

 Kevin Quinn, Tim Spens, Koto Norose, Shawn Rhoa des

 http://www.cs.utah.edu/~tspens/cs3992/recipedi a.html

Introduction
Have you ever been in your kitchen cooking something out of a cookbook, and found
your hands too busy to hold up the cookbook? You spend wasted time putting down your
cooking materials to pick up your book and look again at the next step in the instructions.
Often, when you set down the book it closes and you have to once again find your page
and place, which results in more time wasted. Our creation, Recipedia, is a digital
cookbook for use in a kitchen/restaurant environment. This system will provide a
convenient and easy to use interface that any person preparing a meal can follow.
Through the use of a touch screen, the cook will be able to input commands directly by
simply using an easy to follow graphical user interface (GUI). The system will be capable
of reading the recipe out loud to the user to provide added convenience. See figure 1
below for a system block diagram.

Figure 1. Block diagram of complete system

Project Functionality
We designed Recipedia to be as user friendly as possible. The first touch screen loaded
on the GUI interface is referred to as HOME, this will list the different categories

available in your cookbook. Each of the categories are selectable by using the touch
screen. The default categories included in Recipedia are Dinner and Deserts.

Once you have selected your food category you will be taken to a list of recipes available
under that category. Under Dinner for instance you will find recipes for Golden Chicken
and Curry Chicken etc. At any time you can return to home by pressing the Home button
below. Each menu page will be announced as you open it (so as you choose Dinner,
Recipedia will say Dinner).

Once a recipe has been selected Recipedia will begin reading the recipe aloud. The first
line of the recipe will read and then wait for you to press “NEXT”. After pressing
“NEXT” the next line in the recipe will read. If at any time you do not understand what
is being said, or need Recipedia to repeat a line, you can press “BACK” to go back a line
in the recipe. Once you have reached the end of your recipe, you will want to press
“HOME” to return the home page to select your next recipe.

Technical Specifications

Microcontroller C code
Environment:
We used CodeWarrior for HC08 V5.1 with the HCS08QGB8. The all code was written
in C.

Code:
There main parts of the code are: Serial touch screen driver, buttons and navigation, text
to speech interface, and an interface to the Spartan 3 FPGA.

Serial Touch Screen driver:
This driver was written from the HCS08 Quick Reference Guide page 64 – 68,
MC9S08QG8 Datasheet page 191 – 210, examples from the Freescale Web site
http://www.freescale.com and the ELO Touch Screen Driver manual
http://www.elotouch.com/files/manuals/smartset.zip .

The touch screen runs at a baud rate of 9600, 8 bits, 1 stop bit and no hardware
handshaking. On the HCS08 chip we used the SCI interrupt on received data buffer full
to get the touch packets. Each touch packet is 10 bytes indicating the X and Y
coordinates of the touch, initial touch, held touch and touch released. Once we received
the complete touch packet a global flag was set in the SCI interrupt handler to signal to
the mail loop that a new touch was ready to be processed.

Buttons and Navigation:
The main loop of the code is waiting for new input from the touch screen in a pulling
manner. If the touch was a valid button press it continues on otherwise does nothing.
Button presses also depend on which screen/location we are currently displaying. The

locations are Home, Dinner, Dessert and Recipe. Each is defined as a structure
containing strings of the recipes or lines of the recipe.

If the current location is Home, there are two options: Dinner or Dessert. The main
function changes the location according to recipe selections. If the current location is
Dinner or Dessert recipes are displayed by title and are selectable. If the current location
is Recipe, there are three options: Back, Next, and Home. If Back is pressed, the
previous line of the recipe is spoken. If at the first line, it speaks the first line again. If
Next is pressed, the next line of the Recipe is spoken. If at the last line, it repeats the last
line again. If Home is pressed, the location is changed to Home, Home is spoken, and the
display changes to Home.

The locations of the buttons were found by using a serial terminal program where we
would manually touch the areas where our buttons were. We then took note of what the
touch packets were and recorded that data.

Text to Speech Interface:
The text to speech interface is done over an IIC bus. The HCS08 chip has an IIC
interface and interrupt when the IIC data register is written to. This was one way
communication only. The microcontroller sends up to 80 characters to the Winbond
WTS701 text to speech chip and then sends a command to flush that buffer. The
Winbond chip takes each word and breaks it into phonemes then it uses a look up table to
match each phonemes of the word to a sound. This method was used to speak each
recipe line one line at a time.

Spartan 3 FPGA Interface:
The microcontroller used 5 GPIO pins to signal to the FPGA to display a BMP of the
current location requested (this will be explained in more detail in the VGA design
section below).

Problems Encountered:
One of the most time consuming problems we ran into with the microcontroller was stack
overflow. The problem arouse when we noticed our navigation software was not
working. While debugging this we found that we were getting corrupt data. It took us a
while to figure out that we were blowing the stack and corrupting local variables. We
moved our recipe structures into ROM global memory and this problem was gone. We
ran into this problem late in the semester and we would have liked to go back and make
the recipe structures into the main functions scope and increase our stack size, but we just
ran out of time. We had a problem with our text to speech packets not being null
terminated so we were getting undesired extra words (that we didn’t want “garbage”) at
the end of a line.

Design functionality problem:
When the navigation code was finished we had a miscommunication that the next and
back buttons were to be used to go to the next or previous page of recipe lines for one

recipe. This was fixed after we discussed how the next and back buttons were intended
to function.

VGA Design
The FPGA was used to generate VGA signals to drive a monitor at 640 x 480 at about
60Hz. The recipes were also stored on a 512K SRAM. The recipes were stored as 2 bit
BMPs. We only used 2 bits per color to save on memory space. In order to save a BMP
in 2 bit format we used Photoshop to save as 4 bit (this is the lowest bit savable) then we
wrote a program to convert the 4 bit BMP to a 2 bit BMP. One thing we learned while
working on the VGA generator was that the raw BMP format is flipped vertically, when
we first got a recognizable image displayed on the monitor it was flipped vertically.

Calculations for a 25Mhz pixel clock and 640 x 480:
The VGA signal timing was done by following an example at
http://www.xess.com/appnotes/vga.pdf this example used a different pixel clock rate,
resolution and memory interface (SDRAM). It took a while to get these numbers correct.

Pixels per line:
One complete video line is 31.77 us
31.77us * 25Mhz - 1 = 793

Lines per frame:
(16.784ms / 31.77us) – 1 = 527

Horizontal sync:
Start of sync .94us * 25Mhz + 640 + 1 = 664
Sync period 3.77us * 25Mhz + 1 = 95
End of sync 664 + 95 = 759

Vertical sync:
Start of sync .45ms * 25Mhz + 480 = 491
Sync period .064ms * 25Mhz + 1 = 2
End of sync 491 + 2 = 493

Blanking:
Video was blanked outside of visible region 640 x 480.
assign blank = (hCount >= 640 || vCount >= 480) ? 1:0;

Problems Encountered:
The VGA generator took a wile to get it working correctly. The major problem that we
ran into was that our Flash memory was not fast enough for the VGA generator. Once
we found this problem we changed our Verilog so that the current image being displayed
was read from SRAM. The only other problem we encountered here was getting the
above calculations correct from the XESS VGA generator example.

Voice Recognition
The Fast Fourier Transform allows users to obtain the spectral makeup of an audio signal,
obtain the decibels of its various frequencies, or obtain the intensity of its various
frequencies. The difference between them then depends upon one of a couple of
equations that take the real and imaginary components of the FFT, and return either the
intensity or decibel levels to be used in the result. The code takes both the real and
imaginary components of the FFT result, and returns the intensity and decibels.

The FFT uses the audio signal as its real component, and uses a NULL pointer for its
imaginary component indicating that the imaginary data does not exist. Upon its return,
the FFT will return both the real and imaginary data components based upon the data
given as the real component. The signal is mirrored with the return samples so that 0-
FFT_LEN/2 contains the data, and FFT_LEN/2 to FFT_LEN contains a reverse of the
data.

Once the FFT is finished with the captured audio signal a comparison is possible with
pre-recorded samplings of audio. Recordings of the words “Next” and “Back” would be
pre-recorded and after obtaining their audio signal and other required information you
could compare future samplings that were captured while the program is running to see if
there is ever a match with our pre-recorded values. If there ever was a match, we could
send the signal to the FPGA just as we do when the “Next” or “Back” buttons are
pressed.

The code for the Fourier transforms that we did not get integrated is listed in the
Appendix.

