

CPR For Dummies

Bathtub Drown/Burn Prevention

James C. Young

Justin O. Young

December 20, 2006
Computer Engineering

Senior Project Documentation

 2

Table of Contents

INTRODUCTION……………………………………………………….….3

FUNCTIONAL DESCRIPTION…………………………………………..3

Hardware Installation…………………………………….………………..……3

User Interface……………………………………………………………....……4

Primary Functions…………………….………………………………..……….4

Verification……………………………..……………………..………………….4

DESIGN DESCRIPTION…………………….…………………………...5

Overview………….………………………………..……………………….……5

Power Supply…….…………………………..…………………………….……7

Thermistor………...……………………………….……………………….……8

Microphone………….………………………………….………………………10

Alarm………….……………..……………………………………….…………14

Draining Unit…………………...………...……………………………….……14

Microcontroller………………………………...……………….………………16

CONCLUSION…………………………………………………………...19

ACKNOWLEDGEMENTS……………………..……..………………...21

APPENDIX A – Bill Of Materials……….....................................…..23

APPENDIX B – Microcontroller Program……………………….…..24

 3

Introduction

Your bathtub is a serious health hazard to your children. In the United
States alone, over 200 children drown in bathtubs each year and close to
112,000 people are treated for scald burns each year. According to Safe Kids
Coalition, about 37,000 of these people are 14 or under, and about 18,000 are 5
or under. Children’s skin burns faster than adult’s skin because their skin is
thinner. Everyday, 300 young children are taken to emergency rooms for scald
burns caused by household water that was too hot. Annually, close to 3,000 of
these children require hospitalization. These two health hazards are the second
leading cause of death for young children ages 0 to 5. Whether a child drowns or
is severely burned, young children fall victim to other people’s carelessness, and
in most cases the results are fatal.

We have first hand experience as to why this project is so important.
Recently one of our cousins drowned in a bathtub because it wasn’t drained
properly. One of their older siblings took a bath that morning and forgot to drain
the bathtub.

The CPR For Dummies (a.k.a. CPRFD) project minimizes the time window
in which an accidental drowning or burning can occur. CPRFD will automatically
drain a bathtub if it detects the water temperature is too hot (temp > 40 C) or if it
hasn’t detected sound for a given amount of time (up to 4 min 15 sec).

Functional Description

Hardware Installation
There are four hardware components which will be installed in the bathroom.

• First, a 7x5x3 black plastic water proof case with the following
already attached to it: a rocker switch, a pushbutton switch, and an
alarm. Mount this to one of the outside walls of the bathtub.

• Second, a thermistor which hangs from the bottom of the project
enclosure. Place this anywhere inside the bathtub where it will
submerge under water.

• Third, a microphone which is plugged into the bottom of the project
enclosure. Place this close to the bathtub where it won’t get wet
(preferably on top of the project enclosure).

• Fourth, a draining unit which hangs from the bottom of the project
enclosure. Mount this just below the latch that drains the bathtub.
Make sure the side with the rope is facing up towards the latch. Tie
the rope around the latch. Make sure the remainder length of the
rope only allows the metal cylinder to be 0.12 to 0.50 inches out of
the solenoid.

 4

User Interface
The user interface is through the rocker switch and pushbutton switch located on
the left side of the project enclosure. The rocker switch is used to power the
system and the pushbutton switch is used to reset the system (start the timer
over).

Primary Functions
There are two primary functions which are performed continuously while the
system is on.

• First, it will determine whether or not the water temperature is hot
enough to burn a child’s skin (temp > 40 C).

If it determines the water temperature is too hot then it will
sound an alarm and wait ten seconds for a response before it
drains the bathtub. If within this ten second time frame, either
the reset button is pressed or the water temperature cools down
(temp < 40 C), then the system resets itself and turns off the
alarm. If neither of the above two mentioned things occur within
this ten second time frame then the system will drain the
bathtub and continue to sound the alarm until the reset button is
pressed or the system is turned off.

