Recipedia

Digital Cookbook

Kevin Quinn, Tim Spens, Koto Norose, Shawn Rhoa des

http://lwww.cs.utah.edu/~tspens/cs3992/recipedi a.html

Introduction

Have you ever been in your kitchen cooking something oatcobkbook, and found
your hands too busy to hold up the cookbook? You spend wastegtitting down your
cooking materials to pick up your book and look again at ¢t step in the instructions.
Often, when you set down the book it closes and yoa t@wence again find your page
and place, which results in more time wasted. OutiorgeRecipedia, is a digital
cookbook for use in a kitchen/restaurant environment. Sifgtem will provide a
convenient and easy to use interface that any person ipiggpameal can follow.
Through the use of a touch screen, the cook will be abigut commands directly by
simply using an easy to follow graphical user interi@#®l). The system will be capable
of reading the recipe out loud to the user to provide adole¢eaience. See figure 1
below for a system block diagram.

L_ + -50°Win L_ Wout = 2500 * Vin
- 11‘ il
e LMaz4 LMaz4
GNCd—]n
_B‘ Rz R4 Speaker
Analog
Analog-+— 500K s00K
B ot — B
S0AY—
SPra TextToSpaech
T Recipe Select Lines
SCLPTE! = g¥§{ o oint
Wekcomato SCLIPTET A1 Pinz
Riscipeia —JRonRlEs FTAdeC o H
R PTE4MISO PTATAN1 M 1HeaderPing R
PTB2MOS] PTAVANOY —
BYNC T X WEYNC
HSYNG R PTBRDy o HEYIC
TouchScreenTAT Mcggoggggg[Spartan3_FPGA
» +1.8-3.6v -
R7
T T 530
V4
Ves F'TA Y1s
N {SCL/PTR?
Voice Command Select Lines s DAPTE‘h PTA,{SBAL‘_ 4 uA74 cz PRa
IErRiMiso PTAYAN: L3 IE o s
A ereanos FTAwAND = A
— ;?B TfD _ N+ Microphone
TBWRxDyppy 15 4 lvs S
MCQSOSQuB&] 15
+1.8-3.8¢ l
Recipedia Page Sze: A
Senior Project
University of Litah
Revision: 1- Jung 10, 2006 Page 1 of 1

Figure 1. Block diagram of complete system

Project Functionality
We designed Recipedia to be as user friendly as posdibkfirst touch screen loaded
on the GUI interface is referred to as HOME, thid Wt the different categories

available in your cookbook. Each of the categoriesa@eetable by using the touch
screen. The default categories included in RecipediBiareer and Deserts.

Once you have selected your food category you will be tekarlist of recipes available
under that category. Under Dinner for instance youfindl recipes for Golden Chicken
and Curry Chicken etc. At any time you can return to hbynpressing the Home button
below. Each menu page will be announced as you openat(gou choose Dinner,
Recipedia will say Dinner).

Once a recipe has been selected Recipedia will begingethe recipe aloud. The first
line of the recipe will read and then wait for you to pré&¢EXT”. After pressing
“NEXT” the next line in the recipe will read. If ahytime you do not understand what
is being said, or need Recipedia to repeat a line, yopreas “BACK” to go back a line
in the recipe. Once you have reached the end of yoipereyou will want to press
“HOME?" to return the home page to select your next recipe

Technical Specifications

Microcontroller C code

Environment:

We used CodeWarrior for HC08 V5.1 with the HCS08QGBS. Thmode was written
in C.

Code:
There main parts of the code are: Serial touch scheegr, buttons and navigation, text
to speech interface, and an interface to the Spart&GAF

Serial Touch Screen driver:

This driver was written from the HCS08 Quick Referencéd® page 64 — 68,
MC9S08QG8 Datasheet page 191 — 210, examples from the Fre&statte
http://www.freescale.corand the ELO Touch Screen Driver manual
http://www.elotouch.com/files/manuals/smartset.zip

The touch screen runs at a baud rate of 9600, 8 bitsp bistand no hardware
handshaking. On the HCSO08 chip we used the SCI interrugiceived data buffer full
to get the touch packets. Each touch packet is 10 byteatindiche X and Y
coordinates of the touch, initial touch, held touch andhoatased. Once we received
the complete touch packet a global flag was set in therBZrupt handler to signal to
the malil loop that a new touch was ready to be prodesse

Buttons and Navigation:

The main loop of the code is waiting for new input frdm touch screen in a pulling
manner. If the touch was a valid button press it consilmneotherwise does nothing.
Button presses also depend on which screen/locationenauierently displaying. The

locations are Home, Dinner, Dessert and Recipe. Batdfined as a structure
containing strings of the recipes or lines of the recipe.

If the current location is Home, there are two ogiddinner or Dessert. The main
function changes the location according to recipecseins. If the current location is
Dinner or Dessert recipes are displayed by title andeleetable. If the current location
is Recipe, there are three options: Back, Next,Home. If Back is pressed, the
previous line of the recipe is spoken. If at the first lit speaks the first line again. If
Next is pressed, the next line of the Recipe is spoleat.the last line, it repeats the last
line again. If Home is pressed, the location is changétbtme, Home is spoken, and the
display changes to Home.

The locations of the buttons were found by using a senalihal program where we
would manually touch the areas where our buttons wereth&vetook note of what the
touch packets were and recorded that data.

Text to Speech Interface:

The text to speech interface is done over an IIC i@ HCSO08 chip has an IIC
interface and interrupt when the 1IC data registerrigem to. This was one way
communication only. The microcontroller sends up tel&fracters to the Winbond
WTS701 text to speech chip and then sends a command tatfatdbuffer. The
Winbond chip takes each word and breaks it into phonersestthses a look up table to
match each phonemes of the word to a sound. This meti®dsed to speak each
recipe line one line at a time.

Spartan 3 FPGA Interface:

The microcontroller used 5 GPIO pins to signal to th&&Ro display a BMP of the
current location requested (this will be explained in natil in the VGA design
section below).

