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Abstract 
 
How can a fisherman troll from a motorboat without simultaneously piloting the boat?  
Our Aquatic Guidance System, with both conventional and auto-pilot steering, would 
allow fishermen to concentrate on fishing. The challenge is to integrate automated 
steering and throttle control with a graphical user interface (GUI)[2][3]. The GUI will 
allow the user to control the boat, input commands, choose path specifications and set 
speed. Sensor data will show readings for the boat’s tachometer[1], speedometer[1], 
depth[5][6][7][8], compass[9], GPS data (current location, velocity, and heading) 
[5][6][7][8], a 2D lake map with boat position, and estimated time of arrival.   
 
For steering, throttle, and mechanical requirements, our team researched Kairos 
Autonomi, a manufacturer of systems that enable vehicles to become autonomous[12]. 
For the GUI, our team chose the object-oriented programming language C#[2][3] which 
is suitable for systems in which the computer is completely dedicated to the device it 
controls. Our test platform is a 19.5 foot Bayliner Classic Motorboat. Beyond the sport of 
fishing, our Aquatic Guidance System could be adapted for military, law enforcement, 
commercial, and other recreational uses. 
 
 
 
Motivation and Introduction 
 
The motivation for this project is to design an autonomous boat that would provide many 
benefits to our society. Many mundane tasks such as patrolling could be done by 
computer. Lives could be spared by keeping human beings off of boats that would be sent 
into dangerous situations. Unmanned waterskiing could become the next big recreational 
pastime. And the idea that generated this automated boat concept in the first place, 
hermits could troll and enjoy their fishing. 
 

Other Possible Functions 
 
• Military: clearing unknown obstacles, removing explosives, routine patrolling, 

hauling cargo and disabled boats, reconnaissance, attack, search and 
rescue. 

 
• Law Enforcement: routine patrolling, search and rescue. 
 
• Commercial: hauling cargo, people transportation, towing barges and 

disabled boats. 
 
• Recreational: competition fishing, water-skiing. 
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For the physical steering and throttle control, our team researched Kairos Autonomi, a 
manufacturer of systems that enable vehicles to become autonomous.  Kairos provided 
our team with the Pronto4 Kit[12], which allows any vehicle that has a steering wheel to 
be transformed into an autonomous vehicle.  The kit provides autonomous use while not 
interfering with the standard operation of the vehicle.  Team member Richard, an 
employee of Kairos, researched the mechanical requirements to retrofit the Pronto4 with 
a 19.5 foot Bayliner Classic motorboat to control the steering and throttle digitally.  The 
Pronto4 Kit has built-in safety features including manual override and remote shut-off 
capabilities. 
 
For hardware and software issues we have all worked extensively with the elements that 
will be needed to complete the project, including programming and hardware interfacing. 
The following list details the exact features that will be implemented in this design. 
 

Baseline Features 
 
• Pronto4 kit retrofitted to a 19.5 foot Bayliner Classic motorboat to control the 

steering and throttle digitally. 
 
• Safety system including manual override, remote shut-off, and shore line 

avoidance.  
 
• GUI for user to control the boat and input commands. 
 
• GUI display of a toolbar and menu. 
 
• GUI display of sensor data for the boat’s tachometer, speedometer, depth, 

compass, GPS data (current location, velocity, and heading). 
 
• GUI display of 2D map of Strawberry Reservoir’s Renegade Bay indicating the 

position of the boat. 
 
• GUI feature for user to specify the path of the boat and to set the speed, including 

a display of the estimated time of arrival. . 
 
• Basic waypoint following capabilities 
 
Extended Features 
 
• Ability to compensate for wind speed and direction. 
 
• 3D model of the lake that allows the user to specify waypoints.s 
 
• LCD display for sensor data. 

 
• Advanced waypoint following, such as patrolling and depth following. 
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Project Demonstration 

 
Due to the lack of a large body of water on campus, we will not be able to provide a 
real-time demonstration at the University of Utah. Our presentation will consist of a 
video demonstration of the motorboat operating in autonomous mode on Strawberry 
Reservoir. Weather permitting, we plan to display the motorboat in the parking lot 
nearest to the Demonstration Day activities on campus. 