Voice Frequency Filter Design:

R4

46

21

R1

530

21

U1

uA741

3

2

7
4

6

1

5
+

-

V
+

V
-

OUT

OS1

OS2

V2

AC =
TRAN =

DC = 15

C2

1u

1 2

V1

AC = 0.1
TRAN =

DC = 0

R3

46

21 V

V4

AC =
TRAN =

DC = 15

V

V

R2

530

21

C1

1u

1 2

V5

AC =
TRAN =

DC = 15

U2

uA741

3

2

7
4

6

1

5
+

-

V
+

V
-

OUT

OS1

OS2

V3

AC =
TRAN =

DC = 15

Figure 2: Schematic of voice frequency filter

From right to left: High pass filter, Low pass filter
Note: High frequencies are filtered first and then lower frequencies because the low pass
filter will filter out the noise that is generated by the high pass filter.

Calculations:
 The frequency spectrum of the human voice is about 300 Hz to 3400 Hz.

 I set C1 to 1 uF.
 FrequencyLow (r / s) = 300 * 2 * pi = 1 / (R1 * C1) from text ECE2100 page 113.
 Solve for R1 = 530 Ohm
 Similarly,
 FrequencyHigh (r / s) = 3400 * 2 * pi = 1 / (R4 * C2)
 Solve for R4 = 46 Ohm

Gain:
 High pass filter: High frequency gain = -R2 / R1
 Low pass filter: DC gain = -R4 / R3

Result:

 Frequency

1.0Hz 100Hz 10KHz 1.0MHz 100MHz
V(U2:OUT) V(R1:2) V(R2:1)

0V

50mV

100mV

(300.608,70.420m)

(3.3343K,71.879m)

Figure 3: The AC sweep voltage

The voltage values at the frequency 300 Hz and 3400 Hz are at the 3dB points (20 *
log(0.707) = -3 dB) as expected.

Recipedia Power Supply Design Procedures and Testing
The design of our power supply was based on the needs of our microcontroller and its
voltage thresholds for correct operation. Our controller, the Motorola MC9S08, requires
between 1.8 – 3.6 V in order to operate correctly. Therefore, we decided to design a
power supply capable of providing a steady direct current (DC) voltage supply of 3.3
volts. To meet this requirement, we used the basic building blocks for a standard AC-DC
power supply which includes a transformer, a rectifier circuit, filter, and a voltage
regulator. Also, we designed our supply to provide up to approximately 1 amp for any

load. This was accomplished by choosing a transformer capable of providing a
maximum current, with a load, of 1.2 amps. Table 1 below illustrates the components we
chose for the design of our circuit. Figure 4 is our circuit schematic for our power supply.

Table 1. Components

Component Name (Reference) Value
Transformer (T1) 12.6 V/1.2 amp
Capacitor (C1) Electrolytic 1000µF/25V
Capacitor (C2) Ceramic 100nF
Capacitor (C3) Electrolytic 100µF/50V
Capacitor (C4) Ceramic 100nF

Adjustable Voltage Regulator IC (U1) LM 350 T
Resistor (R1) 240 Ω
Resistor (R2) 400 Ω

Bridge Rectifier (D1) NA

Figure 4. 3.3 V Power Supply Schematic

Using the Adjustable Voltage Regulator:
The LM350T regulator IC we are using requires adjusting according to our desired output
voltage. By using the datasheet for this component, we were able to determine at what
value resistor R2 would be necessary to produce an output of 3.3 volts. Below is the
schematic for the LM350T as well as the solution to its equation to produce R2.

Figure 5. LM350T Adjustable Voltage Regulator Integrated Circuit

Find Value for R2:
The equation for Vout is,

We can remove the term IAdj from the equation because it is controlled to less that 100 µA and can be
ignored in most applications. So that gives us,

Vout = 1.25 V * (1 + R2/R1)

Now we can solve for R2, since we know what output voltage we desire and R1 is always set to 240 Ω.
That gives us the following,

3.3 V = 1.25 V * (1 + R2/240 Ω).

Distribute the 1.25 V through,

3.3 V = 5.2083 * 10-3 * (R2 +240 Ω)

Now divide both sides,

3.3 V / 5.2083 * 10-3 = 5.2083 * 10-3 * (R2 +240 Ω) / 5.2083 * 10-3

This result is

633.6 = (R2 +240 Ω).

Subtract both sides by 240 Ohms,

633.6 – 240 = (R2 +240 Ω) – 240

This yields our solution,

393.6 Ω = R2.

Testing Procedures:

Once a correct value for the resistor R2 was found, prototyping of the circuit could be
completed through the use of a solder-less breadboard. Using the schematic above in
figure 4, the circuit was built. Before using the supply directly with the microprocessor
however, we needed to conduct tests to ensure that the circuit was correct and producing
our desired output voltage. We began by measuring the output voltage of the circuit with
a standard voltmeter. This produced an output voltage of approximately 3.4 V. Once this
measurement was taken, we connected a common LED and resistor to provide a small
load for the circuit and also to be used as a signal that the supply was on. We also
monitored that the circuit component temperatures were not becoming unstable. Once
this step was completed we used an oscilloscope in the lab to check the value of the
output voltage and to monitor the stability of the output. From the scope we received a
steady DC voltage value of approximately 3.45 volts. Now that our circuit produced
valid results we conducted tests to ensure that the circuit could maintain and tolerate a
substantial amount of time operating. All tests mentioned above proved successful. We
were now confident that our circuit would be a reliable and efficient source of power for
our microprocessor.

High-Gain Amplifier:
A design of a high-gain amplifier was also conducted in order to amplify the signal
outputted from our SP03 Text-to-Speech Module and inputted into a standard 8 Ohm
speaker. Although the design and construction of this circuit was completed it was not
implemented in the final project due to voltage requirements and time limitations. For
this circuit we used a design consisting of two inverting op amp stages which produces a
voltage output of 2500 times the input voltage. This design was replicated from figure
11.42 in the text Embedded Micro- computer Systems by Jonathan Valvano. Figure 6
below contains this schematic.

Figure 6. High-Gain Amplifier

After the circuit was built according to the schematic above, we began testing through the
use of an oscilloscope and a wave generator. A sinusoidal wave input was produced
using the wave generator and inputted into the Vin of the amplifier. This produced the
waveform in figure 7.

Using the gain equation

Gain = Vout / Vin,

We produce

Gain = 84.38 V / 215.6 mV

Therefore,

Gain = 391.37

Now that our circuit was operating, we tested it in conjunction with a speaker and input
wave. This produced a varying sound wave at the speaker in relation to the value of the
input wave frequency. Hence, at higher frequencies the output would result in a higher
pitch. Although our circuit was tested and designed, we were not able to use it in our
final design. This is due to the use of a LM348N dip package containing four operational
amplifiers. These particular amplifiers require an operational voltage of 16 volts to
operate correctly. Because of this requirement we were not able to use our amplifier for
our project due to the lack of a viable 16 volt power supply and time limitations.

Figure 7. Oscilloscope Capture of Amplifier

Problems Encountered:
The majority of the problems we faced with the power supply were caused by component
operating specifications. With the amplifier it was necessary to provide a voltage of ±16
V for the op amps to function correctly. However because the laboratory did not provide
a power supply capable of producing this voltage and we did not have time to design a
viable power supply and we were not able to implement our amplifier in the final design

of our project. Our original design of the power supply also consisted of a 5 volt supply,
not a 3.3 volt supply. The microprocessor we chose for our project required operating
voltages between 1.8 – 3.6 volts. This resulted in having to design a supply that included
an adjustable voltage regulator capable of producing these voltages. Once this was
implemented our power supply functioned correctly as per specification.

Future Work
One major enhancement that we would have liked to do was to have a Compact Flash
card to store all the recipe text and images. This could be done by writing a IDE host
controller on the FPGA to access the data on the CF card. This future work would allow
the user to update and add recipes to the system from their PC. Recipe CF cards could
also be sold and could be inserted into the system easily. Another major enhancement
that we just didn’t have time to finish would have been simple voice command
recognition for “Next”, “Back” and “Home” commands. This way once a user has
selected a recipe she/he can say any of the commands to navigate through the recipe lines.
Other useful additions would be a timer and clock.

Conclusion
Overall, this has been a very challenging and educational learning experience. We have
definitely run into some problems along the way, as mentioned in the technical
specifications, some of our major problems we encountered were stack overflow issues,
where we were getting corrupt data because the size and order of our C structures. We
solved this problem late into the semester and we were not able to have the size and
number of recipes we had initially intended. Time also was a problem for us when it
came to implementing our filter, amp and voice command recognition. We all learned
different things from this project but as a team we definitely have gained a much better
understanding of microcontrollers, how to program them and their limitations and
capabilities. We have learned a lot about how touch screens, voice frequency filters and
how to make use of their technologies in a system.