Problems Encountered:

One of the most time consuming problems we ran intb thi# microcontroller was stack
overflow. The problem arouse when we noticed our naviggbdtware was not
working. While debugging this we found that we were gettingupbrdata. It took us a
while to figure out that we were blowing the stack anduguimng local variables. We
moved our recipe structures into ROM global memory andotioblem was gone. We
ran into this problem late in the semester and we woaNe liked to go back and make
the recipe structures into the main functions scoperamedase our stack size, but we just
ran out of time. We had a problem with our text to shg®ackets not being null
terminated so we were getting undesired extra words (thalidn’'t want “garbage”) at
the end of a line.

Design functionality problem:
When the navigation code was finished we had a miscommumdagt the next and
back buttons were to be used to go to the next or prepiges of recipe lines for one

recipe. This was fixed after we discussed how the nekbaok buttons were intended
to function.

VGA Design

The FPGA was used to generate VGA signals to drive atamaati 640 x 480 at about
60Hz. The recipes were also stored on a 512K SRAM.rddiges were stored as 2 bit
BMPs. We only used 2 bits per color to save on memoryesplacorder to save a BMP
in 2 bit format we used Photoshop to save as 4 bit &hiseilowest bit savable) then we
wrote a program to convert the 4 bit BMP to a 2 bit BMP e @ring we learned while
working on the VGA generator was that the raw BMP fatrma flipped vertically, when
we first got a recognizable image displayed on the momiteas flipped vertically.

Calculations for a 25M hz pixel clock and 640 x 480:

The VGA signal timing was done by following an example at
http://www.xess.com/appnotes/vga.pkis example used a different pixel clock rate,
resolution and memory interface (SDRAM). It took a whilgget these numbers correct.

Pixels per line:
One complete video line is 31.77 us
31.77us * 256Mhz - 1 =793

Linesper frame:
(16.784ms / 31.77us) — 1 =527

Horizontal sync:

Start of sync .94us * 25Mhz + 640 + 1 = 664
Sync period 3.77us * 25Mhz + 1 = 95

End of sync 664 + 95 = 759

Vertical sync:

Start of sync .45ms * 25Mhz + 480 = 491
Sync period .064ms * 25Mhz + 1 =2
End of sync 491 + 2 = 493

Blanking:
Video was blanked outside of visible region 640 x 480.
assign blank = (hCount >= 640 || vCount >= 480) ? 1:0;

Problems Encountered:

The VGA generator took a wile to get it working correctlfhe major problem that we
ran into was that our Flash memory was not fast encugihé VGA generator. Once
we found this problem we changed our Verilog so that thecuimmage being displayed
was read from SRAM. The only other problem we encoedtBere was getting the
above calculations correct from the XESS VGA generatample.

Voice Recognition

The Fast Fourier Transform allows users to obtasrsfiectral makeup of an audio signal,
obtain the decibels of its various frequencies, oaiolthe intensity of its various
frequencies. The difference between them then depgrasone of a couple of
equations that take the real and imaginary componentg &Hh, and return either the
intensity or decibel levels to be used in the resudie dode takes both the real and
imaginary components of the FFT result, and returngteesity and decibels.

The FFT uses the audio signal as its real componeatses a NULL pointer for its
imaginary component indicating that the imaginary diai@s not exist. Upon its return,
the FFT will return both the real and imaginary datagonents based upon the data
given as the real component. The signal is mirrored the return samples so that O-
FFT_LEN/2 contains the data, and FFT_LEN/2 to FFT_LEN aositareverse of the
data.

Once the FFT is finished with the captured audio signahaparison is possible with
pre-recorded samplings of audio. Recordings of the wordst*ded “Back” would be
pre-recorded and after obtaining their audio signal and o¢h@ired information you
could compare future samplings that were captured whilprdbgram is running to see if
there is ever a match with our pre-recorded valuetheft ever was a match, we could
send the signal to the FPGA just as we do when the “NexXBack” buttons are
pressed.

The code for the Fourier transforms that we did notrgegrated is listed in the
Appendix.

Voice Frequency Filter Design:

2uA7 41

1 2

R3 I vvy
1 2 u 530 \.

MV v
46 3
Vi
~ DC =0 <>
AC=01 \=
V2 TRAN =

Figure 2: Schematic of voice frequency filter

From right to left: High pass filter, Low pass filter
Note: High frequencies are filtered first and then lofsequencies because the low pass
filter will filter out the noise that is generated thye high pass filter.

Calculations:
The frequency spectrum of the human voice is about 300 B4Q0 Hz.

| set C1to 1 uF.

FrequencyLow (r/s)=300*2*pi=1/(R1*Cl) from t&ETE2100 page 113.
Solve for R1 =530 Ohm

Similarly,

FrequencyHigh (r/s) =3400*2 *pi=1/ (R4 *C2)

Solve for R4 = 46 Ohm

Gain:
High pass filter: High frequency gain = -R2 / R1
Low pass filter: DC gain = -R4 / R3

Result:

Figure 3: The AC sweep voltage

The voltage values at the frequency 300 Hz and 3400 Hz dre &tIB points (20 *
log(0.707) = -3 dB) as expected.

Recipedia Power Supply Design Procedures and Testing

The design of our power supply was based on the neads aficrocontroller and its
voltage thresholds for correct operation. Our contrailee Motorola MC9S08, requires
between 1.8 — 3.6 V in order to operate correctly. Thezefve decided to design a
power supply capable of providing a steady direct curren) (@{fage supply of 3.3
volts. To meet this requirement, we used the basldibgiblocks for a standard AC-DC
power supply which includes a transformer, a rectifieudty filter, and a voltage
regulator. Also, we designed our supply to provide up to appately 1 amp for any

load. This was accomplished by choosing a transfornpebda of providing a
maximum current, with a load, of 1.2 amps. Table 1 bdlagtrates the components we

chose for the design of our circuit. Figure 4 is owuiirschematic for our power supply.