 
 
 
Project Tasks, Schedule Flow, Preliminary Risk Assessment, Risk Mitigation, and 
Milestones: 

 
Several milestones have been created to show significant progress on the project. These 
milestones are listed below in the order in which we hope to have these elements of the 
project finished. 
 

Installation of the Pronto4 Kit onto the Bayliner Classic motorboat. 
2-D (or possibly 3-D) lake model to be used with the user interface. 
Completed GUI. 
Successful extensive test of the pathing algorithm unit. 
Sensors and Micro-Controller working correctly. 
Lake Demo/Video 

 
 
Below is a table showing individual tasks with the individuals assigned to those tasks and 
milestones. Also shown is the scheduled completion dates and risk assessment. 
 
Name Start End Progress Assign To Risk Assessment 
User Interface 2/26/07 5/26/07 0 Edward St. Louis, 

Paul Hansen 
Low Risk 

Sensor Data Control 2/26/07 5/12/07 0 Edward St. Louis, 
Paul Hansen 

Low Risk 

Tachometer 4/10/07 4/17/07 0 Paul Hansen Low Risk 

Speedometer 2/26/07 4/10/07 0 Paul Hansen Low Risk 

Compass 2/26/07 3/20/07 0 Paul Hansen Low Risk 

Time of Arrival 2/26/07 3/31/07 0 Edward St. Louis Low Risk 

GPS Data 3/26/07 5/12/07 0 Edward St. Louis Low Risk 

GPS Heading 3/26/07 5/5/07 0 Paul Hansen Low Risk 

GPS Location 4/23/07 5/5/07 0 Edward St. Louis Low Risk 

GPS Velocity 4/23/07 5/12/07 0 Edward St. Louis Low Risk 

*Wind Speed and 
Direction 

3/20/07 4/18/07 0 Edward St. Louis Low Risk 

Menu Options 2/26/07 4/21/07 0 Edward St. Louis, 
Paul Hansen 

Low Risk 
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ToolBar 2/26/07 5/1/07 0 Edward St. Louis, 
Paul Hansen 

Low Risk 

Map Control 2/26/07 5/26/07 0 Edward St. Louis, 
Paul Hansen 

Medium Risk 

Model of the Lake 2/26/07 5/26/07 0 Edward St. Louis, 
Paul Hansen 

Low Risk 

Algorithms 5/7/07 6/30/07 0 Tyson Ellsworth, 
Edward St. Louis, 
Richard Wright, 
Nick Edwards, 
Paul Hansen 

Medium Risk 

Control Software 3/26/07 5/29/07 0 Tyson Ellsworth, 
Edward St. Louis, 
Richard Wright, 
Nick Edwards, 
Paul Hansen 

Medium Risk 

Safety Measures 5/29/07 6/16/07 0 Tyson Ellsworth, 
Edward St. Louis, 
Richard Wright, 
Nick Edwards, 
Paul Hansen 

Low Risk 

Hardware 2/26/07 5/12/07 0 Tyson Ellsworth, 
Richard Wright, 
Nick Edwards 

Medium Risk 

Pronto4 Kit 
Installation 

4/9/07 5/12/07 0 Tyson Ellsworth, 
Richard Wright 

Low Risk 

Sensors 2/26/07 5/12/07 0 Tyson Ellsworth, 
Richard Wright, 
Nick Edwards 

Medium Risk 

MicroController 
Sensor Interface 

2/26/07 5/12/07 0 Tyson Ellsworth, 
Richard Wright, 
Nick Edwards 

Medium Risk 

Tachometer 
ADC 

2/26/07 5/12/07 0 Richard Wright, 
Nick Edwards, 
Paul Hansen 

Medium Risk 

Speedometer 2/26/07 5/12/07 0 Tyson Ellsworth, 
Edward St. Louis 

Medium Risk 

Compass 2/26/07 5/12/07 0 Richard Wright, 
Paul Hansen 

Medium Risk 

*Wind speed 
and Direction 

2/26/07 5/12/07 0 Nick Edwards High Risk 

Sonar 3/12/07 5/12/07 0 Tyson Ellsworth, 
Edward St. Louis 

Medium Risk 

GPS 3/12/07 5/12/07 0 Tyson Ellsworth, 
Edward St. Louis 

Medium Risk 

Hardware/Software 
Interface 

4/16/07 6/30/07 0 Tyson Ellsworth, 
Edward St. Louis, 
Richard Wright, 
Nick Edwards, 
Paul Hansen 

