EPROM, we will have to cut 
functionality for some user-specified options. Worst case would be losing some minimal functionality/logic. 
The priorities for functionality are as follows:  

All sensors 
LCD Screen 
Microphones 
Text to Speech chip 
Phone line interaction 
Relays 
-- Cuttable functionality -- 
Answering Machine interaction 
User-defined red state logic 
Multiple passwords/users 

   

 

 

 

 

 

 

 

 

 



Interface Specifications  
Top-level Interface  

 
 

Figure 1: Top-level Interface 

    The fire, door, motion, and window sensors, microphones, relays, and speaker will be hooked up to power 
and/or ground and will only send or receive their signal to or from the microcontroller.   

Microcontroller to phone unit   

    The phone unit will have to pick up the phone on incoming calls if there is no answering machine.  The 
microcontroller will constantly listen to the phone unit for a ring (high voltage pulse) and answer the phone 
(allowing a current to flow back on the phone line) after the desired number of rings. Then it will send out a 
string to the text to speech chip to say, “enter code.” Then the phone unit will listen for a low and a high 
frequency to detect a row and a column of a four by four matrix to match a button press.  If the correct code 
was entered, it will go to the menus of the security system, then continue sending the menus' strings to the 
text to speech chip and listen for button presses to switch between menus.  

 

 



The Microcontroller->Text to Speech->Phone line diagram shown below. 

 
Figure 2: Text to Speech Chip Description  

(Text to Speech)   

   The Text to speech chip has five control lines that we will use in our security system that are SS (Slave 
Select), MOSI (Master Out, Slave In), MISO (Master In, Slave Out), SCLK (Serial Clock), and R/B 
(Ready/Busy signal) as shown in figure 1.  SP+, SP-, and ATT CAP will also be used on the chip.   

    SS is an input that is low during communication and high when communication is done.   
    MOSI is a digital input for the data by SPI as shown in Figure 2.   
    MISO echoes back what was sent on MOSI to make sure it was received.  
    SCLK controls the timing of the data over MOSI and MISO lines with a max frequency of 5 MHz.  
    R/B tells if the FIFO is full or not.  Ready for more data or not.  
    SP+ and SP- to hook up to the phone line to speak the strings sent from the microcontroller.  
    ATT CAP will have a 4.5 micro farad capacitor hooked up to it to ground to reduce noise. 



 

Figure 3: Text to Speech Interface   

    In Figure 3 MOSI transmits the data to the text to speech chip in 16-bit words.  The first word is a 
command word to set operations, status, and customization of the text to speech chip. Then the following 
words are the letters in lower case ASCII to words to be read separated by spaces.  Upper case ASCII are 
commands that can later be sent to modify settings.  Some of these setting are start, stop, pause, resume, 
volume up/down, speedup/slowdown talking speed, and set speech pitch. 
 
Microcontroller to Keypad 

      The keypad will have 7 parallel wires with four inputs and three outputs.  The microcontroller will send a 
high bit to one of the rows, then will read the columns and save them in an array called "allKeys" to see if 
there was a button pressed.  Then the microcontroller will do the same thing for the next three rows, adding 
them to the array allKeys.  Then allKeys is XOR'd with the “oldAllKeys” to see if there is a difference.  If 
there is a new key pressed the value is sent the function that is executing.  

Microcontroller to LCD Screen 
 
    Communication to the LCD screen is done through Hitachi's HD 44780 microcontroller, which controls 
the LCD display.  This interface to the Hitachi chip requires at least 4-bits and up to 8-bits if the master 
micro-controller is capable of output to 8-bits.  Below is an example of a 8-bit communication to the HD 
44780. 

  

 

Figure 4: 8-bit Data Transfer Timing Sequence to HD 44780  

 



    Data line descriptions are as follows:  The E line starts data read/write; RS (Register Select) selects the 
registers, 0 for instruction register (write) address counter (read), or 1 for Data register; R/W 
(Read/Write) selects read (0) or write (1). 

 

Figure 5: Example of Interface to a Micro-controller  

    So, as seen in Figure 5, a total of 11 wires are required for 8-bit communication.  We may be able to tie 
R/W to high if only writes to the LCD are necessary, enabling a 10-wire interface.  
 