Tablel. Components

Component Name (Reference) Value
Transformer (T1) 12.6 V/1.2 amp
Capacitor (C1) Electrolytic 10Q6/25V
Capacitor (C2) Ceramic 100nF
Capacitor (C3) Electrolytic 1Q®/50V
Capacitor (C4) Ceramic 100nF
Adjustable Voltage Regulator IC (U1) LM350T
Resistor (R1) 24Q
Resistor (R2) 402
Bridge Rectifier (D1) NA

Ut

DI
VN vouT PR t

ADJ g M
2400hm

e

BRIDGE

- (4
100nF

=~ 0o

1 -/ C - 2 — 03 =
1k 100uF1 &V

g 1 1
g 1000uF/16Y o
<[

<}q

TRNSFMR 67129310 o = = =

LM3s0T0
R2

I
VOFF=0 (7
VAMPL= 120/
FREQ=60 [4

400chm

GND

Figure4. 3.3V Power Supply Schematic

Using the Adjustable Voltage Regulator:

The LM350T regulator IC we are using requires adjustingrdatg to our desired output
voltage. By using the datasheet for this component, we alde to determine at what
value resistor R2 would be necessary to produce an outpL8 volts. Below is the
schematic for the LM350T as well as the solution tedfgation to produce R2.

] O LM3s0 —
l Ry
240

== Ca' | = Cg"
0.1uF 1uF

Figure5. LM 350T Adjustable Voltage Regulator Integrated Circuit

Find Valuefor R2:
The equation for ¥y is,

_ {1 . Ra)
Vour = 125V {1 +W-:' + lag Ry

We can remove the terrgy} from the equation because it is controlled to less thafiAihd can be
ignored in most applications. So that gives us,

Vou=1.25V* (1 + R/Ry)

Now we can solve for Rsince we know what output voltage we desire anid Blways set to 24Q.
That gives us the following,

3.3V =1.25V* (1 + R240Q).

Distribute the 1.25 V through,

3.3V =5.2083 * 10° * (R, +240 Q)

Now divide both sides,

3.3V/5.2083 * 10° = 5.2083 * 10 * (R, +240Q) / 5.2083 * 1C°
This result is

633.6 = (R +240Q).

Subtract both sides by 240 Ohms,

633.6— 240= (R, +240Q) — 240

This yields our solution,

393.6Q =R,

Testing Procedures.

Once a correct value for the resistonias found, prototyping of the circuit could be
completed through the use of a solder-less breadboasidg the schematic above in
figure 4, the circuit was built. Before using the sugphgctly with the microprocessor
however, we needed to conduct tests to ensure thatthé eras correct and producing
our desired output voltage. We began by measuring the ouatipage of the circuit with
a standard voltmeter. This produced an output voltage obxippately 3.4 V. Once this
measurement was taken, we connected a common LED astorés provide a small
load for the circuit and also to be used as a signathkasupply was on. We also
monitored that the circuit component temperatures waréecoming unstable. Once
this step was completed we used an oscilloscope in the &ieck the value of the
output voltage and to monitor the stability of the outgertom the scope we received a
steady DC voltage value of approximately 3.45 volts. Nwaw dur circuit produced
valid results we conducted tests to ensure that thetabmuld maintain and tolerate a
substantial amount of time operating. All tests mertibabove proved successful. We
were now confident that our circuit would be a relialrid afficient source of power for
our microprocessor.

High-Gain Amplifier:

A design of a high-gain amplifier was also conducted deoto amplify the signal
outputted from our SP03 Text-to-Speech Module and inputtediistandard 8 Ohm
speaker. Although the design and construction of thisitinas completed it was not
implemented in the final project due to voltage requingisiand time limitations. For
this circuit we used a design consisting of two invertipgamp stages which produces a
voltage output of 2500 times the input voltage. This des@sreplicated from figure
11.42 in the text Embedded Micro- computer Systbyndonathan Valvano. Figure 6
below contains this schematic.

Ut

A1 L2A

YN ~50+Vin R2
l—ﬁ) NI — 1 Vout = 2500 * Vin
2| a8k , _]__

4

LF353

4

LFas3

Re A3 Rs R4
A "...-'-, 4 ;,'fal\‘ A

W YWYy Ay
500k 10k 500k

Figure 6. High-Gain Amplifier

After the circuit was built according to the schemabove, we began testing through the
use of an oscilloscope and a wave generator. A sinuswda input was produced

using the wave generator and inputted into theWhe amplifier. This produced the
waveform in figure 7.

Using the gain equation
Gain = Vout / Vin,

We produce

Gain =84.38 V/215.6 mV
Therefore,

Gain = 391.37

Now that our circuit was operating, we tested it injaaction with a speaker and input
wave. This produced a varying sound wave at the speakdatiomeo the value of the
input wave frequency. Hence, at higher frequencies tipubwbuld result in a higher
pitch. Although our circuit was tested and designedwes not able to use it in our
final design. This is due to the use of a LM348N dip packagaitamg four operational
amplifiers. These particular amplifiers require gemtional voltage of 16 volts to
operate correctly. Because of this requirement we na&rable to use our amplifier for
our project due to the lack of a viable 16 volt power supplytiamel limitations.

0.00s 50,02/ fAZ_RUN |

Vo otR3I=83.38 Vv~ FreatAli=4.944kAz ~ Vp-ptAID=215.Bmv

Figure 7. Oscilloscope Capture of Amplifier

Problems Encountered:

The majority of the problems we faced with the power supelre caused by component
operating specifications. With the amplifier it wacassary to provide a voltage of £16
V for the op amps to function correctly. Howevecdase the laboratory did not provide
a power supply capable of producing this voltage and we didawettime to design a
viable power supply and we were not able to implement optifeen in the final design

of our project. Our original design of the power suppdp @onsisted of a 5 volt supply,
not a 3.3 volt supply. The microprocessor we chosedoiproject required operating
voltages between 1.8 — 3.6 volts. This resulted in havikig$mn a supply that included
an adjustable voltage regulator capable of producing thessgesl Once this was
implemented our power supply functioned correctly as parifsgsion.