Medium Risk 

Control Sensor GUI 5/28/07 8/31/07 0 Tyson Ellsworth, Low Risk 
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Integration and Testing Edward St. Louis, 
Richard Wright, 
Nick Edwards, 
Paul Hansen 

Sensor GUI Integration 
and Testing 

5/14/07 9/19/07 0 Edward St. Louis, 
Richard Wright, 
Paul Hansen 

Low Risk 

Control Safety 
Integration and Testing 

6/4/07 6/23/07 0 Tyson Ellsworth, 
Edward St. Louis, 
Richard Wright, 
Nick Edwards, 
Paul Hansen 

Low Risk 

Safety Pronto4 
Integration and Testing 

6/25/07 7/14/07 0 Tyson Ellsworth, 
Edward St. Louis, 
Richard Wright, 
Nick Edwards, 
Paul Hansen 

Low Risk 

Lake Demo 9/24/07 10/13/07 0 Tyson Ellsworth, 
Edward St. Louis, 
Richard Wright, 
Nick Edwards, 
Paul Hansen 

Medium Risk 

Final Presentation and 
Video Demo 

10/15/07 12/1/07 0 Nick Edwards Low Risk 

Final Integration and 
Testing 

7/9/07 9/22/07 0 Tyson Ellsworth, 
Edward St. Louis, 
Richard Wright, 
Nick Edwards, 
Paul Hansen 

Medium Risk 

*LCD Display 2/26/07 11/6/07 0 Nick Edwards High Risk 

Documentation 3/19/07 12/1/07 0 Tyson Ellsworth, 
Edward St. Louis, 
Richard Wright, 
Nick Edwards, 
Paul Hansen 

Task coordinators 
are in charge of 
documentation for 
each individual 
task. 
 
Low Risk 

 
 
The map control is a medium risk component because of our lack of experience. The risk 
for this component will turn low as Paul and Ed finish their Computer Vision course and 
have the required expertise. The algorithms portion is a medium risk component because 
of our inexperience in pathing algorithms; however, this will turn low as more time is 
spent working on this component. The control software is a medium risk component 
because of the interfacing issues with the hardware. Interfacing will be one of the last key 
elements to become low risk because we need to develop the other tools first. The 
hardware for sensors is also a medium to high risk component for our project because we 
lack experience interfacing with sensors. The risk for the sensor hardware will drop as we 
gain experience throughout the project. 
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The mitigation plan if the algorithms unit or the map control unit fails is to program in 
certain paths without a dynamic plotting option available. The mitigation plan for the 
sensors is having backup methods of controlling the boat in case we are unable to 
interface other sensors. For example, if the compass doesn’t work then the GPS can be 
used to make up the difference. This type of backup plan will not work for all of the 
sensors. The sonar, GPS, and microcontroller will have to be made to work. These 
components have been intensely studied and we are certain that interfacing these 
components will not propose any problems that cannot be solved. To avoid failure in the 
integration process we have spent a lot of time defining interfaces at the start of the 
project so that potential problems can be avoided. 
 
