

Street Based Mote

Members

Brian Matthews

borg286@gmail.com

RashinBolkameh
rashinbe@yahoo.com

Raheem alhamdani

r.alhamdani@utah.edu

Group e-mail

null-pointers@googlegroups.com

Group website

http://www.eng.utah.edu/~alhamdan/Mote

April 23, 2008

Abstract
 We seek to create a dynamic mesh network of wireless sensor nodes, or motes, to

reduce traffic and accidents and keep drivers aware of traffic conditions on their route. Motes

will be installed on street lights and in cars, all communicating with each other and reporting to

a central computer that can monitor and track weather and traffic received from the mote to

help keep traffic to a minimum.

Project summary
 We want to design a traffic sensor network that will monitor traffic and provide local

information to motes based in cars within range. These motes will be attached to street lights

powered by the city and creating a mesh network through the city. We plan to demonstrate its

functionality with 3 Motes in a straight line in the MEB parking lot with a car based mote

traversing the length. We will also write software that retrieves maps from google.maps.com

and converts them to graphs. We will then partition the city around street lights so that each

mote would be able to provide the car based mote with local street information such as road

graphs, and dream features such as gas stations, restaurants, motels, etc.

Our original hardware component will include a dipole antenna that we hope to upgrade to a

bi-cone for greater range and noise reduction. The motes will be able to gather weather

information as well as local traffic, and send these back to a central computer for analysis. The

motes have the capability to control the lights and thus enable the central computer to control

the lights for a faster commute.

Tasks

• Write mesh network software
A mesh network is similar to a graph, but enables for dynamic updating of nodes. We will

be using open source code found on the web as a starting point for our network software. The

main difference is that our software will have to be able to handle very dynamic configurations

of the network such as passing car based motes. Car based motes will be coming in and out of

the street based mote's range which we will need to be able to handle very quickly. All this

information needs to be reported efficiently and streamlined so that a central computer can

make sense of it all. We will create a graph representation that overlapping graphs can be

joined with minimal computation.

• Write Google maps software/Central Computer program
 By writing the Google Maps software we will be able to offer the Google services like

restaurants, gas stations, motels..., and we will be able to extract out road graphs. This

resource will be part of a program that will be always running on a central computer that will

get all the packets from the motes and organize them for analysis to the user. If new

information is available to google, the motes will receive them shortly thereafter, information

like traffic, weather, events, etc. Thus we will maintain the most up-to-date traffic information

available to the user/driver.

• Minimize response time
 This will be software intensive. We don't know how fast we can transmit and receive

data (handshaking) with the mote as we have never used them before. We assume with their

250 kbps, High Data Rate Radio we can make sure handshaking time is kept to a minimum. We

also hope that interference will not be an issue. We will try and create interference for testing

in an attempt to create the worst case scenario, but we can only do so much.

• Maximize range with custom antenna (Dipole)
 Using custom antennas (Dipole for example) improves the reception for the mote and

directs the signals that the mote transmits and recieves. Therefore, this improvement provides

benefits in terms of greater range and increased data transfer speeds. A dipole antenna is an

antenna with a center-fed driven element for transmitting or receiving radio frequency energy,

it can provide up to 2.14 dBi of peak antenna gain, which will be perfect in our project.

Specific Task Interfaces
 As per the Hardware interfaces there is very little to be done. We had initially planned

on using sensors for weather, and temperature, but due to the advanced state of the motes we

are using, those sensors come prebuilt on the mote. We had also wanted to use a solar panel

in conjunction with batteries and manage power with a power unit, but that idea got

superseded by the fact that we have city power to use from the street lights themselves. In

light of this we will be simply using a standard household multi-voltage transformer and set it to

the voltage for optimal transmission range. We will assure that the transformer bought will

have a current that is compatible with the mote. The only other hardware piece is the antenna.

The only interfacing we need is to program the mote to know that it now has an external

antenna with different impedance than its internal antenna. The band we will be

communicating on is 2.4 to 2.4835 GHz, a globally compatible ISM band. This will lead to an

antenna about 7 cm in length.