• Second, it will determine whether or not sound was detected for a
given amount of time (up to 4 min 15 sec).

If it determines there hasn’t been any sound detected for the
given amount of time then it will sound an alarm and wait ten
seconds for a response before it drains the bathtub. If within
this ten second time frame, the reset button is pressed, then the
system resets itself and turns off the alarm. If the reset button is
not pressed within this ten second time frame, then the system
will drain the bathtub and continue to sound the alarm until the
reset button is pressed or the system is turned off.

Verification
To verify that CPRFD works, install it in any bathroom that has a bathtub
(installation steps located above), fill the bathtub with water (temp < 40 C), and
turn the system on. Now try the following tests:

• Sound Test: Don’t make any noise and let the system sit for about
5 seconds. Then tap or talk into the microphone for a given amount
of time (up to 4 min 15 sec), this prevents the system from
sounding the alarm. The system should reset itself (including the
timer) every time sound is detected.

• No Sound Test: Don’t make any noise and let the system sit for a
while. Within a few minutes (up to 4 min 15 sec) the system should
sound the alarm. After the alarm sounds, push the reset button.

 5

• No Sound & Drain Test: Don’t make any noise and let the system
sit for a while. Within a few minutes (up to 4 min 15 sec) the
system should sound the alarm. After the alarm sounds, let the
system sit for ten more seconds. The system should then drain the
bathtub and continue to sound the alarm. Push the reset button.

• Water Temperature Test: Pull the thermistor out of the bathtub so
it’s completely out of the water. Empty the bathtub and refill it with
only hot water. Place the thermistor back into the bathtub so it’s
submerged under water. Within one second after the thermistor is
fully submerged under water, the system should sound the alarm.
After the alarm sounds, wait about 3 seconds and then pull the
thermistor out of the bathtub so it’s completely out of the water.
Within one to two seconds after the thermistor is completely out of
the water, the system should reset itself (including the timer) and
turn off the alarm.

• Water Temperature & Drain Test: Pull the thermistor out of the
bathtub so it’s completely out of the water. Empty the bathtub and
refill it with only hot water. Place the thermistor back into the
bathtub so it’s submerged under water. Within one second after
the thermistor is fully submerged under water, the system should
sound the alarm. After the alarm sounds, let the system sit for ten
more seconds. The system should then drain the bathtub and
continue to sound the alarm. Push the reset button.

Design Description

Overview
CPRFD contains both hardware and software components. The hardware
components illustrated in Figure 1 below, consist of a power supply, thermistor,
microphone, alarm, draining unit, and a microcontroller. The only software
component in this project is a program that controls the microcontroller. The
interface between the thermistor, microphone, alarm, and draining unit are
managed by the microcontroller.

 6

Figure 1 – Overview.

The majority of the hardware is enclosed in a 7x5x3” water proof case which is
illustrated in Figures 2 and 3 below.

 Figure 3 – CPRFD Unit.

Figure 2 – CPRFD Unit.

 7

Power Supply
The system is being powered with 4 9V batteries and some voltage regulator
circuitry. We need +12V and -12V for our operational amplifiers in our thermistor
circuitry. We need +5V and -5V for our operational amplifiers in our microphone
circuitry. We need +5V for our microcontroller. Figures 4 through 7 below,
illustrates how we implemented our power supply to attain the voltage needed.

Figure 4 – Negative Voltage Source. Figure 5 – Positive Voltage Source.

Figure 6 – Power Supply Schematic.

 8

Figure 7 – Power Supply Circuit.

Thermistor
The purpose of the thermistor is to check to see if the water temperature is too
hot (temp > 40 C). It will measure the temperature of the water in the bathtub
and then send a signal to the microcontroller based off that temperature reading.
The microcontroller will analyze the signal and determine the appropriate action
to take.