 
 
 

Complete Parts List with Vendor Information: 

Part Part Number Supplier 
Information 

Contact Information Cost Quantity 

Pronto 4 Kit Pronto 4 Kit Kairos 
Autonomi 

Troy Takach 
Kairos Autonomi 
(801) 255-2950 

Orem, UT 84057 

$0.00 1 

Fishing Boat N/A Richard’s 
Dad 

Richard’s Dad 
(435) 406-1048 

Mona, UT 84645 

$0.00 1 

Tachometer 
(ADC) 

Built-in to 
CSM-12C32 

Freescale Andy Mastronardi 
(Freescale University Relations) 

Andy.Mastronardi@Freescale.com 

$0.00 1 

Anemometer 
(Pressure 
Sensor) 

MPXH6250A
C6U 

Freescale Andy Mastronardi 
(Freescale University Relations) 

Andy.Mastronardi@Freescale.com 

$0.00 2 

Digital Compass R117-
COMPASS 

Robot 
Electronics 

Devantech Ltd (Robot Electronics) 
Unit 2B Gilray Road 

Diss, Norfolk, IP22 4EU 
England 

+44 (0)1379 640450 

$52.00 1 

GPS and Sonar Humminbird Humminbir
d 383c 

Richard’s Dad 
(435) 406-1048 

Mona, UT 84645 

$0.00 1 

Microcontroller 
Module 

CSM-12C32 Freescale Andy Mastronardi 
(Freescale University Relations) 

Andy.Mastronardi@Freescale.com 

$0.00 1 

Project Board PBMCUSLK Freescale Andy Mastronardi 
(Freescale University Relations) 

Andy.Mastronardi@Freescale.com 

$0.00 1 
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NMEA Cable N/A Home Brew We will build this cable ourselves 
(it will be a modified serial cable). 

$5.00 1 

USB to Serial 
Connector 

N/A Kairos 
Autonomi 

Troy Takach 
Kairos Autonomi 
(801) 255-2950 

Orem, UT 84057 

$0.00 2 

Laptop PC Presario 
R3000 

Compaq This is just Ed’s Computer 
Edward St. Louis 
(801) 718-1086 

$0.00 1 

 
 
List of Mentors and Resources: 
 

Mentor/Resource Expertise 
Troy Takach Creator of the Pronto 4 Kit and founder of Kairos 

Autonomi.  Can help us with Pronto 4 Kit issues and 
funding. 

Ken Stevens Our senior project professor.  Can help with all general 
technical problems.  Will guide us through the project by 
making sure we are on track to deliver what we promised. 

Team Synapse We often discuss issues with team Synapse to see if they 
have run into similar problems.  Can help us with 

Microcontroller issues. 
Richard’s Dad Owner of fishing boat and GPS/Sonar device.  Can help 

us with boat-related issues. 
Tom Henderson Computer vision professor.  Can help us with issues in 

our 3D software model of the lake.  Also has expertise 
with autonomous vehicle control. 

 
 
Task Interfaces: 
 
This project has several interfaces: an interface for the tachometer, an interface for the 
compass, an interface for the sonar/GPS, an interface for the pressure sensors, a 
microcontroller/computer interface, a computer/Pronto4 interface, and a graphical user 
interface. These interfaces are described in this section.  
 
 
Tachometer Interface 
 
The purpose of this section is to accurately display the RPM of the engine on the GUI at 
the laptop computer. We will be able to do this by interfacing with the tachometer of the 
boat and sending values to the laptop through the microcontroller[1]. 
 
The way to obtain the RPM values is to tap into the signal sent from the engine to the 
boat’s tachometer. It is assumed that this is some sort of voltage level, where higher 
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voltages represent higher RPMs and are displayed on the tachometer. The general idea is 
to take this voltage signal and run it through an ADC which will output a digital value to 
the control unit, which will then pass those values to the laptop. In the baseline design, 
raw values are passed by the control unit, and the software running on the laptop will 
convert those values into actual RPM measurements. By not converting to actual RPM at 
the control unit, we can maintain a higher level of precision.  
 
One possible modification would be to convert to RPM at the control level. The control 
unit would be customized to the particular boat and ADC in use. This would make the 
design more modular, since the software running on the laptop could rely on getting the 
same range of values for the RPM, regardless of the boat/ADC type. However, that is 
only a possible extension of the project and not the baseline. Either way, the RPM 
measurement may be represented on the GUI either digitally, or as an analog display. A 
flowchart of the system is shown below in the top figure. 