Bill of Materials

Microcontrollers
• Primary Vendor: Freescale
• Model #: HCS08
• Part #: HCS08QG8
• Unit Cost: Free sample (5)
• Quantity: 5
• Total Cost: $0.00

Demo Board (Programmer)
• Primary Vendor: Freescale
• Model #: MC9S08QH8
• Part # DEMO9s08QG8
• Unit Cost: $50.00
• Quantity: 1
• Total Cost: $50.00 + $6.00 Shipping

FPGA
• Primary Vendor: www.digilentinc.com
• Model #: Spatan3 starter kit
• Part #: XCS3S200
• Unit Cost: $99.00 (own 2)
• Quantity: 1
• Total Cost: $99.00 + shipping

Memory Module
• Primary Vendor: www.digilentinc.com
• Model #: MEMC1
• Part #: MEMC1
• Unit Cost: $47.95
• Quantity: 1
• Total Cost: $47.95 + $6.00 shipping

USB2 Module
• Primary Vendor: www.digilentinc.com
• Model #: USB2
• Part #: USB2
• Unit Cost: $48.95
• Quantity: 1
• Total Cost: $48.95 + $6.00 shipping

SP03 Text to Speech
• Primary Vendor: www.hobbyengineering.com
• Model #: SPO3
• Part #: R184SP03
• Lead Time: 2 weeks (In-stock)
• Unit Cost: $99.00
• Quantity: 1
• Total Cost: $99.00 + Shipping

Touch Screen
• Primary Vendor: eBay
• Model #: SCN-AT
• Part #: E274
• Lead Time: None (Purchased)
• Unit Cost: $56.00
• Quantity: 1
• Total Cost: $70.00 ($56.00 + 14.00 shipping)

Miscellaneous Analog Components
• Primary Vendor: UofU Digital Lab
• Total Cost: $10.00

System Enclosure
For our system’s enclosure we constructed a large wooden box structure, with a
front window for our monitor screen and a removable lid. We installed Formica
on the sides, front, and lid to give the continuous feel of a kitchen countertop.

References

HCS08 Quick Reference Guide
www.Freescale.com

HCS08 Reference Manual
www.Freescale.com

MC9S08QG8 Data Sheet
www.Freescale.com

ELO Touch Screen Manual
www.elotouch.com
written by ELO

ELO Driver Manual
www.elotouch.com
written by ELO

Embedded Microcomputer Systems:
Real time interfacing, by Jonathan W. Valvano

VGA information
www.xcess.org
written by Xcess

C code for serial drivers
http://www.cs.utah.edu/~tspens/cs3992/files/serial_c.gif

Additional FFT resources include:
http://www.fftw.org/links.html

Good Verilog tutorials
http://www.engr.sjsu.edu/crabill/

Appendix

HCS08 code:
main.c
#include <hidef.h>
#include <string.h>
#include "derivative.h"
#include "recipe.h"

screen_place_s screen_loc; // used to updat e FPGA bmp
recipe_line_s * CURR = NULL;
byte ReceivedBuffer[MAX_BUFFER_SIZE];
byte IIC_DATA[80];

byte ln = 255;

byte recipeNumber = 0;
byte LOC = HOME;
byte input = 0; // input flag
byte buffer_index = 0; // before correcting data
byte done = 1; // main job's flag

byte num = 0;
byte ans = 0;
byte z = 0; //global counter

//----Touch screen coordinates--------------------- --------------------------------------

byte start = 0;
byte x0 = 0;
byte x1 = 0;
byte y0 = 0;
byte y1 = 0;

//----IIC Variables ------------------------------- --------------------------------------

byte IIC_STEP = IIC_READY_STATUS;
byte IIC_DATA_DIRECTION = 0; // 1 Transmit, 0 Read
byte IIC_LENGTH = 1;
byte IIC_COUNTER = 0;
byte SP03_ADDRESS = 0xC4;

//#pragma DATA_SEG DATA1
recipe_line_s Home;
//#pragma DATA_SEG DATA2
recipe_line_s Dinner;
recipe_line_s Dessert;
//recipe_line_s Breakfast;

//----Recipes ------------------------------------- --------------------------------------

recipe_line_s Curry_Chicken;
recipe_line_s Golden_Chicken;
//recipe_line_s Chicken_Cordon_Blue;

recipe_line_s Almond_Torte;
//recipe_line_s Raspberry_Chocolate_Cake;
//recipe_line_s Pumpkin_Chocolate_Chip_Cookies;

//recipe_line_s Pancakes;
//recipe_line_s Waffles;
//recipe_line_s Omelettes;

//----Initializations ----------------------------- --------------------------------------

void configureIIC(void);
void initializeSCI(void);

void init_screen_loc(void);
void init_flags(void);
void null_all(recipe_line_s * recipe);

//----SP03 Functions ------------------------------ --------------------------------------

void welcome(void);
void speakSP03(byte,byte*);
void speakPredefined(byte);
/*Predefined phrases
 1 welcome to Recipedia the digital cook book
 2 dinner
 3 dessert
 4 breakfast
 5 back
 6 home
 7 next
*/
void speechHeader(byte);
void speechFooter(byte);
void speakLine(byte*,byte);
void clearPending(void);
void initializeTransmit(void);

//----Navigation Functions ------------------------ --------------------------------------

void doHOMEthings(byte m, byte b, byte md);
void doDINNERthings(byte m, byte b, byte md);
void doDESSERTthings(byte m, byte b, byte md);
void doBREAKFASTthings(byte m, byte b, byte md);
void doRECIPEthings(byte m, byte b, byte md);

byte MidPressed(void);
byte BotPressed(void);

byte num_chars(byte * c); / / counts the number of charachters in
a recipe line

//----Configure FPGA interface -------------------- --------------------------------------

void configFPGA(void);
void updateFPGA(void);

// This delay function can be used to disable (ADC) command recognition on the other uc
void delay(unsigned int cycle);

//----Recipies just for testing-------------------- --------------------------------------

//byte testPhrase[22] = "This is a test phrase"; / / Extra byte for zero terminator
//byte *testPhrasePtr = testPhrase;

//----Main loop ----------------------------------- --------------------------------------

void main(void) {

 Home.lines[0] = "Dinner";
 Home.lines[1] = "Dessert";
 Home.lines[2] = "Breakfast";

 Dinner.lines[0] = "Curry Chicken";
 Dinner.lines[1] = "Golden Chicken";
 //Dinner.lines[2] = "Chicken Cordon Blue";

 Dessert.lines[0] = "Allmund Torte";
 //Dessert.lines[1] = "Raspberry Chocolate Cake";
 //Dessert.lines[2] = "Pumpkin Chocolate Chip Cooki es";

 //Breakfast.lines[0] = "Pancakes";
 //Breakfast.lines[1] = "Waffles";
 //Breakfast.lines[2] = "Omelettes";

//----Dinners ------------------------------------- ------------------------
 Curry_Chicken.lines[0] = "1 box of ehs & B Golden Curry blocks";
 Curry_Chicken.lines[1] = "1 pound cut chicken or s hrimp";
 Curry_Chicken.lines[2] = "1 chopped onion";
 Curry_Chicken.lines[3] = "3 sliced or 2 cups baby carrots";
 Curry_Chicken.lines[4] = "1 or 2 potatoes cut into squares";
 Curry_Chicken.lines[5] = "Saute meat and onions fo r 10 minutes";
 Curry_Chicken.lines[6] = "Add 3 cups water and bri ng to a boil";
 Curry_Chicken.lines[7] = "Break curry blocks and a dd";
 Curry_Chicken.lines[8] = "Add carrots and potatoes and boil on low for 30
minutes";
 Curry_Chicken.lines[9] = "Serve over rice";