Future Work

One major enhancement that we would have liked to ddavasve a Compact Flash
card to store all the recipe text and images. Thisddoeildone by writing a IDE host
controller on the FPGA to access the data on thea®d: This future work would allow
the user to update and add recipes to the system fronfPtheiRecipe CF cards could
also be sold and could be inserted into the system edsilgther major enhancement
that we just didn’t have time to finish would have begnple voice command

recognition for “Next”, “Back” and “Home” commands.hi§ way once a user has
selected a recipe she/he can say any of the commandsigate through the recipe lines.
Other useful additions would be a timer and clock.

Conclusion

Overall, this has been a very challenging and educatiesading experience. We have
definitely run into some problems along the way, as impat in the technical
specifications, some of our major problems we encounteeee stack overflow issues,
where we were getting corrupt data because the sizerdedad our C structuresiVe
solved this problem late into the semester and we wérald®to have the size and
number of recipes we had initially intended. Time alss a problem for us when it
came to implementing our filter, amp and voice commaaodgmition. We all learned
different things from this project but as a team weritefiy have gained a much better
understanding of microcontrollers, how to program themtheid limitations and
capabilities. We have learned a lot about how touclessre/oice frequency filters and
how to make use of their technologies in a system.

Bill of M aterials

Microcontrollers

* Primary Vendor: Freescale
* Model #: HCSO08

* Part #: HCS08QG8

» Unit Cost: Free sample (5)
* Quantity: 5

* Total Cost: $0.00

Demo Board (Programmer)

* Primary Vendor: Freescale

* Model #: MC9S08QHS8

* Part # DEMO9s08QG8

* Unit Cost: $50.00

* Quantity: 1

* Total Cost: $50.00 + $6.00 Shipping

FPGA

* Primary Vendor: www.digilentinc.com
* Model #: Spatan3 starter kit

* Part #: XCS3S200

* Unit Cost: $99.00 (own 2)

* Quantity: 1

» Total Cost: $99.00 + shipping

Memory Module

* Primary Vendor: www.digilentinc.com
* Model #: MEMC1

* Part #: MEMC1

* Unit Cost: $47.95

* Quantity: 1

* Total Cost: $47.95 + $6.00 shipping

PTA5/IRQ/TCLK/RESET [1 16] PTAO/KBIPO/TPMCHO/ADPO/ACMP+
PTA4/ACMPO/BKGD/MS [2 15 [] PTA1/KBIP1/ADP1/ACMP—
Vop[3 14] PTA2/KBIP2/SDA/ADP2
Vss[|4 13] PTAS/KBIP3/SCL/ADP3
PTB7/SCL/EXTAL[| 5 12 [] PTBO/KBIP4/RxD/ADP4
PTB6/SDA/XTAL]| 6 11 [] PTB1/KBIP5/TXD/ADP5
PTB5/TPMCH1/SS[] 7 10 [] PTB2/KBIP6/SPSCK/ADPG
PTB4/MISO [8 9 [] PTB3/KBIP7/MOSI/ADP7

16-PIN ASSIGNMENT

USB2 Module

* Primary Vendor: www.digilentinc.com
* Model #: USB2

* Part #: USB2

* Unit Cost: $48.95

* Quantity: 1

* Total Cost: $48.95 + $6.00 shipping

SPO3 Text to Speech -
* Primary Vendor: www.hobbyengineering.com g
* Model #: SPO3

* Part #: R184SP03

* Lead Time: 2 weeks (In-stock)
* Unit Cost: $99.00

* Quantity: 1

* Total Cost: $99.00 + Shipping

Touch Screen

* Primary Vendor: eBay

* Model #: SCN-AT

» Part #: E274

» Lead Time: None (Purchased)
* Unit Cost: $56.00

* Quantity: 1

* Total Cost: $70.00 ($56.00 + 14.00 shipping

Miscellaneous Analog Components
* Primary Vendor: UofU Digital Lab
* Total Cost: $10.00

System Enclosure

For our system'’s enclosure we constructed a large wooden box structure, with a
front window for our monitor screen and a removable lid. We installed Formica
on the sides, front, and lid to give the continuous feel of a kitchen countertop.

References

HCS08 Quick Reference Guide
www.Freescale.com

HCS08 Reference M anual
www.Freescale.com

M C9S08QGS8 Data Sheet
www.Freescale.com

EL O Touch Screen Manual
www.elotouch.com
written by ELO

ELO Driver Manual
www.elotouch.com
written by ELO

Embedded Microcomputer Systems:
Real timeinterfacing, by Jonathan W. Valvano

VGA information
WWW.XCESS.org
written by Xcess

C codefor serial drivers
http://www.cs.utah.edu/~tspens/cs3992/fileg/serial_c.gif

Additional FFT resourcesinclude:
http://www.fftw.org/links.html

Good Verilog tutorials
http://www.engr.g su.edu/crabill/

Appendix

HCS08 code:

mal n. C

#include <hidef.h>
#include <string.h>
#include "derivative.h"
#include "recipe.h"

screen_place_s screen_loc; /l used to updat
recipe_line_s * CURR = NULL;

byte ReceivedBufferfMAX_BUFFER_SIZE];

byte IIC_DATA[80];

byte In = 255;

byte recipeNumber = 0O;
byte LOC = HOME;

byte input = O; Il input flag

byte buffer_index = 0; // before correcting data
byte done = 1; /I main job's flag

byte num = 0;

byte ans = 0;

byte z = 0; //global counter

byte start = 0;
byte x0 =0;
byte x1 =0;
byte y0 =0;
byte y1=0;

/I----11C Variables
byte IIC_STEP = IIC_READY_STATUS;

byte IIC_DATA_DIRECTION =0; // 1 Transmit, O
byte IIC_LENGTH = 1;

byte IIC_COUNTER = 0;

byte SP03_ADDRESS = 0xC4;

/l#pragma DATA_SEG DATA1
recipe_line_s Home;
/l#pragma DATA_SEG DATA2
recipe_line_s Dinner;
recipe_line_s Dessert;
IIrecipe_line_s Breakfast;

//----Recipes
recipe_line_s Curry_Chicken;
recipe_line_s Golden_Chicken;
IIrecipe_line_s Chicken_Cordon_Blue;

recipe_line_s Almond_Torte;
/Irecipe_line_s Raspberry_Chocolate_Cake;
/Irecipe_line_s Pumpkin_Chocolate_Chip_Cookies;