 

 
 
 
 

 

Diagram Description: 
In the upper-left corner of the lower diagram is a primitive picture of an outboard motor. 
This is not an actual picture of the motor we will be using. On the right is a tachometer. 
This is also not an actual picture of the tachometer we will be using. Below the 
tachometer is an arrow pointing to the words, “To ADC on Microcontroller.” This 
represents an analog signal going to an analog-to-digital converter on the microcontroller.  

To ADC on 
Microcontroller 

VC
C 
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The motor sends an analog signal to the boat’s tachometer, representing higher RPMs by 
a higher DC voltage. We have not yet measured this signal, but we are guessing that it 
ranges from 0V to 12V. Since our Microcontroller can only manage a signal up to 5V, we 
will include a voltage divider, as shown in the diagram. This should scale the signal down 
to within 0V and 5V. This is a Medium-Risk point, since we are only taking an educated 
guess as to the motor’s output voltage. But we are prepared to adapt whatever signal we 
can get to the range that we need. 
 
The microcontroller has 8 ADC ports on it. We will use one of these for the tachometer. 
The ADC has 8-bit and 10-bit precision, which will give us either 256 or 1024 steps. If 
the motor red-lines at about 7000 RPM, then the microcontroller will convert to a 
precision level of either 28 or 7 RPMs. We have not yet determined if the increased 
precision will outweigh the added cost of taking two bytes to communicate the RPMs to 
the laptop, rather than a single byte. 
 
 
 
Compass Interface Specification 

�

The compass module[9] has pin outs as shown below in the figure below. 

 

 
To power the compass sensor requires 5V power supply at 15 mA. To get the compass 
reading out of the chip we are using the I2C interface provided by pins 2 and 3. That data 
that comes from pins 2 and 3 is a 2 byte integer. This integer represents the compass 
bearing as 0-3599 corresponding to 0-359.9 degrees. To get the compass bearing from the 
sensor requires completing the following steps: 
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1. Send a start sequence 
2. Send 0xC0 ( I2C address of the CMPS03 with the R/W bit low (even address) 
3. Send 0x01 (Internal address of the bearing register) 
4. Send a start sequence again (repeated start) 
5. Send 0xC1 ( I2C address of the CMPS03 with the R/W bit high (odd address) 
6. Read data byte from CMPS03 
7. Send the stop sequence. 

The bit sequence will look like this (on the next page): 

 

 
 
 
Sonar/GPS 
 
 The sonar and GPS readings will be gathered using a Humminbird 383c fish finder unit. 
Both the GPS data and the sonar reading are transmitted from the unit using the NMEA 
(National Marine Electronics Association) standard protocol[5][6][7][8]. The NMEA 
standard uses serial communications with the ASCII character set. The standard was 
developed to have one device broadcast the data to multiple listening devices. As a result 
of this design, no verification of receipt is required.  
  
The NMEA protocol adheres to the following rules. First of all, each new message starts 
with the '$' character. The next five characters depict with type of message is being sent. 
The data fields, which are comma delimited, depend on the type of message. An asterisk 
immediately follows the data. Following the asterisk is a two-digit checksum to verify the 
correct transmission of data. The configuration for the serial port is specified for a 4800 
baud rate with 8 data bits with no parity and one stop bit. 
 
The NMEA standard allows for multiple receivers to be connected to one sending unit. A 
Humminbird 383c fish finder unit will be used as the sender. This will be connected to 
the computer through a serial communications port. Only three types of messages are 
needed in order to get the information that we need. One message provides data about the 
latitude and longitude. Another provides velocity and heading information. A third type 
of message gives the current depth of the boat. The following table contains the NMEA 
acronyms for these messages as well as the format that the data fields will use. 
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Pertinent Data Message Type Data Format 
Latitude $GPGLL dddmm.mm  
Longitude $GPGLL dddmm.mm 
Velocity $GPVTG kph 
Heading $GPVTG degrees 
Depth $GPDPT meters 
 
 
Pressure Sensors 
 
Digital pressure sensors[10] can be used in conjunction with a pitot tube in order to 
determine the velocity of an object moving through a fluid. This is the same concept that 
is used to determine the velocity of an airplane moving through the air. A pitot tube is 
mounted on the underwater unit in the boat and will be connected to a digital pressure 
sensor to determine the relative velocity of the boat moving through water.  
 