 Golden_Chicken.lines[0] = "4 chicken breasts cut into bite sized pieces";
 Golden_Chicken.lines[1] = "2 cans of Golden Mushro om Soup";
 Golden_Chicken.lines[2] = "2 cups sliced or baby c arrots";
 Golden_Chicken.lines[3] = "1 medium onion chopped ";
 Golden_Chicken.lines[4] = "A pinch of nutmeg";
 Golden_Chicken.lines[5] = "About one half cup chic ken broth";
 Golden_Chicken.lines[6] = "Saute the chicken and t he onion for 10 minutes";
 Golden_Chicken.lines[7] = "Add all, and cook for 3 0 minutes on medium heat";
 Golden_Chicken.lines[8] = NULL;
 Golden_Chicken.lines[9] = NULL;
 /*
 Chicken_Cordon_Blue.lines[0] = "Chicken Cordon Blu e 1";
 Chicken_Cordon_Blue.lines[1] = "Chicken Cordon Blu e 2";
 Chicken_Cordon_Blue.lines[2] = "Chicken Cordon Blu e 3";
 Chicken_Cordon_Blue.lines[3] = "Chicken Cordon Blu e 4";
 Chicken_Cordon_Blue.lines[4] = "Chicken Cordon Blu e 5";
 Chicken_Cordon_Blue.lines[5] = "Chicken Cordon Blu e 6";
 Chicken_Cordon_Blue.lines[6] = "Chicken Cordon Blu e 7";
 Chicken_Cordon_Blue.lines[7] = "Chicken Cordon Blu e 8";
 Chicken_Cordon_Blue.lines[8] = "Chicken Cordon Blu e 9";
 Chicken_Cordon_Blue.lines[9] = "Chicken Cordon Blu e 10";
 */
//----Desserts ------------------------------------ ------------------------
 Almond_Torte.lines[0] = "1 cup sugar";
 Almond_Torte.lines[1] = "1 cup flour";
 Almond_Torte.lines[2] = "Mix flour and sugar";
 Almond_Torte.lines[3] = "Add 2 eggs";
 Almond_Torte.lines[4] = "Add 1 teaspoon almond ex tract";
 Almond_Torte.lines[5] = "Mix well and pour into a foil lined 9 inch pie pan";
 Almond_Torte.lines[6] = "Sprinkle sliced almonds on top and bake at 375 degrees for 20
minutes";
 Almond_Torte.lines[7] = NULL;
 Almond_Torte.lines[8] = NULL;
 Almond_Torte.lines[9] = NULL;
 /*
 Raspberry_Chocolate_Cake.lines[0] = "Raspberry Ch ocolate Cake 1";
 Raspberry_Chocolate_Cake.lines[1] = "Raspberry Ch ocolate Cake 2";
 Raspberry_Chocolate_Cake.lines[2] = "Raspberry Ch ocolate Cake 3";
 Raspberry_Chocolate_Cake.lines[3] = "Raspberry Ch ocolate Cake 4";
 Raspberry_Chocolate_Cake.lines[4] = "Raspberry Ch ocolate Cake 5";
 Raspberry_Chocolate_Cake.lines[5] = "Raspberry Ch ocolate Cake 6";
 Raspberry_Chocolate_Cake.lines[6] = "Raspberry Ch ocolate Cake 7";
 Raspberry_Chocolate_Cake.lines[7] = "Raspberry Ch ocolate Cake 8";
 Raspberry_Chocolate_Cake.lines[8] = "Raspberry Ch ocolate Cake 9";
 Raspberry_Chocolate_Cake.lines[9] = "Raspberry Ch ocolate Cake 10";

 Pumpkin_Chocolate_Chip_Cookies.lines[0] = "Pumpki n Chocolate Chip Cookies 1";
 Pumpkin_Chocolate_Chip_Cookies.lines[1] = "Pumpki n Chocolate Chip Cookies 2";
 Pumpkin_Chocolate_Chip_Cookies.lines[2] = "Pumpki n Chocolate Chip Cookies 3";
 Pumpkin_Chocolate_Chip_Cookies.lines[3] = "Pumpki n Chocolate Chip Cookies 4";
 Pumpkin_Chocolate_Chip_Cookies.lines[4] = "Pumpki n Chocolate Chip Cookies 5";
 Pumpkin_Chocolate_Chip_Cookies.lines[5] = "Pumpki n Chocolate Chip Cookies 6";
 Pumpkin_Chocolate_Chip_Cookies.lines[6] = "Pumpki n Chocolate Chip Cookies 7";
 Pumpkin_Chocolate_Chip_Cookies.lines[7] = "Pumpki n Chocolate Chip Cookies 8";
 Pumpkin_Chocolate_Chip_Cookies.lines[8] = "Pumpki n Chocolate Chip Cookies 9";
 Pumpkin_Chocolate_Chip_Cookies.lines[9] = "Pumpki n Chocolate Chip Cookies 10";

//----Breakfasts ---------------------------------- ------------------------
 Pancakes.lines[0] = "Pancakes 1";
 Pancakes.lines[1] = "Pancakes 2";
 Pancakes.lines[2] = "Pancakes 3";
 Pancakes.lines[3] = "Pancakes 4";
 Pancakes.lines[4] = "Pancakes 5";
 Pancakes.lines[5] = "Pancakes 6";
 Pancakes.lines[6] = "Pancakes 7";
 Pancakes.lines[7] = "Pancakes 8";
 Pancakes.lines[8] = "Pancakes 9";
 Pancakes.lines[9] = "Pancakes 10";

 Waffles.lines[0] = "Waffles 1";
 Waffles.lines[1] = "Waffles 2";
 Waffles.lines[2] = "Waffles 3";
 Waffles.lines[3] = "Waffles 4";
 Waffles.lines[4] = "Waffles 5";
 Waffles.lines[5] = "Waffles 6";
 Waffles.lines[6] = "Waffles 7";
 Waffles.lines[7] = "Waffles 8";
 Waffles.lines[8] = "Waffles 9";
 Waffles.lines[9] = "Waffles 10";

 Omelettes.lines[0] = "Omelettes 1";
 Omelettes.lines[1] = "Omelettes 2";
 Omelettes.lines[2] = "Omelettes 3";
 Omelettes.lines[3] = "Omelettes 4";
 Omelettes.lines[4] = "Omelettes 5";
 Omelettes.lines[5] = "Omelettes 6";
 Omelettes.lines[6] = "Omelettes 7";
 Omelettes.lines[7] = "Omelettes 8";
 Omelettes.lines[8] = "Omelettes 9";
 Omelettes.lines[9] = "Omelettes 10";
 */

 EnableInterrupts;
 LOC = HOME;
 CURR = NULL;

 //Turn on a green led indicating program is runni ng
 //PTB5 will probably need to be used also as the indicator to disable the
 //ADC on the other uc we could use PTB5 as a red led indicating when the
 //text-to-speech is speaking. We could make a ti mer interrupt every second
 //so we could blink the led
 PTBDD_PTBDD5 = 1;
 PTBD_PTBD5 = 1;

 initializeSCI();
 configureIIC();
 configFPGA();
 init_screen_loc();
 init_flags();

 // speaks predefined phrase 1, "Welcome to recipe dia, the digital cook book!"
 // this is already done when the text-to-speech c hip is powered on
 //welcome();

 // call this function to speak a line of a recipe by passing in a pointer to a recipe
line
 // and the number of charachters in that line
 //speakSP03(testPhrasePtr,22);
 // these functions are not necessary if we run ou t of code space

 //loop here forever
 while(1){
 //wait for touch on touch-screen

 if((buffer_index >= MAX_BUFFER_SIZE) && !input && (ReceivedBuffer[2] == 4)){

 x0 = ReceivedBuffer[4]; //1

 x1 = ReceivedBuffer[3]; //0
 y0 = ReceivedBuffer[6]; //3
 y1 = ReceivedBuffer[5]; //2

 // Middle button pressed? This is one of the 'round' buttons
 ans = MidPressed();
 if(ans){
 screen_loc.round_buttons = ans;
 screen_loc.button_event = ROUND_CHANGED;
 input = 1;
 }

 // Bottom button pressed? This is one of the 'square' buttons
 else{
 ans = BotPressed();
 if(ans){
 screen_loc.square_buttons = ans;
 screen_loc.button_event = SQUARE_CHANGED;
 input = 1;
 }else{
 buffer_index = 0;
 start = 0;
 }
 }
 }

 //wait for input or done, done meaning we execu ted a valid button press.
 if(input && done){
 done = 0;
 if(LOC == HOME){
 doHOMEthings(screen_loc.round_buttons,
screen_loc.square_buttons, screen_loc.button_event) ;
 }else if (LOC == DINNER){
 doDINNERthings(screen_loc.round_buttons,
screen_loc.square_buttons, screen_loc.button_event) ;
 }else if (LOC == DESSERT){
 doDESSERTthings(screen_loc.round_buttons,
screen_loc.square_buttons, screen_loc.button_event) ;
 }else if (LOC == BREAKFAST){
 doBREAKFASTthings(screen_loc.round_buttons,
screen_loc.square_buttons, screen_loc.button_event) ;
 }else if(LOC == RECIPE){
 doRECIPEthings(screen_loc.round_buttons,
screen_loc.square_buttons, screen_loc.button_event) ;
 }
 }
 __RESET_WATCHDOG(); // feeds the dog
 }//end while
 return;
}