Software  
    The code included in Appendix A is meant to clarify how the software will use global variables and 
functions in C to resemble an object oriented design. The objective is to maintain three separate state 
machines that indirectly interact. Some of the objects have input buffers that must be regularly checked, 
regardless of the state of the other state machines.  Recognizing that the size of this software program is 
inherently limited, we feel that global variables and functions are appropriate here.  This is because they 
allow more efficient control of all objects by all objects by ignoring encapsulation.  They will help minimize 
both instruction memory requirements and the demand on our stack.  Ignoring encapsulation will require 
anyone changing the code to have a thorough understanding of what should communicate with what.  Since 
our number of programmers will be at most three, we feel that this will not be a difficult task. 

     The three state machines are represented by three global variables called currState, currPhoneState and 
currKeypadMenu.  Our main control loop uses functions UpdatePhone() and UpdateKeypad() to update the 
last two states, and also supplies the logic based on currState, which represents our primary state machine.  
The Update functions will convert the keypad and phone input into convenient data structures such as 
allKeys[], lastKeypress, and currPhoneInput.  The Update functions also will process this input to determine 
the states of all machines.  After this is done, the sensors are checked and actions the primary state may be 
changed.  If necessary, currPhoneState will be set to EXITING to signal to the phone object that it should end 
the current phone call the next UpdatePhone(). Lastly, output for the LCD screen and phone line will be 
determined and sent.  

     The enumerations at the top of Appendix A provide a clear means of handling our state machines.  The 
first enumeration, titled States, is for our main state currState.  Here is a brief description of its values:  

UNARMED: The system is unarmed and the keypad available for arming the system or changing user 
options.  The fire sensor is active and the phone line available to handle incoming calls.  

GREEN: The common armed state. All sensors are active but none have been triggered.  The phone line is 



available to incoming calls.  

YELLOW: A sensor is triggered from the GREEN state. A countdown begins and unless a password is 
entered at the keypad, the ORANGE state will be triggered.  If a correct code is entered, the system will go to 
the UNARMED state.  

ORANGE: There is a problem at the home. The phone object now rejects incoming calls and disconnects if 
there is a call active.  Then it calls the primary phone.  

RED:  The primary phone is either unavailable, or has signalled an emergency once they were contacted in 
the ORANGE state.  As per user specified options, the system will contact secondary numbers and/or trigger 
the siren.

 

Schedule Flow 
  

 
Figure 6: Schedule Flow 

 
 
March  
 Everyone will Research where to buy sensors, microcontroller, microphones, relay, speaker, text to speech 
chip, and LCD screen. 
 
April/May    
  Purchase microcontroller, LCD screen, keypad, text to speech chip. 
 
June 
  Step 1  -  Keypad and LCD Screen interfaces working 
    Kevin will wire up the keypad and the LCD Screen to microcontroller. 
    Brian will design the software for the keypad and the LCD. 
    Don will test the software on the micro-controller with the keypad and LCD. 
 
July 
  Step 2 -Interface text to speech chip and speaker with the microcontroller. 



    Kevin will wire up the text to speech and the microcontroller. 
    Brian will design the software to send strings to the unit. 
    Don will test the text to speech unit with the speeker. 
 
August 
  Step 3  -  Interface the telephone line with the microcontroller. 
    Kevin will wire up the telephone line and the microcontroller. 
    Brian will design the software for the telephone line control. 
    Don will test the phone line answer / call / number input / microphone. 
 
September 
  Step 4  -  Interface the microphones to the microcontroller. 
    Kevin will wire up the microphones to microcontroller. 
    Brian will design the software for the relays for themicrophones. 
    Don will test the speaker output with the microphones. 

 October 
  Step 5 - Interface the motion, door, and fire sensors with appropriate microphone to the microcontroller. 
    Kevin will wire up the sensors to the microcontroller. 
    Brian will design the software for the sensor input. 
    Don will test all the sensors to set off alarm in the right state.  
 
November 
  Step 6 - Interface the relay to the microcontroller for the answering machine. 
    Kevin will wire up the relay for the answering machine. 
    Brian will design the software for the relay control. 
    Don will test the relay to see if it will cut off the answering machine. 
 