/Irecipe_line_s Pancakes;
IIrecipe_line_s Waffles;
IIrecipe_line_s Omelettes;

/I----Initializations

void configurellC(void);
void initializeSCI(void);

e FPGA bmp

Read

void init_screen_loc(void);
void init_flags(void);
void null_all(recipe_line_s * recipe);

/I----SP03 Functions
void welcome(void);
void speakSP03(byte,byte*);
void speakPredefined(byte);
[*Predefined phrases
1 welcome to Recipedia the digital cook book
2 dinner
3 dessert
4 breakfast
5 back
6 home
7 next
*/
void speechHeader(byte);
void speechFooter(byte);
void speakLine(byte*,byte);
void clearPending(void);
void initializeTransmit(void);

void doHOMEthings(byte m, byte b, byte md);

void doDINNERthings(byte m, byte b, byte md);
void doDESSERTthings(byte m, byte b, byte md);
void doBREAKFASTthings(byte m, byte b, byte md);
void doRECIPEthings(byte m, byte b, byte md);

byte MidPressed(void);
byte BotPressed(void);

byte num_chars(byte * c); /
a recipe line

void configFPGA(void);
void updateFPGA(void);

/I This delay function can be used to disable (ADC)
void delay(unsigned int cycle);

/Ibyte testPhrase[22] = "This is a test phrase"; /
/Ibyte *testPhrasePtr = testPhrase;

/I----Main loop

void main(void) {

Home.lines[0] = "Dinner";
Home.lines[1] = "Dessert";
Home.lines[2] = "Breakfast";

Dinner.lines[0] = "Curry Chicken";
Dinner.lines[1] = "Golden Chicken";
/[Dinner.lines[2] = "Chicken Cordon Blue";

"Allmund Torte";
"Raspberry Chocolate Cake";
"Pumpkin Chocolate Chip Cooki

Dessert.lines[0] =
/IDessert.lines[1] =
/IDessert.lines[2] =
/IBreakfast.lines[0] = "Pancakes";
/[Breakfast.lines[1] = "Waffles";

/IBreakfast.lines[2] = "Omelettes";

/ counts the number of charachters in

command recognition on the other uc

| Extra byte for zero terminator

es";

/I----Dinners

Curry_Chicken.lines[0] = "1 box of ehs & B Golden

minutes";

Curry_Chicken.lines[1] = "1 pound cut chicken or s
Curry_Chicken.lines[2] = "1 chopped onion";
Curry_Chicken.lines[3] = "3 sliced or 2 cups baby
Curry_Chicken.lines[4] = "1 or 2 potatoes cut into
Curry_Chicken.lines[5] = "Saute meat and onions fo
Curry_Chicken.lines[6] = "Add 3 cups water and bri
Curry_Chicken.lines[7] = "Break curry blocks and a
Curry_Chicken.lines[8] = "Add carrots and potatoes

Curry_Chicken.lines[9] = "Serve over rice";

Golden_Chicken.lines[0] = "4 chicken breasts cut

Golden_Chicken.lines[1] = "2 cans of Golden Mushro
Golden_Chicken.lines[2] = "2 cups sliced or baby c

Golden_Chicken.lines[3] = "1 medium onion chopped

//----Desserts

Golden_Chicken.lines[4] = "A pinch of nutmeg";
Golden_Chicken.lines[5] = "About one half cup chic
Golden_Chicken.lines[6] = "Saute the chicken and t
Golden_Chicken.lines[7] = "Add all, and cook for 3
Golden_Chicken.lines[8] = NULL;
Golden_Chicken.lines[9] = NULL;

/-k
Chicken_Cordon_Blue.lines[0
Chicken_Cordon_Blue.lines[1
Chicken_Cordon_Blue.lines[2
Chicken_Cordon_Blue.lines[3
Chicken_Cordon_Blue.lines[4
Chicken_Cordon_Blue.lines[5
Chicken_Cordon_Blue.lines[6
Chicken_Cordon_Blue.lines[7
Chicken_Cordon_Blue.lines[8
Chicken_Cordon_Blue.lines[9
*

"Chicken Cordon Blu
"Chicken Cordon Blu
"Chicken Cordon Blu
"Chicken Cordon Blu
"Chicken Cordon Blu
"Chicken Cordon Blu
"Chicken Cordon Blu
"Chicken Cordon Blu
"Chicken Cordon Blu
"Chicken Cordon Blu

Almond_Torte.lines[0] = "1 cup sugar";

Almond_Torte.lines[1] = "1 cup flour";

Almond_Torte.lines[2] = "Mix flour and sugar";
"Add 2 eggs";

Almond_Torte.lines[4
Almond_Torte.lines[5

]
]
]
Almond_Torte.lines[3]
]
]
Almond_Torte.lines[6]

minutes";

"Add 1 teaspoon almond ex
"Mix well and pour into a
"Sprinkle sliced almonds

Almond_Torte.lines[7] = NULL;
Almond_Torte.lines[8] = NULL;
Almond_Torte.lines[9] = NULL;

Raspberry_Chocolate_Cake.lines[0
Raspberry_Chocolate_Cake.lines[1
Raspberry_Chocolate_Cake.lines[2
Raspberry_Chocolate_Cake.lines[3
Raspberry_Chocolate_Cake.lines[4
Raspberry_Chocolate_Cake.lines[5
Raspberry_Chocolate_Cake.lines[6
Raspberry_Chocolate_Cake.lines[7
Raspberry_Chocolate_Cake.lines[8
Raspberry_Chocolate_Cake.lines[9

/-k

"Raspberry Ch
"Raspberry Ch
"Raspberry Ch
"Raspberry Ch
"Raspberry Ch
"Raspberry Ch
"Raspberry Ch
"Raspberry Ch
"Raspberry Ch
"Raspberry Ch