//----Initializations ----------------------------- --------------------------------------

// Function to configure the IIC module.
void configureIIC(){
 SOPT2_IICPS = 1; // Use PTB6(SDA) and PTB7(SCL)
 IICC_IICEN = 1; // Enable IIC
 IICC_IICIE = 1;
 IICA = SP03_ADDRESS; // IIC Address
 IICF = 0x4B; // Set IIC frequency 100kb ps
 IIC_STEP = IIC_READY_STATUS;
}

void initializeSCI(){
 PTBPE_PTBPE0 = 0; //dissable pull up on PTB 0
 SCIBDH = 0x00;
 SCIBDL = 0x1A; // The baud rate is 9600b ps

 SCIC1 = 0x00; // SCIC1: LOOPS=0,SCISWAI =0,RSRC=0,M=0,WAKE=0,ILT=0,PE=0,PT=0
 SCIC2 = 0x2C; // SCIC2: TIE=0,TCIE=0,RI E=1,ILIE=0,TE=1,RE=1,RWU=0,SBK=0 //
 SCIC3 = 0x00; // SCIC3: R8=0,T8=0,TXDIR =0,TXINV=0,ORIE=0,NEIE=0,FEIE=0,PEIE=0

 z = 0;
 while(z<10){
 ReceivedBuffer[z] = 0;
 z++;
 }
}

void init_screen_loc(){
 screen_loc.round_buttons = DEFAULT;
 screen_loc.square_buttons = DEFAULT;
 screen_loc.button_event = DEFAULT;
}

void init_flags(){
 done = 1;
 input = 0;
 buffer_index = 0;
 start = 0;
}

void null_all(recipe_line_s * recipe){
 for(z = 0; z < 10; z++){
 (recipe->lines[z]) = NULL;
 }
}

//----Check press location ------------------------ --------------------------------------

byte MidPressed(void){
 byte xrange = 0;
 //---------first check the MIDDLE value
 if((x0 >= 0x03) && (x0 <= 0x05)){
 xrange = 1;
 }

 if(xrange){
 //--------- for MIDDLE0
 if((y0 >= 0x0A) && (y0 <= 0x0C)){
 return MIDDLE0;
 }
 //------------- for MIDDLE1
 if((y0 >= 0x08) && (y0 <= 0x0A)){
 return MIDDLE1;
 }
 //----------------for MIDDLE2
 if((y0 >= 0x06) && (y0 <= 0x08)){
 return MIDDLE2;
 }
 }
 return 0;
}

//----Check press location ------------------------ --------------------------------------

byte BotPressed(void){
 byte xrange = 0;
 byte yrange = 0;

 //-----------next check the BOTTOM value
 if((y0 >= 0x02) && (y0 <= 0x04)){
 yrange = 1;
 }

 if(yrange){
 //--------- for BOTTOM0
 if((x0 >= 0x03) && (x0 <= 0x06)){
 return BOTTOM0;
 }

 //--------- for BOTTOM1
 if((x0 >= 0x07) && (x0 <= 0x0A)){
 return BOTTOM1;
 }
 //--------- for BOTTOM2
 if((x0 >= 0x0A) && (x0 <= 0x0E)){
 return BOTTOM2;
 }
 }//end of yrange for BOTTOM
 return 0;
}

//----Screen/Navigation functions ----------------- --------------------------------------

void doHOMEthings(byte m, byte b, byte md){
 //byte i=0;
 if(md == ROUND_CHANGED){
 if(m == MIDDLE0){
 //display Dinner Menu
 recipeNumber = 1;
 updateFPGA();
 LOC = DINNER;
 speakPredefined(2);
 }
 else if(m == MIDDLE1){
 //display Dessert Menu
 recipeNumber = 2;
 updateFPGA();
 LOC = DESSERT;
 speakPredefined(3);
 }
 else if(m == MIDDLE2){
 //display Breakfast Menu, not yet implemented on FPGA due to memory constraints
 recipeNumber = 3;
 //updateFPGA();
 //LOC = BREAKFAST;
 //speakPredefined(4);
 }
 }
 init_screen_loc();
 init_flags();
}

void doDINNERthings(byte m, byte b, byte md){
 if(md == ROUND_CHANGED){
 LOC = RECIPE;
 if(m == MIDDLE0){
 //display Curry Chicken
 recipeNumber = 3;
 updateFPGA();
 CURR = &Curry_Chicken;
 if(CURR != NULL){
 num = num_chars(Dinner.lines[0]);
 speakSP03(num, Dinner.lines[0]);
 }
 }
 else if(m == MIDDLE1){
 //display Golden Chicken
 recipeNumber = 4;
 updateFPGA();
 CURR = &Golden_Chicken;
 if(CURR != NULL){
 num = num_chars(Dinner.lines[1]);
 speakSP03(num, Dinner.lines[1]);
 }
 }
 else if(m == MIDDLE2){
 //display Chicken Cordon Blue, not yet implemen ted on FPGA due to memory
constraints
 recipeNumber = 5;
 //updateFPGA();

 //CURR = &Chicken_Cordon_Blue;
 //if(CURR != NULL){
 // num = num_chars();
 // speakSP03(num, CURR->lines[ln]);
 //}
 }
 }
 else if(md == SQUARE_CHANGED){
 if(b == BOTTOM1){

 recipeNumber = 0;
 updateFPGA();
 LOC = HOME;
 CURR = NULL;
 speakPredefined(6);
 ln = 255;
 }
 }
 init_screen_loc();
 init_flags();
}

void doDESSERTthings(byte m, byte b, byte md){
 if(md == ROUND_CHANGED){
 LOC = RECIPE;
 if(m == MIDDLE0){

 recipeNumber = 5;
 updateFPGA();
 CURR = &Almond_Torte;
 if(CURR != NULL){
 num = num_chars(Dessert.lines[0]);
 speakSP03(num, Dessert.lines[0]);
 }
 }
 else if(m == MIDDLE1){

 recipeNumber = 2;
 //updateFPGA();
 //CURR = &Raspberry_Chocolate_Cake;
 //if(CURR != NULL){
 // num = num_chars();
 // speakSP03(num, CURR->lines[ln]);
 //}
 }
 else if(m == MIDDLE2){

 recipeNumber = 2;
 //updateFPGA();
 //CURR = &Pumpkin_Chocolate_Chip_Cookies;
 //if(CURR != NULL){
 // num = num_chars();
 // speakSP03(num, CURR->lines[ln]);
 //}
 }
 }
 else if(md == SQUARE_CHANGED){
 if(b == BOTTOM1){
 recipeNumber = 0;
 updateFPGA();
 LOC = HOME;
 CURR = NULL;
 speakPredefined(6);
 ln = 255;
 }
 }
 init_screen_loc();
 init_flags();
}

void doBREAKFASTthings(byte m, byte b, byte md){

 //recipeNumber = 0;
 //updateFPGA();
 LOC = HOME;
 CURR = NULL;
}
/*byte i=0;
 if(md == ROUND_CHANGED){
 LOC = RECIPE;
 switch (m){
 case MIDDLE0:
 CURR = &Pancakes;
 i=speak_line(&Pancakes);
 break;
 case MIDDLE1:
 CURR = &Waffles;
 i=speak_line(&Waffles);
 break;
 case MIDDLE2:
 CURR = &Omelettes;
 i=speak_line(&Omelettes);
 break;
 default:
 break;
 }
 }
 else if(md == SQUARE_CHANGED){
 switch(b){
 case BOTTOM1:
 LOC = HOME;
 CURR = NULL;
 speakPredefined(6);
 //i=speak_line(&Home);
 break;
 default:
 break;
 }
 }
 init_screen_loc();
 done = 1;
 input = 0;
 */

void doRECIPEthings(byte m, byte b, byte md){
 if(md == SQUARE_CHANGED){
 if(b == BOTTOM0){
 ln--;
 if(ln >= 0 && ln < 10){
 if(CURR != NULL){
 num = num_chars(CURR->lines[ln]);
 speakSP03(num, CURR->lines[ln]);
 }
 }
 else {
 ln = 0;
 num = num_chars(CURR->lines[ln]);
 speakSP03(num, CURR->lines[ln]);
 }
 }
 else if(b == BOTTOM1){
 recipeNumber = 0;
 updateFPGA();
 LOC = HOME;
 CURR = NULL;
 speakPredefined(6);
 ln = 255;
 }
 else if(b == BOTTOM2){
 ln++;
 if(ln <= 9 && (CURR->lines[ln] != NULL)) {
 if(CURR != NULL){
 num = num_chars(CURR->lines[ln]);

 speakSP03(num, CURR->lines[ln]);
 }
 }
 else{
 ln = ln--;
 num = num_chars(CURR->lines[ln]);
 speakSP03(num, CURR->lines[ln]);
 }
 }
 }
 init_screen_loc();
 init_flags();
}