December 
  Test by Achieving full code coverage and hardware signal coverage for the Homeowner Controlled Security 
System. 
    Kevin will make sure all signals logic going to and from the hardware is tested. 
    Brian will make sure all software works all together on the microcontroller. 
    Don will test to make sure the right signals are sent from the microcontroller to the hardware. 

  



Bill of Materials   
 

Item     Company    Model   Cost   Contact   

Microcontroller   Freescale    APS12C32SLK  donated   andy.mastronardi@freescale.com  

Keypad   Grayhill   96-12   $9   UofU Lab parts counter   

Smoke Detector   
 

any   $10   Don has an extra   

Text to Speech 
Chip   

Winbond   WTS-701   $38   www.textspeak.com, 
sales@textspeak.com, 203-557-0222   

1st Choice Siren   RadioShack   108dB Piezo   $10.49   www.radioshack.com/home/index.jsp    

2nd 
Choice Siren   

RadioShack   102dB   $5.49   www.radioshack.com/home/index.jsp    

Relay   RadioShack   275-232   $2.99   www.radioshack.com/home/index.jsp    

Door Sensor   Home Security 
and 
Automation   

recessed roller 
plunger   

$4.50   www.homesecurityandautomation.com     

Microphone   RadioShack   270-090   $2.79   www.radioshack.com/home/index.jsp  

LCD Display 
16x2   

BG Micro   LCD1031   $5.95   http://www.bgmicro.com  

LCD controller   BG Micro   HD44780   with LCD   http://www.bgmicro.com  

Motion Sensor   RadioShack   276-033   $9.99   www.radioshack.com/home/index.jsp  

                                                                               

 

 

   

  

mailto:%20andy.mastronardi@freescale.com
http://www.textspeak.com/
mailto:sales@textspeak.com
http://www.radioshack.com/home/index.jsp
http://www.radioshack.com/home/index.jsp
http://www.radioshack.com/home/index.jsp
http://www.homesecurityandautomation.com/
http://www.radioshack.com/home/index.jsp
http://www.bgmicro.com/
http://www.bgmicro.com/
http://www.radioshack.com/home/index.jsp


Appendix A  

 

(The pseudo-code below excludes 'break's in switch statements and some other excessive code when 
the intended meaning is obvious.) 

 

// Enumerations 
enum States{UNARMED, GREEN, YELLOW, ORANGE, RED, FIRE}; 
enum KeypadMenus{ARMED, COUNTDOWN, ENTER_CODE, MENU0, MENU1, ... , MENU15} 
enum PhoneStates{OFFLINE, RINGING, ANSWERING, EXITING, DIALING, MENU0, MENU1, ... , 
MENU15} 

enum Sensors{FIRE, WINDOW, DOOR, KEYPAD}; 
enum Keys{NONE, ZERO, ONE, TWO, ... , NINE, POUND, STAR};

// Permanent/Nearly static Data 
Keys[] primaryPassword; 
Keys[][] secondaryPasswords; 
Keys[] primaryNumber; 
Keys[][] secondaryNumbers; 

  

// Keypad Data 
Keys keypadBuffer[BUFFER_SIZE] = Keys.NONE; 
KeypadMenus currKeypadMenu = MENU0; 
bool allKeys[12] = false; 
bool oldAllKeys[12] = false; 
bool newKeys[12] = false; 
Keys lastKeypress = Keys.NONE; 

  

// Phone Data 
Keys phoneBuffer[BUFFER_SIZE] = Keys.NONE; 
PhoneStates currPhoneState = OFFLINE; 
Keys currPhoneInput = Keys.NONE; 
Keys prevPhoneInput = Keys.NONE; 

  

// Other Dynamic Data 
States currState; 
Sensors lastSensor; 
float countdown; 

 
// Functions 
Main() 



{ 
    while(true) 
    { 
         // Check for new input 
        UpdateKeypad(); 
        UpdatePhone(); 
  
 // Do state logic (sensor checking) 
        if(IsOn(FIRE)) 
      &nbsp;     currState = FIRE; 