—_ e e e e T S e e

Pumpkin_Chocolate_Chip_Cookies.lines[0] = "Pumpki
Pumpkin_Chocolate_Chip_Cookies.lines[1] = "Pumpki
Pumpkin_Chocolate_Chip_Cookies.lines[2] = "Pumpki
Pumpkin_Chocolate_Chip_Cookies.lines[3] = "Pumpki
Pumpkin_Chocolate_Chip_Cookies.lines[4] = "Pumpki
Pumpkin_Chocolate_Chip_Cookies.lines[5] = "Pumpki
Pumpkin_Chocolate_Chip_Cookies.lines[6] = "Pumpki
Pumpkin_Chocolate_Chip_Cookies.lines[7] = "Pumpki
Pumpkin_Chocolate_Chip_Cookies.lines[8] = "Pumpki
Pumpkin_Chocolate_Chip_Cookies.lines[9] = "Pumpki

Curry blocks";

hrimp";

carrots";

squares";

r 10 minutes";

ng to a boil";

dd";

and boil on low for 30

into bite sized pieces";

tract";

om Soup";
arrots";

ken broth";
he onion for 10 minutes";
0 minutes on medium heat";

foil lined 9 inch pie pan";
on top and bake at 375 degrees for 20

ocolate Cake 1";
ocolate Cake 2";
ocolate Cake 3";
ocolate Cake 4";
ocolate Cake 5";
ocolate Cake 6";
ocolate Cake 7";
ocolate Cake 8";
ocolate Cake 9";
ocolate Cake 10";

n Chocolate Chip Cookies 1";
n Chocolate Chip Cookies 2";
n Chocolate Chip Cookies 3";
n Chocolate Chip Cookies 4";
n Chocolate Chip Cookies 5";
n Chocolate Chip Cookies 6";
n Chocolate Chip Cookies 7";
n Chocolate Chip Cookies 8";
n Chocolate Chip Cookies 9";
n Chocolate Chip Cookies 10"

/I----Breakfasts

Pancakes.lines[0] = "Pancakes 1";
Pancakes.lines[1] = "Pancakes 2";
Pancakes.lines[2] = "Pancakes 3";
Pancakes.lines[3] = "Pancakes 4";
Pancakes.lines[4] = "Pancakes 5";
Pancakes.lines[5] = "Pancakes 6";
Pancakes.lines[6] = "Pancakes 7";
Pancakes.lines[7] = "Pancakes 8";
Pancakes.lines[8] = "Pancakes 9";
] =

Pancakes.lines[9

Waffles.lines[0
Waffles.lines[1
Waffles.lines[2
Waffles.lines[3
Waffles.lines[4

] = "Waffles 1";

]

]

|
Waffles.lines[5]

]

]

|

]

"Waffles 2";
"Waffles 3";
"Waffles 4";
"Waffles 5";
"Waffles 6";
"Waffles 7";
"Waffles 8";
"Waffles 9";
"Waffles 10";

Waffles.lines[6
Waffles.lines[7
Waffles.lines[8
Waffles.lines[9

"Omelettes 1";
"Omelettes 2";
"Omelettes 3";
"Omelettes 4";

Omelettes.lines[0] =
="Omelettes 5"

Omelettes.lines[1
Omelettes.lines[2
Omelettes.lines[3
Omelettes.lines[4
Omelettes.lines[5
Omelettes.lines[6
Omelettes.lines[7
Omelettes.lines[8
Omelettes.lines[9

"Omelettes 6";
"Omelettes 7";
"Omelettes 8";
"Omelettes 9";

[l P P R el e e LB e

*
Enablelnterrupts;
LOC = HOME;
CURR = NULL;

/[Turn on a green led indicating program is runni
//PTB5 will probably need to be used also as the
/IADC on the other uc we could use PTB5 as a red
/ltext-to-speech is speaking. We could make a ti

/Iso we could blink the led
PTBDD_PTBDDS = 1;
PTBD_PTBDS5 = 1;

initialize SCI();
configurellC();
configFPGA();

init_screen_loc();
init_flags();

/I speaks predefined phrase 1, "Welcome to recipe
/[this is already done when the text-to-speech c

/lwelcome();

/I call this function to speak a line of a recipe

line

/I and the number of charachters in that line

/IspeakSPO03(testPhrasePtr,22);

/I these functions are not necessary if we run ou

/Nloop here forever
while(1){
/Iwait for touch on touch-screen

if((buffer_index >= MAX_BUFFER_SIZE) && linput

x0 = ReceivedBuffer[4]; //1

"Pancakes 10";

"Omelettes 10";

ng

indicator to disable the

led indicating when the
mer interrupt every second

dia, the digital cook book!"
hip is powered on

by passing in a pointer to a recipe

t of code space

&& (ReceivedBuffer[2] == 4)){

x1 = ReceivedBuffer[3]; //0
y0 = ReceivedBuffer[6]; //3
y1 = ReceivedBuffer[5]; //2

/I Middle button pressed? This is one of the

ans = MidPressed();

if(ans){
screen_loc.round_buttons = ans;
screen_loc.button_event = ROUND_CHANGED;
input=1

}

/I Bottom button pressed? This is one of the
else{
ans = BotPressed();
if(ans){
screen_loc.square_buttons = ans;

screen_loc.button_event = SQUARE_CHANGED;

input =1
telse{
buffer_index =0
start = 0;
}
}
}
/Iwait for input or done, done meaning we execu
if(input && done){
done = 0;

if(LOC == HOME){

'round’ buttons

'square' buttons

ted a valid button press.

doHOMEthings(screen_loc. round buttons,

screen_loc.square_buttons, screen_loc.button_event)

Jelse if (LOC == DINNER){

doDINNERthings(screen_loc. round buttons,

screen_loc.square_buttons, screen_loc.button_event)

Jelse if (LOC == DESSERT){

doDESSERTthings(screen_loc. round buttons,

screen_loc.square_buttons, screen_loc.button_event)

Jelse if (LOC == BREAKFAST){

doBREAKFASTthings(screen_| Ioc round_buttons,

screen_loc.square_buttons, screen_loc.button_event)

Jelse if(LOC == RECIPE){

doRECIPEthings(screen_loc. round buttons,

screen_loc.square_buttons, screen_loc.button_event)

}
}
__RESET_WATCHDOG(); // feeds the dog
}lend while
return;