//----SP03 and IIC functions ---------------------- --------------------------------------

//function to count the number of characters in one line of a recipe
byte num_chars(byte * c){
 for(z = 0; *c != '\0'; z++){
 c++;
 }
 /*
 z = 0;
 while(((CURR->lines[ln])[z]) != 0){
 z++;
 }
 */
 z++;
 return z;
}

void welcome(){
 speakPredefined(1);
 while(IIC_STEP>IIC_READY_STATUS)__RESET_WATCHDOG(); // wait for memory to be read
 speechFooter(2);
 while(IIC_STEP>IIC_READY_STATUS)__RESET_WATCHDOG(); // wait for memory to be read
}

void speakSP03(byte numberOfBytes,byte * recipePtr) {
 speechHeader(5);
 while(IIC_STEP>IIC_READY_STATUS)__RESET_WATCHDOG(); // wait for memory to be read
 speakLine(recipePtr,numberOfBytes);
 while(IIC_STEP>IIC_READY_STATUS)__RESET_WATCHDOG(); // wait for memory to be read
 speechFooter(2);
 while(IIC_STEP>IIC_READY_STATUS)__RESET_WATCHDOG(); // wait for memory to be read

}

// Functions to speak Predefined or General phrase
void speakPredefined(byte predefined){
 clearPending();

 IIC_DATA[0]=0x00;
 IIC_DATA[1]=predefined; // Predefined Phrase

 IIC_LENGTH = 2;
 initializeTransmit();
}

void speakLine(byte *testPhrasePtr,byte numberOfByt es) {
 byte i,j;
 numberOfBytes++;
 numberOfBytes++;
 clearPending();

 IIC_DATA[0]=0x00;
 IIC_DATA[1]=0x00;

 j=0;
 i=2;
 while(testPhrasePtr[j] != '\0') {

 IIC_DATA[i] = testPhrasePtr[j];
 j++;
 i++;
 }

 IIC_DATA[i]='\0';

 while(i<80) {
 IIC_DATA[i] = 0;
 i++;
 }

 IIC_LENGTH = numberOfBytes;
 initializeTransmit();
}

void speechHeader(byte numberOfBytes){
 clearPending();

 IIC_DATA[0]=0x00;
 IIC_DATA[1]=0x00;
 IIC_DATA[2]=0x00; // Volume 00=MAX
 IIC_DATA[3]=0x05; // Speed
 IIC_DATA[4]=0x03; // Pitch
 IIC_DATA[5]=0x00;

 IIC_LENGTH = numberOfBytes;
 initializeTransmit();
}

void speechFooter(byte numberOfBytes){
 clearPending();

 IIC_DATA[0]=0x00;
 IIC_DATA[1]=0x40;

 IIC_LENGTH = numberOfBytes;
 initializeTransmit();
}

// Clear any pending IIC interrupt
void clearPending(void){
 IICC_IICEN = 0;
 IICC_IICEN = 1;
 IICS;
}

// Initialize IIC transmit
void initializeTransmit(){
 IIC_COUNTER =0;
 IIC_STEP = IIC_HEADER_SENT_STATUS;
 IIC_DATA_DIRECTION = 1;

 IICC_IICIE = 1;
 IICC_MST = 0;
 IICS_SRW = 0;
 IICC_TX = 1; // Select Transmit Mode
 IICC_MST = 1; // Select Master Mod e (Send Start Bit) this sets the
BUS Busy flag
 for(z=0;z<5;z++){
 ;
 }// Small delay
 IICD = SP03_ADDRESS; // Send selected slave a ddress
}

//----FPGA function to change BMP ----------------- --------------------------------------

void updateFPGA(void) {
 //send recipie number out A0-A4
 PTAD = recipeNumber;
}

void configFPGA(){
 //this function is to set up the output pins for recipe data to FPGA
 //PTAPEX pull ups

 //output 1 input 0
 PTBDD_PTBDD3 = 1; //these two lines are for the t est swtich
 PTBD_PTBD3 = 1;

 //PTAD0 out
 //PTAD1 out
 //PTAD2 out
 //PTAD3 out
 //PTAD4 out
 //PTAD5 in
 PTADD = 0x1F; //0001 1111 direction reg
 PTAD = 0x00; //0000 0000 data reg
}

//----Interrupts ---------------------------------- --------------------------------------

// Interrupt handler routine to manage all the even ts related to the IIC module
interrupt 17 void Viic_ISR(void){
 byte Temp;
 byte dummyRead;

 Temp = IICS; // ACK the interrupt
 IICS_IICIF = 1;
 if(IICC_MST==1){ // If we are the IIC Mas ter

 if(IIC_STEP == IIC_HEADER_SENT_STATUS){ // Head er Sent
 IICC_TX = IIC_DATA_DIRECTION;
 IIC_STEP = IIC_DATA_TRANSMISION_STATUS;
 if(IICC_TX==0){ // If we are reading data cl ock in first slave byte
 Temp = IICD;
 return;
 }
 }

 if(IIC_STEP == IIC_DATA_TRANSMISION_STATUS){ / / If byte transmision is in
progress.
 if(IICC_TX==1){ // If Maste r is sending data
to slave

 // Send the IIC_DATA to the slave
 IICD = IIC_DATA[IIC_COUNTER]; // Send the next byte
 IIC_COUNTER++;
 if(IIC_LENGTH <= IIC_COUNTER){
 IIC_STEP=IIC_DATA_SENT_STATUS; // Mark we a re done
sending Bytes
 }
 return;
 // wait until last byte sent
 }
 }

 if(IIC_STEP==IIC_DATA_SENT_STATUS){ // We ar e done with the transmition.
 IIC_STEP=IIC_READY_STATUS; // Reset o ur status flag
 Temp = IICS; // ACK the interrupt
 IICS_IICIF=1;
 IICC_TX=0;
 IICS_SRW=0;
 IICC_MST=0;// Generate a stop condition
 return;
 }
 }
 else{ // SLAVE OPERATION
 if(IIC_STEP <= IIC_READY_STATUS){ // If it is
the first byte tranmited
 IIC_STEP = IIC_DATA_TRANSMISION_STATUS;

 IICC_TX = IICS_SRW; // Set th e
transmision reception status
 IIC_COUNTER = 1;
 // If we are receiving data read IIC1D to get free bus and get the next byte
 if(IICC_TX==0){
 Temp = IICD;
 return;
 }
 }
 if(IICS_TCF==1){
 if(IICC_TX == 0){ // If data is received store it on the buffer
 //IIC_DATA[IIC_COUNTER]=IICD;
 dummyRead = IICD;
 IIC_COUNTER++;
 return;
 }
 else{ // Data sent by the s lave
 if(IICS_RXAK==1){ // If byte is not ACK en d transmision.
 IICC_TX = 0;
 Temp = IICD;
 IIC_STEP = IIC_READY_STATUS;
 return;
 }
 IICD = IIC_DATA[IIC_COUNTER];
 IIC_COUNTER++;
 return;
 }

 }
 }
}

//Interrupt handler for receiving serial packets fr om the touch screen
interrupt 15 void Vscirx_ISR(void) {
 // if there is too much latency in this handler w e will need only store the SCID into a
global
 // and let main take care of inserting it into th e array
 byte Temp;
 Temp = SCIS1; // Acknowledge Receiver Full Flag

 if((SCID == 0x55) && (!start)){
 start = 1;
 }
 if(start && (buffer_index < MAX_BUFFER_SIZE)){
 ReceivedBuffer[buffer_index] = SCID;
 buffer_index++;
 }
 if((buffer_index == MAX_BUFFER_SIZE) && (Received Buffer[2] != 4)){
 buffer_index = 0;
 start = 0;
 }
}

void delay(unsigned int cycle){
 for(z = 0; z < cycle; z++){
 ;
 }
}

Recipe.h
#ifndef __RECIPE_H_
#define __RECIPE_H_

//----IIC Control defines ------------------------- --------------------------------------

#define MASTER
#define IIC_ERROR_STATUS 0
#define IIC_READY_STATUS 1

#define IIC_HEADER_SENT_STATUS 2
#define IIC_DATA_TRANSMISION_STATUS 3
#define IIC_DATA_SENT_STATUS 4