We used the same thermistor that was used in ECE 1000 Lab 1. Its resistance is
directly related to the temperature of its surroundings. Figure 8 shows an
adequate model of its resistance as a function of temperature. Our
microcontroller needs a voltage signal (not a resistance signal) so we needed
some way to relate the thermistors resistance as a measure of voltage. The
circuit we implemented to accomplish this is also illustrated in Figure 8. Once we
did the resistance to voltage conversion, we had to amplifier the signal because
the voltage wasn’t large enough for the microcontroller to see it. We only wanted
our microcontroller to see temperatures greater than 40 C, any temperature
lower than or equal to 40 C shouldn’t be seen by the microcontroller. So we
needed to know exactly how much the signal needed to be amplified to reach the
desired temperature range. The two conversion tables located in Figure 8
helped us accomplish this.

Note: After we calculated what resistor values our circuit would need, we found
that some of those values didn’t exist and we had to get resistors that were close
to the exact value calculated. Also the thermistor wasn’t a 100% accurate with
its temperature measurement and sometimes it would be 1 to 2 C’s off. None of
this really affected our results because the conversion tables allowed us more
pin-point precision when trying to reach our desired temperature range.

 9

 R1 = 1.604 K

 R2 = 2.71 K

 R3 = 14.84 K

 R4 = 21.7 K

 R5 = 1 K

 R6 = 1 K

 R7 = 50 K POT

 RT = Thermistor

-12 V

DC

R4

RT

R2

R3

R1

R5 R6

R7

+

-

+

-
-

+

V

LF 353

741

+ 12V

- 12V

+ 12V

- 12V

Component Values

66.9

55.0

48.1

43.8

37.3

34.1

30.0

21.0

14.7

8.0

1.2

Temp (C)o

3.8227

2.9667

2.6254

2.1572

1.8114

1.4530

1.1131

0.57036

0.14125

-0.1336

-0.44755

V (volts)o

o

LF 353 Dual Operational Amplifier
69.5

62.1

57.0

51.7

46.0

40.6

33.3

26.0

18.3

12.8

6.6

2.3

0.4

Temp Co

1.729

2.169

2.612

3.170

3.940

4.874

7.531

8.723

13.291

17.280

22.900

28.138

31.674

R (K)T

Thermistor Model

where

T is the temperature in degrees Kelvin

T is a reference temperature (typically 300 K)

B is a constant

R is the value of R when T = T

R and B are given by the manufacturer

Note: R = 8796.4 & B = 3964.2

o

T

o

o

T o

o

o

Variable Inverting Amplifier

(G)

Vout

+

-

Thermistor Circuitry

Figure 8 – Thermistor Schematic and Conversion Tables.

 10

 Figure 9 – Thermistor. Figure 10 – Thermistor Circuit.

Microphone
The purpose of the microphone is to check to see if the bathtub is empty (has
water but no human). It will detect sound waves and then send a signal to the
microcontroller based off these sound waves. The microcontroller will analyze
the signal and determine the appropriate action to take. Ideally, we want a
microphone that is small and able to interface easily with the microcontroller.

We used a Crown Sound Grabber II PZM illustrated in Figure 11. Here are its
specs:

• Frequency response (typical): 50 Hz to 16 kHz.

• Polar pattern: Hemispherical (half-omni) on a large surface.

• Impedance: 1600 ohms, unbalanced.

• Sensitivity: 20mV/Pa (-54 fBV/Pa).

• Power sensitivity: -42 dBm.

• Cable: 10 foot with mini phone plug, ¼” phone plug and micro phone plug

adapters.

• Power: One 1.5v AAA alkaline battery.

 11

Figure 11 – Crown Sound Grabber II PZM.

A PZM microphone helps reduce noise more than a conventional microphone.
Figure 12 below illustrates this.

Figure 12 – Conventional mic vs. PZM mic.