The pressure sensor that was chosen is a sealed gauge sensor. This will provide an 
absolute pressure value. There are two variables which will cause the pressure to vary. 
First of all, the faster the boat moves through the water, the higher the pressure will be on 
the sensor. The air pressure will also make a difference in the pressure felt. For example, 
the pressure felt when the boat is stopped will be different in the ocean, at sea level, and 
in a high-altitude lake. The true measure for our velocity is dependant upon the difference 
between the pitot tube pressure and the standard air pressure. A second pressure sensor 
that is exposed to the air will determine the barometric pressure of the environment. 
 
The pressure sensors that will be used are produced by Freescale. Since this is the same 
company that is supplying the microcontroller, there is relatively little risk involved with 
the integration between these sensors and the microcontroller. The value will be read by 
connecting the Vout pins to ADC pins on the microcontroller. A picture of the pressure 
sensor is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part # MPXH6250AC6U 
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Microcontroller/Computer Interface 
 
The microcontroller we have selected (Freescale MC9S12C32)[1] has a built-in serial 
communications port (DB9). This port is designed to load programs into the flash 
memory on the chip.  The pins of this port, however, are also accessible through the 
software running on the device. As such, we will be sending sensor data to the computer 
from the microcontroller via this serial port. The computer (laptop) that will be talking to 
the microcontroller does not have a standard DB9 serial port with which to communicate.  
To avoid writing software to make the microcontroller communicate via the USB port on 
the laptop, we are purchasing a simple USB to serial converter. Windows drivers already 
support the USB to serial converter. We will thus be able to talk with the microcontroller 
through standard serial communication. 
 
We will be using standard RS232 protocol[1] in transferring data packets between 
devices.  Two-way communication will be necessary as we are implementing a polling 
program on the laptop. The laptop will send a request for the sensor data, and the 
microcontroller will respond with all of the latest data it has collected from the sensors. 
Because high bandwidth is not necessary, we will be using a half-duplex SCI 
(asynchronous) communications scheme. Both the transmit (Tx) and receive (Rx) pins 
can be shorted together; only a single data line is actually necessary to connect the two 
devices. For simplicity we will use a standard serial cable which does not short the Tx 
and Rx pins.  Operation will be the same without shorting the pins as it would be with the 
two pins shorted to a single data pin. 
 
Using the RS232 protocol, we will send a total of 11 bits for each byte of data 
transferred. One start bit will be followed by the eight data bits, after which a parity and 
stop bit will be transmitted. The parity bit is optional in the protocol, but we would like to 
be able to detect erroneous transfers. 
 
The data transferred from the microcontroller to the computer is simple. We have 
developed our own communications protocol tailored to the needs of what we will be 
transferring. The data will be sent in three-byte chunks. The first byte will tell the 
computer which sensor’s information will follow. The second and third byte will be a 16-
bit raw sensor value. Since there will only be a maximum of five sensors connected to the 
microcontroller, there are only five sensor identification bytes. These values are shown in 
the table below. With this protocol we maintain the ability to expand from five sensors up 
to 2^8 (256) different sensors. 

ASCII 
Character 

Hex-
Value 

Binary-Value Sensor 

‘V’ 0x56 0101 0110 “Velocity” from the anemometer 
‘T’ 0x54 0101 0100 “Tachometer” from the motor’s 

tachometer 
‘C’ 0x43 0100 0011 “Compass” from the digital compass 
‘W’ 0x57 0101 0111 “Wind speed” from the wind sensor 
‘D’ 0x44 0100 0100 “Direction” from the wind sensor 
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Computer/Pronto4 Interface 
 

The Pronto4 kit[12] was developed to give programmers access to the physical control of 
any vehicle. In order to communicate with various pieces of software, shared variables 
have been used in the past. These shared variables reside in memory and can be accessed 
by different processes running on the same processor. The Pronto4 kit is also compatible 
with the recently developed JAUS (Joint Architecture for Unmanned Systems) protocol. 
The JAUS protocol specifies a communication protocol that makes it convenient to share 
messages between different computers and various sensor devices. We will take 
advantage of the shared variables in order to communicate with the kit. A program called 
djDrivenByWire converts the shared variables to a serial stream that is output directly to 
the Pronto4 kit. The actual protocol that is used is described in a private, unpublished 
document to which we have been given access. 
 
