
Dariel Marlow – darielmarlow@hotmail.com Toren Monson – nicmonson@gmail.com
Michael DeLisi – delisi@eng.utah.edu Matt Stoker – matt.stoker@gmail.com

www.cs.utah.edu/~delisi/cs3992

mailto:darielmarlow@hotmail.com
mailto:nicmonson@gmail.com
mailto:delisi@eng.utah.edu
mailto:matt.stoker@gmail.com

Introduction

The Synapse UAV is an unmanned

autonomous vehicle that is

composed of several devices. The

motivation behind this project is to

learn about autonomous vehicles

guided by GPS technology.

Vehicle

Pocket PC & GPS Unit

Guidance Controller

Base Station & Camera

Vehicle

The Synapse UAV control system will be

designed so any RF controlled vehicle

can be used by loading a compatible

software package onto the PocketPC.

Our implementation vehicle will be an

RF remote controlled car with

forward/back and right/left controls.

Tasks:
•Determine how the motor system
will interface with guidance
controller
•Define a software API flexible
enough to admit several motor
control systems.

Vehicle

The team has already begun to test
methods of integrating the RF
controllers that come with the
vehicles into the rest of the system.
The integration should be done with
little or no permanent modification
of the vehicle or it’s controller.

VIDEO

Vehicle

Guidance Controller

The guidance controller interfaces
between the motors and the Pocket
PC. It takes in a serial input from the
Pocket PC, interprets the data, and
sends out signals to the vehicle’s
motors. The signal to the motors
could either be an RF signal to take
advantage of the current motor
setup or we could bypass the RF
system and send an analog signal
directly to the motors. The guidance
controller will be composed of a
Motorola M9S12C32 microcontroller
with an integrated serial interface.
The M9S12C32 was provided free of
charge by FreeScale Corporation.

Tasks:
• Combine serial interface and
microcontroller and come up with
messaging standard.

Guidance Controller

SRF08 – Devantech
High Performance Ultrasonic

Range Finder.

I2C Protocol

65mS

6 meter range (up to 11 meters)

Light Sensor

Guidance Controller

Steps
1. Send start info and begin clock on SCL
2. Send address a certain slave device (sonar)
3. Send bit for send or receive and get an acknowledge back
4. Send/receive 8 bit data on SDA and get an acknowledge back
5. Go to step 3 or send end info

I2C Communication Protocol

Guidance Controller

Steps
1. To initiate a ranging, the microcontroller sends a command 0x51.
2. The microcontroller sends a read to the sonar and will repeatedly read 0xFF until the

sonar is done ranging and sends out the distance in centimeters.
3. The microcontroller reads the data and stores it another location for other parts of the

microcontroller to use
4. Go to 1.

Input & Output Sonar Bits

Pocket PC & GPS Unit

The Pocket PC is used to make
calculations based on a predefined
path by using the data from the
attached GPS unit. It will not only
store the main program, but also the
travel path of the UAV. The SD port
will be used to connect the GPS unit
to the Pocket PC and also provide
power to it. Once it receives this
data, the Pocket PC will then be able
to calculate the path that the UAV
must travel. It will relay this this
information to the guidance
controller via serial interface.

Pocket PC & GPS Unit

The GPS data will be parsed with the
use of GeoFrameworks GPS utilities.
We will use Visual Studio and C# to
write all of the Pocket PC software.

The Pocket PC comes from one of
the group members.

The GPS unit has been procured
through an online vendor.

Tasks:

• Write main application to
calculate direction based on
GPS information

Pocket PC & GPS Unit
$GPRMC,POS_UTC,POS_STAT,LAT,LAT_REF,LON,LON_REF,SPD,HDG,DATE,MAG_VAR,MAG_REF*CC<cr><lf>

$GPGLL,LAT,LAT_REF,LONG,LONG_REF,POS_UTC,POS_STAT*CC<cr><lf>

$GPGGA,POS_UTC,LAT,LAT_REF,LONG,LONG_REF,FIX_MODE,SAT_USED,HDOP,ALT,ALT_UNIT,GEO,G_UNIT,D_AGE,D_REF*CC<cr><lf>

POS_UTC - UTC of position. Hours, minutes and seconds [fraction (opt.)]. (hhmmss[.fff])

POS_STAT - Position status. (A = Data valid, V = Data invalid)

LAT - Latitude (llll.ll)

LAT_REF - Latitude direction. (N = North, S = South)

LON - Longitude (yyyyy.yy)

LON_REF - Longitude direction (E = East, W = West)

SPD - Speed over ground. (knots) (x.x)

HDG - Heading/track made good (degrees True) (x.x)

DATE - Date (ddmmyy)

MAG_VAR - Magnetic variation (degrees) (x.x)

MAG_REF - Magnetic variation (E = East, W = West)

FIX_MODE - Position Fix Mode (0 = Invalid, >0 = Valid)

SAT_USED - Number Satellites used in solution

HDOP - Horizontal Dilution of Precision

Base Station & Camera

The base station software will also be
written in C# and run from a laptop.
The travel path of the UAV will be
displayed on the base station along
with any other relevant data, such as
GPS coordinates, altitude, etc. An RF
camera on the vehicle with an RF
receiver on the laptop is also being
considered

The RF receiver for the laptop, along
with the camera to be mounted onto
the vehicle, will need to be purchased.

Tasks:
• Write base station application with
video display module from RF
receiver.