 The main part of interfacing that is to be done is in software with the other team. We

will need to know specifics of how 802.15.4 works so as to minimize the time spent in

communication, thus reducing the power consumed by the transmitter. We plan on using a

form of XML to transfer data and messaging. This gives us lots of freedom with what and how

we communicate. Currently we have 3 types of messages: update, request, special. Almost all

data fields (tags) are optional, and will be supported by both teams. Handshaking will prove to

be difficult because we don't want just anyone telling our motes what to do or what to send.

Encryption will take a good part of protocol development.

TelosB mote Specifications

 Open-source Operating System

 IEEE 802.15.4 Compliant

 250 kbps, High Data Rate Radio

 TI MSP430 Microcontroller with 10kB RAM

 Integrated Onboard Antenna which we will connect to an external antenna

 Data Collection and Programming via USB Interface

 Integrated Temperature, Light and Humidity Sensor

 Visible Light Sensor Range, 320 nm to 730 nm

 Visible to IR Sensor Range, 320 nm to 1100nm

 Temperature Sensor Range, -40°C to 123.8°C

 Humidity Sensor Range, 0-100% RH

Testing and Integration Strategy
 Testing will be heavy on the software side; agreeing on protocol, testing that the motes

can hear each other and understand each other is key. NesC(native language of TinyOS,

covered later) code examples will be helpful in getting our feet wet, and helping us get to our

feet and off to a good start. There are examples like how to make the lights blink, and sending

a “hello world” message. Initial testing will be to see if we can get the lights to blink, then send

a basic “hello world” message across, then create a network, then try and cut off a central node

and see if the other motes can handle it, then predict speed and trajectory and know when the

car mote will leave range. These will be key milestones to show our progress.

Group communication plan
 As per communication for out group we plan on using Google Groups. Google groups

let us upload code changes and send the entire group notifications. The other mote team will

also be able to observe what's going on with our team. One of our members will attend every

other of group meeting of the other mote team so as to keep both teams on the same page.

 As per source control, a rudimentary method of downloading and uploading a zipped

version of the code is what we'll use. WinMerge will be used when multiple checkouts are

done. WinMerge is a free program that can be used to analyze 2 documents and lets the user

merge the 2 files together. We will investigate other means like Google Documents so

everyone has the most up-to-date version of the code. The nice thing about Google Documents

is that when a member makes changes to the document, that change is reflected wherever the

document is available, be it on our Google groups page, presentation, e-mail attachments, so

forth. The only problem is that one would need to extract the code from the document and

paste it into the program, which is a little inconvenient. Whichever is optimal as found through

testing will be used.

The Operating System

The most widely used operating system for motes is TinyOS, there are several ways to download

and install TinyOS on a PC or a Mac. I found that using Vmware Server console to creating a

XubunTOS virtual machine within it is one of the simplest ways. From a single desktop the

Vmware server can creates and manages Multiple virtual machines in parallel. So now we have

VMware Player and we can run a pre-configured XubunTOS virtual machine image inside it.

There are also several editors and IDE's for TinyOS. XubunTOS comes with an Emacs editor,

but Eclipse is better editor with great plug-ins. It has numerous features that could be essential to

writing better code for our motes. It also has what is called an example wizard that uses the

examples provided with the TinyOS.

A quick lesson is included to introduce the basic concepts of TinyOS and the nesC language in

which the system is written. It includes a quick overview of the nesC language concepts and

syntax to help getting started with programming in this environment.

TinyOS and nesC

NesC is a new C-like syntax language. It's used for programming structured component-based

applications. Components are how TinyOS is designed and structured. It includs libraries, system

files and applications. NesC language was created for embedded systems such as the motes we

will be working on, but it must support the TinyOS concurrency model. Structuring, naming and

linking application together is the idea behind this component based applications running on

TinyOS. It gives application designers the freedom to mesh applications into each other and

compose a complete, concurrent system. At the same time still perform extensive checking at

compile time. TinyOS has few concepts that are expressed in nesC, such as components with

bidirectional interfaces, they use the same model of concurrency based on tasks defined in the

model and hardware event handlers,. It also detects data races at compile time.