Access to the shared variables is available through a dll that was developed by Edelwise 
Inc. This dll provides function calls that allow software to dynamically allocate and 
modify values that are stored in the memory used by the dll. These values are then 
available to be read by any process running on that processor that is linked to the dll. The 
dll provided by the company is not compatible with the C# programming language, so we 
have created a wrapper class in C++ in order to provide access to the unmanaged dll[11].  
 
Our current plan is to have all of the software run on one laptop. If we find that we need 
more processing power in order to facilitate the smooth control of the boat or if the 
shared variables need to be shared by multiple computers, a program called djSharedLink 
uses a UDP connection to keep the different copies of the shared variables in agreement. 
Using this approach, we can have the GUI and sensor-processing algorithms run on one 
computer which outputs these values to a second computer. This second computer would 
be devoted to the decision-making algorithms as well as outputting these shared variables 
over its serial port to the Pronto4 kit. 
 
 
 
Graphical User Interface (GUI) 
 
For the GUI, our team chose the object-oriented programming language C# which is 
suitable for embedded systems in which the computer is completely dedicated to the 
device it controls. Using C#, we programmed the GUI to allow the user to control the 
boat and input commands. The commands that the user will enter will consist of 
waypoints that the user clicks on the 2D model of Renegade Bay, the type of path that the 
boat will take between the waypoints, and the commands to start and stop the boat. 
 
The GUI will display a toolbar and menu that help the user enter commands. The GUI 
will display sensor data for the boat’s tachometer, speedometer, depth, compass, and GPS 
data including current location, velocity, and heading. The sensor data is real-time data 
and is updated constantly. The GUI will show the user a 2D map of Strawberry 
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Reservoir’s Renegade Bay indicating the position of the boat. The 2D map is a standard 
topographical map.   
 
The GUI will have a feature allowing the user to specify the path of the boat and to set 
the speed of the boat. The user will also see a display of the estimated time of arrival. The 
user can point and click on the map display to indicate where the boat should go by 
choosing either particular points on the map or a path that follows a specified depth. The 
GUI also lets the user define what kind of path to take. The path can follow a certain 
depth of water between points, patrol between points, or just follow a straight shot 
between the points. 
 
 
 
Testing and Integration Strategy 
 
The division of labor that we have developed will allow us to do most of the work in 
parallel. The graphical user interface, sensor unit, and control unit can all be developed 
independently. Interfacing these three components will be the most difficult process. In 
order to complete our project in time, these three components will be completed by the 
end of May. This will allow each of these portions of the project to be tested 
incrementally and in parallel. For testing we will be able to do the vast majority of our 
testing at school and not on the lake because each module can be tested apart from other 
modules. The integration strategy is described in the task interfaces listed above. 
 
 
 
Current Engineering Deliverables and Conclusion 
 
To date, we have already had success in the development of the following components. 
First of all, we have a working dll wrapper so that we can access the shared variables 
from C#. We also have the skeleton code written for our GUI in C#. We have created a 
digital 3D model of Strawberry Reservoir[4], which will be our main test site. We have 
written code for the microcontroller which is able to read from an ADC port and send the 
values across a serial port to a computer. 
 
By retrofitting the Pronto4 Kit from Kairos Autonomi onto a 19.5 foot Bayliner Classic 
motorboat and integrating our graphical user interface, we will provide fishermen the 
option to troll for fish in Renegade Bay without the worry of piloting the boat. Our 
Aquatic Guidance System will provide both conventional and auto-pilot steering with the 
safety of manual override, remote shut-off, and shore line avoidance. The possibility 
exists to extend our product by compensating for wind speed and direction, enhancing the 
map function to 3D and adding an LCD display for sensor data.  It is also feasible to 
adapt our system for military, law enforcement, commercial, and other recreational uses.  
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