     

        switch(currState) 
        {     

             case UNARMED: 

             case GREEN: 
                 if(IsOn(DOOR)) 
                 { 
       &nbsp;             currState = YELLOW; 
                     lastSensor = DOOR; 
                 } 
                 if(IsOn(WINDOW)) 
                 { 
                     currState = YELLOW; 
                     lastSensor = WINDOW; 
                 } 
                 if(IsOn(KEYPAD)) 
                 { 
                     currState = YELLOW; 
                     lastSensor = KEYPAD; 
                 } 
              case YELLOW: 
                 if(timer < 0) 
                     currState = ORANGE;   
              case ORANGE: 
                 if(currPhoneState == OFFLINE) 
                     Call primary number; 
                 else if(currPhoneState == DIALING) 
                     ;   
                 else 
                     currPhoneState = EXITING; 

              case RED: 
                    Call backup numbers and/or trigger siren. Defined by user. 
              case FIRE: 
                    if(currPhoneState == OFFLINE)  

                        Call primary number;  

                   else  



                       currPhoneState = EXITING; 

                    Trigger siren; 
        } 

              

        // Process Output 
        OuputLCD(); 
        if(currPhoneState != OFFLINE) 
            OuputPhoneMenu(); 
    } 
} 

  

void UpdateKeypad() 
{ 
    UpdateKeypadInput(); 
    for(i=1 to 12) 
        if(newKeys[i]) 
            BufferKeypadInput(i); 
    if(keypadBuffer[0]) 
        ProcessKeypadInput(); 
} 

  

void UpdateKeypadInput() 
{ 
    oldAllKeys = allKeys; 
    allKeys=0; 
    for(i=1 to 3) 
    { 
        send high bit to ith keypad column; 
        mask 4 inputs from keypad into 12bit value; 
        allKeys = allKeys XOR mask; 
    } 

    for(i=1 to 12) 
    { 
        if(allKeys[i] && !oldAllKeys[i]) 
            newKeys[i] = true; 
    } 
} 

  

void BufferKeypadInput(int keypress) 
{ 
    for(i=0 to BUFFER_SIZE-1) 
    { 
        if(keypadBuffer[i] == NONE) 



            keypadBuffer[i] = keypress; 
    } 
    lastKeypress = keypress; 
} 

  

void ProcessKeypadInput() 
{ 
    switch(currKeypadMenu) 
    { 

     case ARMED: 
          lastSensor = KEYPAD; 
          currState = YELLOW; 
     case (COUNTDOWN || ENTER_CODE): 
         if(lastKeypress == ENTER) 
         { 
             if(keypadBuffer == any password) 
             { 
                 currKeypadMenu = MENU0; 
                 currState = UNARMED; 
             } 
             else if(incorrectPWs < 3) 
                 repeat; 
             else if(incorrectPWs == 3) 
                 currState = ORANGE; 
         } 
     case MENU0: 
        if(lastKeypress == a menu option) 
            currKeypadMenu = MENU1; 
      case MENU1:      
       ... 
    } 
    lastKeypress = NONE; // Since its been processed 
} 

  

bool IsOn(Sensors sensor) 
{ 
    switch(sensor) 
    { 
        case FIRE: 
            return fire sensor input; 
        case WINDOW: 
            return window sensor input;  

         case DOOR: 
       &nbsp;    return door sensor input; 
&nbsp;       case KEYPAD: 
            for(i=1 to 12) 
                if(allKeys[i]) 



                    return true; 
    } 

    return false; 

} 

// Analagous to Keypad logic 
void UpdatePhone(); 
void UpdatePhoneInput(); 
void BufferPhoneInput();  

  

// To be implemented when hardware is in hand 

void OutputLCD(); 
void OutputPhoneMenu(); 

   



 

  

Reference Page  

 

Microcontroller documentation http://www.cs.utah.edu/classes/cs5780/doc/MC9S12C128V1.pdf  
 

LCD Screen Controller Chip  
Documentation HD44780       http://www.eio.com/hd44780.pdf  

 
Text to Speech Chip 
documentation                                   http://www.datasheetcatalog.org/datasheets/560/371357_DS.pdf 
 
 
Phone Line Interfacing                    http://www.epanorama.net/circuits/teleinterface.html 
 

http://www.cs.utah.edu/classes/cs5780/doc/MC9S12C128V1.pdf
http://www.eio.com/hd44780.pdf
http://www.datasheetcatalog.org/datasheets/560/371357_DS.pdf
http://www.epanorama.net/circuits/teleinterface.html

	Don DeLaMareKevin BrownBrian Faires 