Milestones
 Some basic milestones will be getting TinyOS up and running. We hope to then get the

lights to blink. The Hello World example will also be a big achievement. Getting a network

created and wirelessly reported to a computer will be our next goal. After that more complex

messages will show we are on our way. If our antenna can get 300’ we will have achieved

desired range. Our final milestone is when a car based mote can traverse from one end of a

network to the other.

Risks
 Some risks we foresee are an insufficient gain from the antenna, thus limiting our range,

meaning more motes per square mile, if this were to be deployed in a city. As we are

unfamiliar with the functionality provided us through TinyOS we might need to delve deeper

into nesC, the programming language for TinyOS, upon finding programming stumbling blocks.

We assume that the motes will be able to provide us with received signal strength, from which

we can extrapolate distance to neighboring motes. Even if this functionality is not provided

with the mote we’ve chosen we will find alternative means of getting that information. The car

based motes will be equipped with GPS, from whom we can get coordinates. We also predict

that reaction time (hand shaking time) might be too long for practicality.

 Another risk is weather proofing. We will only demo in nice weather, but the motes

need to be able to withstand rain, snow, earthquake…. Along with weather is the reduction of

signal strength. We don’t know how much our range will be reduced. It could be so much that

a connected network is impossible.

BOM and Vendors
TELOSB MOTE w/ SENSOR SUITE $ 110.00 Willow Tech. +44 (0) 1342 835234

 CrossBow (408) 865-3300

Antenna (di-pole) $0.50 The Radio works, Jim (804) 484-1040

Variable power supply $5 Big Lots (801) 596-8611

Conclusion
 We hope this project will give us a better understanding of motes and how to see a

project through to its completion. We hope to be able to investigate nd pioneer a new

technique for handling traffic. Currently stop lights are soley based on timing, and each light is

independent of the rest Our method would create an interdependent network that can

dynamically adjust for unexpected turns. Instead of getting to the light for it to realize you’re

there (weight sensor) the light would expect you coming and, in future versions, change the

light you, before you get there. No more rolling out the red carpet, but rolling out the green

carpet of green lights.

http://www.willow.co.uk/html/telosb_mote_platform.html

http://www.willow.co.uk/TelosB_Datasheet.pdf

http://www.tinyos.net/scoop/

http://www.dcg.ethz.ch/~rschuler/img/roundtrip/play.htm

http://www.intel.com/research/sensornets/

http://www.xbow.com/Home/HomePage.aspx

http://computer.howstuffworks.com/mote.htm

http://www.eng.utah.edu/~alhamdan/Mote/ref.pdf

http://en.wikipedia.org/wiki/Dipole_antenna

http://www.radioshack.com/product/index.jsp?productId=2062691

http://maps.google.com/

http://groups.google.com/

http://documents.google.com/

http://toilers.mines.edu/Public/XubunTOS

Appendix

The Blinking LED example

Blink.nc

configuration Blink {
}
implementation {
 components Main, BlinkM, SingleTimer, LedsC;
 Main.StdControl -> BlinkM.StdControl;
 Main.StdControl -> SingleTimer.StdControl;
 BlinkM.Timer -> SingleTimer.Timer;
 BlinkM.Leds -> LedsC;
}

StdControl.nc

interface StdControl {
 command result_t init();
 command result_t start();
 command result_t stop();
}

BlinkM.nc

module BlinkM {
 provides {
 interface StdControl;
 }
 uses {
 interface Timer;
 interface Leds;
 }
}
// Continued below...

Timer.nc

interface Timer {
 command result_t start(char type, uint32_t interval);
 command result_t stop();
 event result_t fired();
}

BlinkM.nc, continued

implementation {
 command result_t StdControl.init() {
 call Leds.init();
 return SUCCESS;
 }
 command result_t StdControl.start() {
 return call Timer.start(TIMER_REPEAT, 1000) ;
 }
 command result_t StdControl.stop() {
 return call Timer.stop();
 }
 event result_t Timer.fired()
 {
 call Leds.redToggle();
 return SUCCESS;
 }
}