We sent the microphone signal through a low-pass filter, used to filter out high
frequency noises, and fed the resulting signal into a high-pass filter, used to filter
out low frequency noises. We then sent the filtered signal to an amplification
circuit to amplify it enough for the microcontroller to recognize the appropriate
level of sound to determine that someone is in the tub. The circuit schematic and
equations are illustrated in Figure 13.

 12

Figure 13 – Microphone Schematic and Calculations.

Figure 14 below, shows a sample of what the analog signal coming from the
microphone looked like.

 13

Figure 14 – Waveforms generated from microphone.

The dotted line is the amplitude at which the microcontroller detects a signal from
the microphone circuitry. We determined this to be just above 2.0V. To reduce
false alarms we set the variable resistance of the amplifier for the microphone to
amplify it such that only a direct thud or close range sound would generate a
signal of a magnitude of 2V.

Figure 15 – Microphone Circuit.

 14

Alarm
The purpose of the alarm is to warn you when the water temperature in the
bathtub is too hot, or when the bathtub has been empty too long. The
microcontroller will send a signal to the alarm if it has determined the water
temperature is too hot or the bathtub has been empty too long.

We used a 12 VDC Piezo Siren for the alarm system. Figure 16 illustrates it.
Note: No additional circuitry was required for the alarm.

• Voltage range: 6-14VDC
• Rated voltage: 12VDC
• Current consumption: 150mA max at 12VDC
• Sound pressure level: 102dB min at

30cm/12VDC
• Operating frequency: 2000-4500Hz
• Operating temperature: -4 F to +140 F

(-20 C to +60 C)

 Figure 16 – Alarm.

Draining Unit
The purpose of the draining unit is to drain (unplug) the bathtub. The
microcontroller will send a signal to the draining unit if it hasn’t received a
response within the 10 second time frame after the alarm has been activated.

We built the draining unit from a relay switch, a solenoid, and some rope. The
relay switch is attached to a +5V signal and the solenoid. The solenoids cylinder
is tied (with rope) to the draining mechanism on the bathtub. The microcontroller
will send a signal to the relay causing the relay to switch positions sending a +5V
signal directly to the solenoid which will cause the solenoid to pull in its cylinder
which in turn pulls down on the draining mechanism on the bathtub and causes
the water to drain. The circuit schematic and specs are illustrated in Figure 17.

Note: When the solenoid is connected to the same +5V as the microcontroller
then it resets the microcontroller every time the microcontroller sends a signal to
the relay switch. We believe the reason for this is because the microcontroller
isn’t sending enough current to the solenoid and so the solenoid takes power
from the microcontroller. We still need to build a circuit that will amplify the
current coming from the microcontroller to the relay switch that controls the
draining unit.

 15

Figure 17 – Draining Unit Schematic and Specs.

 Figure 18 – Solenoid. Figure 19 – Relay Switch.

+5V

Solenoid

Vcontrol

Solenoid Drain Circuitry

SPDT 5VDC
Relay

Solenoid & Relay Specs

Solenoid
(11-I-6 VDC

Guardian Electric)

Coil Resistance = 1.90 Ohms
Operating Voltage = 5-6V
Duty Cycle = Intermittent

Load Force (Ounce-Inch) =
45-0.12 / 10-0.50
Operation = Pull

Relay

Type = SPDT
Coil Voltage = 5 VDC

Pick-up Voltage = 3.5 VDC
Drop-out Voltage = 0.25 VDC
Coil Resistance = 56 Ohms
Nominal Current = 89.3 mA

 16

Microcontroller
The purpose of the microcontroller is to act as the brains of the system. All of the
systems hardware components (except the power supply) are interfaced through
the microcontroller. The microcontroller will analyze input signals (thermistor &
microphone) and determine the appropriate action to take.

We used a Motorola MC68HC11E1 microcontroller. It’s the same microcontroller
that we used in ECE 3720 so we we’re familiar with its capabilities and instruction
set. It has 512 bytes of RAM and 512 bytes of EEPROM, which is more than we
need for our system. It has freeware which includes a C compiler, an assembly
compiler, and a simulator (wookie) to aid in debugging. Its internal mapping is
illustrated in Figure 20.