//----Navigation defines -------------------------- --------------------------------------

#define HOME 0x00
#define NEXT 0x01
#define BACK 0x02

#define DINNER 0x11
#define DESSERT 0x12
#define BREAKFAST 0x13

#define RECIPE 0x14

#define MIDDLE0 0x30
#define MIDDLE1 0x31
#define MIDDLE2 0x32

#define BOTTOM0 0x40
#define BOTTOM1 0x41
#define BOTTOM2 0x42

#define DEFAULT 0x55

#define ROUND_CHANGED 0x60 //MCHANGED
#define SQUARE_CHANGED 0x61 //BCHANGED

#define MAX_BUFFER_SIZE 10

typedef struct {
 char * lines[10];

}recipe_line_s;

typedef struct{
 char round_buttons; //middle_val
 char square_buttons; //bottom_val
 char button_event;
}screen_place_s;

#endif

FFT
void fft_double (unsigned int p_nSamples, bool p_bI nverseTransform,
 double *p_lpRealIn, double *p_lpImagIn,
 double *p_lpRealOut, double *p_lpImagOut)
{

 if(!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;

 unsigned int NumBits;
 unsigned int i, j, k, n;
 unsigned int BlockSize, BlockEnd;

 double angle_numerator = 2.0 * PI;
 double tr, ti;

 if(!IsPowerOfTwo(p_nSamples))
 {
 return;
 }

 if(p_bInverseTransform) angle_numerator = -an gle_numerator;

 NumBits = NumberOfBitsNeeded (p_nSamples);

 for(i=0; i < p_nSamples; i++)
 {
 j = ReverseBits (i, NumBits);
 p_lpRealOut[j] = p_lpRealIn[i];
 p_lpImagOut[j] = (p_lpImagIn == NULL) ? 0.0 : p_lpImagIn[i];
 }

 BlockEnd = 1;
 for(BlockSize = 2; BlockSize <= p_nSamples; Bl ockSize <<= 1)
 {
 double delta_angle = angle_numerator / (dou ble)BlockSize;
 double sm2 = sin (-2 * delta_angle);
 double sm1 = sin (-delta_angle);
 double cm2 = cos (-2 * delta_angle);
 double cm1 = cos (-delta_angle);
 double w = 2 * cm1;
 double ar[3], ai[3];

 for(i=0; i < p_nSamples; i += BlockSize)
 {

 ar[2] = cm2;
 ar[1] = cm1;

 ai[2] = sm2;
 ai[1] = sm1;

 for (j=i, n=0; n < BlockEnd; j++, n++)
 {

 ar[0] = w*ar[1] - ar[2];
 ar[2] = ar[1];
 ar[1] = ar[0];

 ai[0] = w*ai[1] - ai[2];
 ai[2] = ai[1];
 ai[1] = ai[0];

 k = j + BlockEnd;
 tr = ar[0]*p_lpRealOut[k] - ai[0]*p _lpImagOut[k];
 ti = ar[0]*p_lpImagOut[k] + ai[0]*p _lpRealOut[k];

 p_lpRealOut[k] = p_lpRealOut[j] - t r;
 p_lpImagOut[k] = p_lpImagOut[j] - t i;

 p_lpRealOut[j] += tr;
 p_lpImagOut[j] += ti;

 }
 }

 BlockEnd = BlockSize;

 }

 if(p_bInverseTransform)
 {
 double denom = (double)p_nSamples;

 for (i=0; i < p_nSamples; i++)
 {
 p_lpRealOut[i] /= denom;
 p_lpImagOut[i] /= denom;
 }
 }

}

FPGA code:

main.v
`timescale 1ns / 1ps

module main(CLK, RESET, RGB, HSYNC, VSYNC, recipe, DATA, SW7, SW6, SW5, ADDR, CS0, OE,
WE,/*debug values*/hCount,vCount,blank,pblank,pixel ,SSG,AN,LED);
 input CLK; //50MHz
 input RESET;
 input [4:0] recipe;
 input [7:0] DATA;
 input SW7;
 input SW6;
 input SW5;
 output [18:0] ADDR;
 output CS0;
 output OE;
 output WE;
 output [2:0] RGB;
 output HSYNC;
 output VSYNC;

 //debug
 output [9:0] hCount;
 output [9:0] vCount;
 output blank;
 output pblank;
 output [7:0] pixel;
 //end debug

 reg [18:0] ADDR_O = 0;
 wire [18:0] ADDR_W;
 wire [7:0] DATA;
 reg clk25MHz = 0;

 output [0:6] SSG;
 output [0:3] AN;
 output [0:7] LED;

 reg [0:6] SSG;
 reg [0:3] AN;
 reg [0:7] LED;
 reg clk_1Hz;
 reg [0:24] counter_50M;

 parameter BLANK = 7'b1111111;
 parameter ZERO = 7'b0000001;
 parameter ONE = 7'b1001111;
 parameter TWO = 7'b0010010;
 parameter THREE = 7'b0000110;
 parameter FOUR = 7'b1001100;
 parameter FIVE = 7'b0100100;
 parameter SIX = 7'b0100000;
 parameter SEVEN = 7'b0001111;
 parameter EIGHT = 7'b0000000;
 parameter NINE = 7'b0000100;
 parameter A = 7'b0001000;
 parameter B = 7'b1100000;
 parameter C = 7'b0110001;
 parameter D = 7'b1000010;
 parameter E = 7'b0110000;
 parameter F = 7'b0111000;

 vga vga1(.clk(clk25MHz), .reset(RESET), .addr_i(AD DR_O), .addr_o(ADDR_W),
.rgb(RGB), .hSync(HSYNC), .vSync(VSYNC), .data(DATA), .cs1(CS0), .oe(OE), .we(WE),/*debug
values*/.hCount(hCount),.vCount(vCount),.blank(blan k),.pblank(pblank),.pixel(pixel));

 assign ADDR = ADDR_W;

 // clock divider for VGA timing 50MHZ/2 = 25MHZ
 always @(posedge CLK)
 begin
 clk25MHz <= clk25MHz^1; // toggle the internal cl k
 end

 // output current recipe number on 7seg
 // 1Hz CLK
 always @ (posedge CLK or posedge RESET)
 begin
 if (RESET)
 begin
 clk_1Hz <= 0;
 counter_50M <= 0;
 end
 else
 begin
 counter_50M <= counter_50M + 1;
 if (counter_50M == 25_000_000)
 begin
 counter_50M <= 0;
 clk_1Hz <= ~clk_1Hz;
 end
 end
 end

 always @ (posedge clk_1Hz or posedge RESET)
 begin
 if (RESET)
 begin
 LED <= 8'b11111111; // turns on led's
 end
 else
 begin
 LED <= 8'b00000000;
 AN <= 4'b0111; // enables 7-seg0 right most d isplay
 end
 end

 always @ (recipe)
 begin
 case (recipe[3:0])
 0: begin
 SSG <= ZERO;
 ADDR_O <= 19'h00000;
 end
 1: begin
 SSG <= ONE;
 ADDR_O <= 19'h12C00;
 end
 2: begin
 SSG <= TWO;
 ADDR_O <= 19'h25800;
 end
 3: begin
 SSG <= THREE;
 ADDR_O <= 19'h38400;
 end
 4: begin
 SSG <= FOUR;
 ADDR_O <= 19'h4B000;
 end
 5: begin
 SSG <= FIVE;
 ADDR_O <= 19'h5DC00;
 end
 6: SSG <= SIX;
 7: SSG <= SEVEN;

 8: SSG <= EIGHT;
 9: SSG <= NINE;
 10: SSG <= A;
 11: SSG <= B;
 12: SSG <= C;
 13: SSG <= D;
 14: SSG <= E;
 15: SSG <= F;
 default: SSG <= BLANK; // all segments are off
 endcase
 end

endmodule

vga.v
`timescale 1ns / 1ps

// 640x480 @ 25MHz clk
module vga(clk, reset, rgb, hSync, vSync, addr_i, a ddr_o, data, cs1, oe, we,/*debug
values*/hCount,vCount,blank,pblank,pixel);
 //debug
 output [9:0] hCount;
 output [9:0] vCount;
 output blank;
 output pblank;
 output [7:0] pixel;
 //end debug

 input clk; //25MHz
 input reset;
 output [2:0] rgb;
 output hSync;
 output vSync;
 output [18:0] addr_o;
 input [18:0] addr_i;
 input [7:0] data;
 output cs1;
 output oe;
 output we;

 reg [9:0] vCount = 0;
 reg [9:0] hCount = 0;
 reg [7:0] pixel = 0;
 reg [2:0] rgb = 3'b000;
 reg vSync = 1;
 reg hSync = 1;
 wire blank;
 reg pblank;

 reg [18:0] memCount = 0;