}

/I----Initializations

/I Function to configure the IIC module.
void configurellC(){

SOPT2_IICPS=1; // Use PTB6(SDA) and PTB7(

IICC_IICEN = 1; /I Enable 1IC

IICC_IICIE = 1;
IICA = SPO3_ADDRESS; // IIC Address
IICF = 0x4B; /I Set IIC frequency 100kb

IIC_STEP = 1IC_READY_STATUS;
}

void initialize SCI(){
PTBPE_PTBPEO = 0; //dissable pull up on PTB
SCIBDH = 0x00;

SCIBDL = Ox1A; /I The baud rate is 9600b
SCIC1 = 0x00; /I SCIC1: LOOPS=0,SCISWAI
SCIC2 =0x2C; /I SCIC2: TIE=0,TCIE=0,RI
SCIC3 = 0x00; /I SCIC3: R8=0,T8=0,TXDIR

scL)

ps

0
ps
=0,RSRC=0,M=0,WAKE=0,ILT=0,PE=0,PT=0

E=1,ILIE=0,TE=1,RE=1,RWU=0,SBK=0 //
=0,TXINV=0,0RIE=0,NEIE=0,FEIE=0,PEIE=0

z=0;
while(z<10){
ReceivedBuffer[z] = 0;
Z++;
}
}

void init_screen_loc(){
screen_loc.round_buttons = DEFAULT;
screen_loc.square_buttons = DEFAULT;
screen_loc.button_event = DEFAULT;

}

void init_flags(){
done = 1;
input = 0;
buffer_index = 0;
start = 0;

}

void null_all(recipe_line_s * recipe){
for(z = 0; z < 10; z++){
(recipe->lines[z]) = NULL;

byte MidPressed(void){
byte xrange = 0;
M--mme - first check the MIDDLE value
if(x0 >= 0x03) && (X0 <= 0x05)){
xrange = 1;
}

if(xrange){
[[-=-mmmm for MIDDLEO
if((yO >= Ox0A) && (y0 <= 0XOC)){
return MIDDLEQO;

}

/A —— for MIDDLE1

if((yO >= 0x08) && (yO <= 0X0A)){
return MIDDLEZ;

[[-=mmmmmmm e for MIDDLE2
if((yO >= 0x06) && (y0 <= 0x08))¥{
return MIDDLEZ;
}
}
return O;

}

byte BotPressed(void){
byte xrange = 0;
byte yrange = 0;

[[-=-=mmmee- next check the BOTTOM value
if((yO >= 0x02) && (y0 <= 0x04))}{
yrange = 1,

}

if(yrange){
f--=--m--- for BOTTOMO
if(x0 >= 0x03) && (x0 <= 0x06)){
return BOTTOMO;

}

[---=-=-=- for BOTTOM1
if(x0 >= 0x07) && (X0 <= 0x0A)){
return BOTTOM1,

}

[---=-=-=- for BOTTOM2

if(x0 >= Ox0A) && (x0 <= OxOE)){
return BOTTOMZ2;

}
Ylend of yrange for BOTTOM
return O;

}

void doHOMEthings(byte m, byte b, byte md){
/Ibyte i=0;
if(md == ROUND_CHANGED){
if(m == MIDDLEOQ){

//display Dinner Menu
recipeNumber = 1;
updateFPGA();

LOC = DINNER;

speakPredefined(2);

}
else if(m == MIDDLE1){
//display Dessert Menu
recipeNumber = 2;
updateFPGA();
LOC = DESSERT;
speakPredefined(3);

}
else if(m == MIDDLE2){
//display Breakfast Menu, not yet implemented
recipeNumber = 3;
/lupdateFPGA();
//LOC = BREAKFAST;
/IspeakPredefined(4);

}

init_screen_loc();
init_flags();
}

void doDINNERthings(byte m, byte b, byte md){
if(md == ROUND_CHANGED){
LOC = RECIPE;
if(m == MIDDLEOQ){
/ldisplay Curry Chicken
recipeNumber = 3;
updateFPGA();
CURR = &Curry_Chicken;
if(CURR != NULL){
num = num_chars(Dinner.lines[0]);
speakSP03(num, Dinner.lines[0]);

}

}
else if(m == MIDDLE1){
/ldisplay Golden Chicken
recipeNumber = 4;
updateFPGA();
CURR = &Golden_Chicken;
if(CURR != NULL){
num = num_chars(Dinner.lines[1]);
speakSP03(num, Dinner.lines[1]);

}

}
else if(m == MIDDLE2){
/ldisplay Chicken Cordon Blue, not yet implemen
constraints
recipeNumber = 5;
/lupdateFPGA();

on FPGA due to memory constraints

ted on FPGA due to memory

/ICURR = &Chicken_Cordon_BIlue;
/lif(CURR != NULL){

/I num = num_chars();

/I speakSP03(num, CURR->lines]In]);

1y
}

}
else if(md == SQUARE_CHANGED){
if(b == BOTTOM1){

recipeNumber = 0;
updateFPGA();
LOC = HOME;
CURR = NULL;
speakPredefined(6);
In = 255;
}

init_screen_loc();
init_flags();
}

void doDESSERTthings(byte m, byte b, byte md){
if(md == ROUND_CHANGED){
LOC = RECIPE;
if(m == MIDDLEOQ){

recipeNumber = 5;
updateFPGA();
CURR = &Almond_Torte;
if(CURR != NULL)
num = num_chars(Dessert.lines[0]);
speakSP03(num, Dessert.lines[0]);

}
}
else iflm == MIDDLE1){

recipeNumber = 2;
/lupdateFPGA();
/ICURR = &Raspberry_Chocolate_Cake;
Iif(CURR != NULL){
/I num = num_chars();
/I speakSP03(num, CURR->lines[In]);
11}