Figure 20 – Motorola MC68HC11E1 Microcontroller.

 17

The microcontroller is interfaced with the following components:

• Thermistor: The thermistor is connected to the PA2 input pin on the
microcontroller. The microcontroller is programmed to continually
check its PA2 input pin to see if it detects any voltage on that pin. If
it detects voltage on PA2 then that means that the thermistor
detected temp > 40 C and the microcontroller needs to take the
appropriate action (sound the alarm). Note: the thermistor will not
send a voltage signal large enough for the microcontroller to see
unless it detects temp > 40 C.

• Microphone: The microphone is connected to the PA0 input pin on
the microcontroller. The microcontroller is programmed to interrupt
every time it receives a rising edge on its PA0 input pin. If it
receives a rising edge on PA0 then that means that the microphone
detected sound and the microcontroller needs to take the
appropriate action (reset & clear all variables).

• Alarm: The alarm is connected to the PA5 output pin on the
microcontroller. The microcontroller is programmed to send a
signal to its PA5 output pin if it has detected a signal on its PA2
input pin (thermistor) or if it hasn’t received a rising edge on its PA0
input pin (microphone) for a given amount of time (up to 4 min 15
sec).

• Draining Unit: The draining unit is connected to the PA6 output pin
on the microcontroller. The microcontroller is programmed to send
a signal to its PA6 output pin if it hasn’t received a response within
the 10 second time frame after it sent a signal to its PA5 output pin
(alarm).

When we decided how to interface each of the above components with the
microcontroller, we had to test each input and output pin. We first determined
the amount of voltage it took for the input pins to acknowledge the signal. Then
we determined how much voltage it put out on its output pins. The circuit
schematic is illustrated in Figure 21 and the source code can be found in
Appendix B.

Note: We originally thought about using the Motorola MC68HC811E2
microcontroller. It has 2048 bytes of EEPROM and we weren’t sure how much
memory we’d need for our struggle detection analysis. Instead we decided to
add an external memory device to the MC68HC11E1 microcontroller if we
needed more memory. It turns out that 512 bytes of EEPROM was enough for
our system, but then again we didn’t get struggle detection working like we
wanted to. If we could implement struggle detection how we wanted, then the
MC68HC811E2 microcontroller would probably be a better choice.

 18

Figure 21 – Microcontroller Schematic.

8.000 MHz
Crystal

10 M

Black
Red
Green
White

Ground
+5V
PD1/TxD
PD0/RxD

MC68HC11E1

Draining Unit

Alarm

Microphone

Thermistor

+5 V
DC

7.5 k

7.5 k

7.5 k

0.1 uF

 19

Figure 22 – Microcontroller Circuit.

Conclusion

We learned a great deal during the course of this project. Both of us were
more software oriented but after completing this project then our hardware
background are stronger. I think the main thing that was difficult was being able
to manage our other classes along with work along with our families. The whole
process was like on for 1-2 weeks and then off for 1-2 weeks. We need to learn
how to manage our time better. We’ve included some ideas about improvements
and extra features that one could add to our project.

Improvements
If we had a better understanding about hardware then we would like to
implement the following improvements:

• Efficient Power Supply: The only thing powered by batteries would
be the microphone (1 AAA battery).

 20

Extra Features
If we had more time then we’d like to jazz up CPRFD with the following extra
features:

• Struggle Detection: Determine if someone is struggling in the
bathtub.

• Wireless Phone Module: Once the system begins to drain the
bathtub it will also make a phone call to a pre-programmed number
(most likely 911) and play a recorded distress message.