 // horizantal pixel counter
 always @(posedge clk or posedge reset)
 begin
 if(reset)
 begin
 hCount <= 0;
 end
 else if(memCount == 76800) //(640*480)/4 = 76800 , If this value is >
76800 the image scrolls, kinda cool
 memCount <= 0; //after a whole frame
has been drawn reset the memory "pointer"
 else
 begin // horiz. pixel counter rolls-over afte r 793
pixels
 if(hCount<793) // 31.77*PixelCLK-1 note:this is a constant we are
going to use 25MHz
 begin

 hCount <= hCount+1;
 if((hCount%4 == 0) && ~blank) // increment mem ory
"pointer" every 4 counts of hCount
 memCount <= memCount+1;
 end
 else
 hCount <= 0;
 end
 end

 // vertical line counter
 always @(posedge hSync or posedge reset)
 begin
 if(reset)
 vCount <= 0;
 else
 begin
 if(vCount<527) // total frame lines = 16784/31.7 7 - 1 note:this is
a constant
 vCount <= vCount + 1;
 else
 vCount <= 0;
 end
 end

 // horizantal sync control
 always @(posedge clk or posedge reset)
 begin
 if(reset)
 hSync <= 1;
 else
 begin
 if(hCount>=664 && hCount<759) // hsync start = .94*PixelCLK
<23> + ViewablePixels+?Lblank?+1
 hSync <= 0; //
hsync period = 3.77*PixelCLK+1
 else
 hSync <= 1;
 end
 end

 // vertical sync control
 always @(posedge hSync or posedge reset)
 begin
 if(reset)
 vSync <= 1;
 else
 begin
 if(vCount>=491 && vCount<493) // vsync start = . 45*PixelCLK +
ViewableLines
 vSync <= 0; //
vsync period = .064*PixelCLK + 1
 else
 vSync <= 1;
 end
 end

 // blank video outside of visible region: visible region 640x480
 assign blank = (hCount>=640 || vCount>=480) ? 1:0;

 always @(posedge clk or posedge reset)
 begin
 if(reset)
 pblank <= 0;
 else
 pblank <= blank;

 end

 assign cs1 = 0;
 assign we = 1;
 assign oe = blank; //enable the RAM outputs when v ideo is not blanked

 assign addr_o = addr_i+memCount;

 always @(posedge clk or posedge reset)
 begin
 if(reset)
 pixel <= 0;
 else
 begin
 //this is reading memory every 4 counts of hCoun t which is 4 pixels
 if(hCount[1:0] == 2'b00)
 pixel <= data;
 else
 pixel <= pixel[7:0]<<2; //left shift pixel regi ster
 end
 end

 always @(posedge clk or posedge reset)
 begin
 if(reset)
 rgb <= 3'b000;
 else
 begin
 if(pblank == 1'b0)
 begin
 case(pixel[7:6]) //[1:0] only uses bottom 3 bit s for color
RGB
 2'b00: rgb <= 3'b000; //black
 2'b01: rgb <= 3'b111; //white
 2'b10: rgb <= 3'b001; //blue
 default: rgb <= 3'b100; //red
 endcase
 end
 else
 rgb <= 3'b000; //black
 end
 end

endmodule

main.ucf
NET "CLK" LOC = "T9";
NET "RESET" LOC = "L14"; #Button3 active high

#NET "recipe<0>" LOC = "C10";
#NET "recipe<1>" LOC = "E10";
#NET "recipe<2>" LOC = "C11";
#NET "recipe<3>" LOC = "D11";
#NET "recipe<4>" LOC = "C12";

switches
#NET "recipe<0>" LOC = "F12";
#NET "recipe<1>" LOC = "G12";
#NET "recipe<2>" LOC = "H14";
#NET "recipe<3>" LOC = "H13";
#NET "recipe<4>" LOC = "J14";
B1 4,6,8,10,12
NET "recipe<0>" LOC = "C10";
NET "recipe<1>" LOC = "E10";
NET "recipe<2>" LOC = "C11";

NET "recipe<3>" LOC = "D11";
NET "recipe<4>" LOC = "C12";

NET "SW7" LOC = "K13";
NET "SW6" LOC = "K14";
NET "SW5" LOC = "J13";

7-segement display
NET "SSG<0>" LOC = "E14";
NET "SSG<1>" LOC = "G13";
NET "SSG<2>" LOC = "N15";
NET "SSG<3>" LOC = "P15";
NET "SSG<4>" LOC = "R16";
NET "SSG<5>" LOC = "F13";
NET "SSG<6>" LOC = "N16";
#NET "SSG<7>" LOC = "P16";
NET "LED<0>" LOC = "K12";
NET "LED<1>" LOC = "P14";
NET "LED<2>" LOC = "L12";
NET "LED<3>" LOC = "N14";
NET "LED<4>" LOC = "P13";
NET "LED<5>" LOC = "N12";
NET "LED<6>" LOC = "P12";
NET "LED<7>" LOC = "P11";
NET "AN<0>" LOC = "D14";
NET "AN<1>" LOC = "G14";
NET "AN<2>" LOC = "F14";
NET "AN<3>" LOC = "E13";

NET "RGB<0>" LOC = "R11"; #blue
NET "RGB<1>" LOC = "T12"; #green
NET "RGB<2>" LOC = "R12"; #red
NET "HSYNC" LOC = "R9";
NET "VSYNC" LOC = "T10";

#NET "CS1" LOC = "B7"; #FLASH
NET "CS0" LOC = "A5"; #SRAM
NET "OE" LOC = "A4";
NET "WE" LOC = "A3";

NET "ADDR<0>" LOC = "E6";
NET "ADDR<1>" LOC = "C5";
NET "ADDR<2>" LOC = "C6";
NET "ADDR<3>" LOC = "C7";
NET "ADDR<4>" LOC = "C8";
NET "ADDR<5>" LOC = "C9";
NET "ADDR<6>" LOC = "B8";
NET "ADDR<7>" LOC = "A7";
NET "ADDR<8>" LOC = "A9";
NET "ADDR<9>" LOC = "A8";
NET "ADDR<10>" LOC = "A10";
NET "ADDR<11>" LOC = "B10";
NET "ADDR<12>" LOC = "B12";
NET "ADDR<13>" LOC = "B11";
NET "ADDR<14>" LOC = "B13";
NET "ADDR<15>" LOC = "A12";
NET "ADDR<16>" LOC = "B14";
NET "ADDR<17>" LOC = "A13";
NET "ADDR<18>" LOC = "D9";

NET "data<0>" LOC = "D5";
NET "data<1>" LOC = "D6";
NET "data<2>" LOC = "E7";
NET "data<3>" LOC = "D7";
NET "data<4>" LOC = "D8";
NET "data<5>" LOC = "D10";
NET "data<6>" LOC = "B4";
NET "data<7>" LOC = "B5";

testVGA.v
`timescale 1ns / 1ps
module testVGA;

 // Inputs
 reg CLK;
 reg RESET;
 reg [4:0] recipe;
 reg [7:0] DATA;

 // Outputs
 wire [5:0] RGB;
 wire HSYNC;
 wire VSYNC;
 wire [18:0] ADDR;
 wire CS0;
 wire OE;
 wire WE;
 wire [9:0] hCount;
 wire [9:0] vCount;
 wire blank;
 wire pblank;
 wire [7:0] pixel;

 // Instantiate the Unit Under Test (UUT)
 main uut (
 .CLK(CLK),
 .RESET(RESET),
 .RGB(RGB),
 .HSYNC(HSYNC),
 .VSYNC(VSYNC),
 .recipe(recipe),
 .DATA(DATA),
 .ADDR(ADDR),
 .CS0(CS0),
 .OE(OE),
 .WE(WE),
 .hCount(hCount),
 .vCount(vCount),
 .blank(blank),
 .pblank(pblank),
 .pixel(pixel)
);

 always
 begin
 #1
 CLK=CLK^1;
 end

 initial begin
 // Initialize Inputs
 CLK = 0;
 RESET = 0;
 recipe = 0;
 DATA = 0;

 // Wait 100 ns for global reset to finish
 #100
 $display("\nStarting tests...");
 RESET = 0;
 #10
 while(1)
 begin
 RESET = 0;
 #10;
 end
 end

endmodule