In closing, this project (CPRFD) will help reduce the number of fatalities
caused by bathtub drowning & burns. We don’t want people to let there guard
down thinking they don’t have to drain the bathtub or check the water
temperature because this product will do it for them. Instead we want to provide
this product as an additional safety feature that complements ones common
knowledge to make sure the bathtub is drained properly and the water
temperature is safe. For example, just because you have seat belts in your car
doesn’t mean you can drive recklessly and expect to be 100% safe. Seat belts
are a last resort safety feature, as is our project. Ask yourself how much your
child’s life is worth to you, if the answer is priceless then so is this product.

 21

Acknowledgements

 We would like to acknowledge and thank the following people and
resources for their help:

1. Professor Al Davis – He helped us with ideas and initial designs
(especially power designs). He also did some research on microphones
and draining units for us.

2. Junior Hardware Laboratory – They gave us free parts (resistors,
capacitors, and voltage regulators).

3. Mark (EE Stockroom Employee) – He helped us analyze voltage regulator
diagrams. He also allowed us to work in the ECE 3720 lab after hours
and on weekends.

4. Ronnie Boutte – He helped us analyze operational amplifiers.

5. http://cva.stanford.edu/classes/cs99s/datasheets/LM340.pdf - We
modeled our positive power supplies (LM7805 & LM7812) from the
LM78XX diagram on page 11. We also used this diagram in our power
supply documentation.

6. http://www.jaycar.com.au/images_uploaded/LM7905.PDF - We modeled
our negative power supplies (LM7905CT & LM7912CT) from the
LM79XXCT diagram on page 1. We also used this diagram in our power
supply documentation.

7. http://www.cdc.gov/NASD/docs/d000701-d000800/d000702/d000702.html
- This website gave us a lot of our statistics.

8. http://www.med.umich.edu/1libr/pa/pa_hotwatr_hhg.htm - This website
helped us decide what range of water temperature is too hot.

9. http://www.drspock.com/article/0,1510,5837,00.html – This website helped
us decide what range of water temperature is too hot (temp > 104 F).

10. http://www.texloc.com/closet/cl_fah_cel_chart.html - This website helped
us go back and forth between Fahrenheit and Celsius.

11. ECE 1000 Lab 1 Handout – We modeled our thermistor circuit from the
thermistor diagram on page 2. This handout also helped us understand
what an adequate model of a thermistor is.

12. ECE 1000 Lab 1 Notebook – We used the temperature vs. resistance
table and the temperature vs. voltage table as guides to help us adjust the
resistance in our thermistor circuit.

13. http://ccrma.stanford.edu/courses/250a/docs/opamps/LF353.pdf - In our
thermistor documentation we used the LF353 pin-out diagram on page 1.

 22

14. http://www.st-
andrews.ac.uk/~jcgl/Scots_Guide/datasheets/Opamps/741.html - In our
thermistor & microphone documentation we used the 741 pin-out diagram
on page 1.

15. http://www.crownaudio.com/pdf/mics/101502.pdf - This website helped us
understand how the microphone works. We also used one of its
microphone pictures in our microphone documentation.

16. http://www.crownaudio.com/pdf/mics/136367.pdf - This website helped us
understand how the microphone works. We also used one of its diagrams
in our microphone documentation.

17. ECE 1000 Book “Electric Circuits” – This book helped us design our
microphone circuit (low pass filter, high pass filter, and inverting amplifier).

18. M68HC11E Series Programming Reference Guide – This reference guide
helped us understand how the microcontroller works and how to program
it. We also used its block diagram in our microcontroller documentation.

19. M68HC11 Microcontrollers Reference Manual (Appendix A) – This
reference manual helped us understand the instruction set for the
microcontroller and how to program it.

20. ECE 3720 Lab 1 Handout – We modeled our microcontroller circuit from
the instructions on pages 2-4. This handout also helped us understand
how the microcontroller works and how to program it.

21. ECE 3720 Book “Embedded Microcomputer Systems” – This book helped
us understand how the microcontroller works and how to program it.

 23

Appendix A – Bill of Materials

OVERVIEW

 Qty Cost Vendor

 4 FREE Junior Hardware Laboratory
 12 $4.00 EE Stockroom
 1 $20.00 Newark InOne
 17 $37.61 Radio Shack
 1 $70.00 Crown

Total 35 $131.61 5

DETAILS

Qty Part Cost Vendor

1 Project Enclosure $5.99 Radio Shack
1 Automotive Illuminated Rocker Switch $3.99 Radio Shack
1 SPST Momentary Pushbutton Switch $3.29 Radio Shack
4 9V Alkaline Enercell Battery $9.99 Radio Shack
4 9V Battery Holder $1.98 Radio Shack
4 Heavy Duty 9V Battery Snap Connectors $2.59 Radio Shack
2 0.33 uF Solid Tantalum Polarized Capacitor $0.50 EE Stockroom
2 0.1 uF Solid Tantalum Polarized Capacitor $0.50 EE Stockroom
2 2.2 uF Solid Tantalum Polarized Capacitor $0.50 EE Stockroom
2 1 uF Solid Tantalum Polarized Capacitor $0.50 EE Stockroom
1 LM7805 +5 VDC Voltage Regulator FREE Junior Hardware Laboratory
1 LM7905CT -5 VDC Voltage Regulator FREE Junior Hardware Laboratory
1 LM7812 +12 VDC Voltage Regulator FREE Junior Hardware Laboratory
1 LM7912CT -12 VDC Voltage Regulator FREE Junior Hardware Laboratory
4 Heat Sink $2.00 EE Stockroom
1 Sound Grabber II PZM Microphone $70.00 Crown
1 12 VDC Piezo Siren $5.29 Radio Shack
1 Solenoid $20.00 Newark InOne
1 Relay Switch $4.49 Radio Shack

 24

Appendix B – Microcontroller Program

**
* James Young & Justin Young
* Computer Engineering
* Senior Project (Fall 2006)
*
* Project: CPR For Dummies (CPRFD)
* Description: Bathtub drown/burn prevention.
**

**
* Equates
**
* Registers
REGBS EQU $1000 start of registers

PORTA EQU $1000

PORTB EQU $1004

PORTC EQU $1003
DDRC EQU $1007 Port C I/O pins (0 = input, 1 = output)

TCNT EQU $100E current time
TOC5 EQU $101E OC5 Compare Reg
TCTL2 EQU $1021 IC Active Edge Reg
TMSK1 EQU $1022 IC and OC Interrupt Control Reg
TFLG1 EQU $1023 IC and OC Flag Reg

OCRate EQU $C350 OC interrupt rate (50000 cycles = 25 ms)

**
* Stack
*
* The stack grows downward from the last byte before the pseudo-vector
* jump table.
**
STACK EQU $00C3

**
* Helper variables (un-initialized)
*
* These will be placed in the first 256 bytes of internal RAM to support
* direct addressing. They must be explicitly initialized by the code.
**
 ORG $0000
ICCount RMB 1 stores the number of IC3 interrupts
OCCount RMB 1 stores the number of OC5 interrupts

 25

sCount RMB 1 stores the number of seconds elapsed

**
* Entry point for program. Initialize stack and pseudo-vectors.
**
* ORG $C000 used for wookie simulation
 ORG $B600
Init sei disable interrupts to make atomic
 lds #STACK set the stack pointer
 ldy #REGBS use IY for accessing registers

* **
* * Initialize port A.
* * PA0 = microphone input
* * PA2 = thermistor input
* * PA5 = alarm output
* * PA6 = drain output
* **
 clra
 staa PORTA

* **
* * Initialize port B (displays microphone detection).
* **
 clra
 staa PORTB

* **
* * Initialize port C (displays seconds elapsed).
* **
 ldaa #$FF set Port C pins (bits 7-0 outputs)
 staa DDRC
 clra
 staa PORTC

* **
* * Initialize interrupt registers.
* **
 ldaa #$01
 staa TCTL2 capture on rising edge (PA0 mode)
 ldaa #$09
 staa TMSK1 arm IC3I (microphone) & OC5I (clock)
 staa TFLG1 clear IC3F & OC5F

* **
* * Initialize interrupt jump pseudo-vectors.
* **
 ldaa #$7E Op code for JMP
 staa $00E2 Timer input capture 3
 staa $00D3 Timer output compare 5

 26

 ldx #IC3Han
 stx $00E3 JMP IC3Han

 ldx #OC5Han
 stx $00D4 JMP OC5Han

* **
* * Initialize helper variables.
* **
 clr ICCount
 clr OCCount
 clr sCount
 ldd TCNT current time
 addd #OCRate first OC5 in 25 ms (50000 cycles)
 std TOC5
 cli enable interrupts

Start clra
 staa PORTA
 clr OCCount
 clr sCount
 ldaa TMSK1
 oraa #$01
 staa TMSK1

Main ldaa PORTA
 anda #$04 thermistor = PA2 (0000 0100)
 cmpa #$04 check thermistor value
 beq Alarm1 branch if thermistor = hot

 ldaa sCount
 staa PORTC display number of seconds elapsed
 cmpa #10 check s counter
 bgt Alarm2 branch if sCount > 10 seconds

 bra Main

Alarm1 ldaa TMSK1 old value
 anda #$FE IC3I = 0 (1111 1110)
 staa TMSK1 disarm IC3I (microphone)

 ldaa #$20 alarm = PA5 (0010 0000)
 staa PORTA sound the alarm

 clr OCCount reset OC counter
 clr sCount reset s counter

Wait1 ldaa sCount
 staa PORTC display number of seconds elapsed
 cmpa #10 check s counter
 bgt Drain branch if sCount > 10 seconds

 27

 ldaa PORTA
 anda #$04 thermistor = PA2 (0000 0100)
 cmpa #$04 check thermistor value
 bne Start branch if thermistor != hot
 bra Wait1

Alarm2 ldaa TMSK1 old value
 anda #$FE IC3I = 0 (1111 1110)
 staa TMSK1 disarm IC3I (microphone)

 ldaa #$20 alarm = PA5 (0010 0000)
 staa PORTA sound the alarm

 clr OCCount reset OC counter
 clr sCount reset s counter

Wait2 ldaa sCount
 staa PORTC display number of seconds elapsed
 cmpa #10 check s counter
 bgt Drain branch if sCount > 10 seconds
 bra Wait2

Drain ldaa #$60 drain = PA6 (0110 0000)
 staa PORTA drain the bathtub
 bra Drain

**
* Subroutines
**

**
* IC3Han - Microphone Detection
**
IC3Han
 sei disable interrupts to make atomic
 inc ICCount update IC counter (detected sound)
 ldaa ICCount
 staa PORTB display number of sounds detected

 clr OCCount reset OC counter
 clr sCount reset s counter
 ldd TCNT current time
 addd #OCRate next OC5 in 25 ms (50000 cycles)
 std TOC5

IC3Han_
 ldaa #$09 clear IC3F & OC5F
 staa TFLG1 acknowledge IC3 interrupt, ignore OC5 interrupt
 cli enable interrupts

 28

 rti
**

**
* OC5Han - Clock
**
OC5Han
 sei disable interrupts to make atomic
 inc OCCount update OC counter (25 ms elapsed)
 ldaa OCCount
 cmpa #40 check OC counter (40 * 25 ms = 1 second)
 bne OC5Han_ branch if OCCount != 40 iterations
 inc sCount update s counter (1 second elapsed)
 clr OCCount reset OC counter

OC5Han_
 ldd TOC5
 addd #OCRate next OC5 in 25 ms (50000 cycles)
 std TOC5
 ldaa #$08 clear OC5F
 staa TFLG1 acknowledge OC5 interrupt
 cli enable interrupts
 rti
**

**
*Delay
* ldx #$F000 delay value
*loop dex x = x - 1
* bne loop
* rts
**