}
else if(m == MIDDLE2){

recipeNumber = 2;
/lupdateFPGA();
/ICURR = &Pumpkin_Chocolate_Chip_Cookies;
Iif(CURR != NULL){
/I num = num_chars();
/I speakSP03(num, CURR->lines[In]);

n
}

}
else if(md == SQUARE_CHANGED){
if(b == BOTTOM1){
recipeNumber = 0;
updateFPGA();
LOC = HOME;
CURR = NULL;
speakPredefined(6);
In = 255;
}

init_screen_loc();
init_flags();
}

void doBREAKFASTthings(byte m, byte b, byte md){

/IrecipeNumber = 0O;

/lupdateFPGA();
LOC = HOME;
CURR = NULL;
}
[*byte i=0;
if(md == ROUND_CHANGED)
LOC = RECIPE;
switch (m){
case MIDDLEO:
CURR = &Pancakes;
i=speak_line(&Pancakes);
break;
case MIDDLEZ1:
CURR = &Waffles;
i=speak_line(&Waffles);
break;
case MIDDLE2:
CURR = &0melettes;
i=speak_line(&Omelettes);
break;
default:
break;
}
}
else if(md == SQUARE_CHANGED){
switch(b){
case BOTTOML1:
LOC = HOME;
CURR = NULL;
speakPredefined(6);
/li=speak_line(&Home);
break;
default:
break;
}
init_screen_loc();
done = 1;
input = 0;
*/

void doRECIPEthings(byte m, byte b, byte md){
if(md == SQUARE_CHANGED){
if(b == BOTTOMO){
In--;
if(In >= 0 && In < 10){
if(CURR != NULL)Y
num = num_chars(CURR->lines[In]);
speakSP03(num, CURR->lines]In]);

}

else {
In=0;
num = num_chars(CURR->lines][In]);
speakSP03(num, CURR->lines[In]);

}

}
else if(b == BOTTOM1){
recipeNumber = 0O;
updateFPGA();
LOC = HOME;
CURR = NULL;
speakPredefined(6);
In = 255;

}
else if(b == BOTTOM2){
In++;
if(In <= 9 && (CURR->lines[In] != NULL)) {
if(CURR != NULL){
num = num_chars(CURR->lines]In]);

speakSP03(num, CURR->lines]In]);
}

else{
In=In--;
num = num_chars(CURR->lines][In]);
speakSP03(num, CURR->lines[In]);
}
}

init_screen_loc();
init_flags();
}

/lfunction to count the number of characters in one
byte num_chars(byte * c){
for(z = 0; *c I="\0"; z++){
Cc++;
}
/*
z=0;
while(((CURR->lines[In])[z]) != 0){
Z++;
}
*/
Z++;
return z;

}

void welcome(){
speakPredefined(1);
while(IIC_STEP>IIC_READY_STATUS)__RESET_WATCHDOG(
speechFooter(2);
while(IIC_STEP>IIC_READY_STATUS)__RESET_WATCHDOG(
}

void speakSP03(byte numberOfBytes,byte * recipePtr)
speechHeader(5);
while(IIC_STEP>IIC_READY_STATUS)__RESET_WATCHDOG(
speakLine(recipePtr,numberOfBytes);
while(IIC_STEP>IIC_READY_STATUS)__RESET_WATCHDOG(
speechFooter(2);
while(IIC_STEP>IIC_READY_STATUS)__RESET_WATCHDOG(

}

/I Functions to speak Predefined or General phrase
void speakPredefined(byte predefined){
clearPending();

1IC_DATA[0]=0x00;
IIC_DATA[1]=predefined; // Predefined Phrase

IIC_LENGTH = 2;
initialize Transmit();

}

void speakLine(byte *testPhrasePtr,byte numberOfByt
byte i,j;
numberOfBytes++;
numberOfBytes++;
clearPending();

1IC_DATA[0]=0x00;
IIC_DATA[1]=0x00;

Ne

while(testPhrasePtr[j] !="0") {

line of a recipe

); // wait for memory to be read

); // wait for memory to be read

{

); // wait for memory to be read
); // wait for memory to be read

); // wait for memory to be read

es) {

IIC_DATAJi] = testPhrasePtr[j];
j++;
i++;

}
IIC_DATA[]=\0";

while(i<80) {
IIC_DATAJi] = 0;
i++;

}

IIC_LENGTH = numberOfBytes;
initialize Transmit();

}

void speechHeader(byte numberOfBytes){
clearPending();

1IC_DATA[0]=0x00;
IIC_DATA[1]=0x00;
IIC_DATA[2]=0x00; // Volume 00=MAX
IIC_DATA[3]=0x05; // Speed
IIC_DATA[4]=0x03; // Pitch
IIC_DATA[5]=0x00;

IIC_LENGTH = numberOfBytes;
initialize Transmit();

}

void speechFooter(byte numberOfBytes){
clearPending();

1IC_DATA[0]=0x00;
IIC_DATA[1]=0x40;

IIC_LENGTH = numberOfBytes;
initialize Transmit();

}

/I Clear any pending IIC interrupt
void clearPending(void){
IICC_IICEN = 0;
IICC_IICEN = 1;
IICS;

}

// Initialize IIC transmit

void initializeTransmit(){
IIC_COUNTER =0;
IIC_STEP = IIC_HEADER_SENT_STATUS;
IIC_DATA_DIRECTION = 1;

IICC_IICIE = 1;
IICC_MST =0;
IICS_SRW =0;
IICC_TX=1; /I Select Transmit Mode
IICC_MST =1; /I Select Master Mod e (Send Start Bit) this sets the

BUS Busy flag
for(z=0;z<5;z++){

Y/ Small delay
IICD = SPO3_ADDRESS; /I Send selected slave a ddress

}

void updateFPGA(void) {
/Isend recipie number out A0-A4
PTAD = recipeNumber;

}

void configFPGA(){
/Ithis function is to set up the output pins for recipe data to FPGA
/IPTAPEX pull ups

/loutput 1 input O
PTBDD_PTBDD3 = 1; //these two lines are for the t est swtich
PTBD_PTBD3 = 1;

/IPTADO out

/IPTAD1 out

/IPTAD2 out

/IPTAD3 out

/IPTAD4 out

/IPTADS in

PTADD = 0x1F; //0001 1111 direction reg
PTAD = 0x00; //0000 0000 data reg

}

[/----Interrupts

/I Interrupt handler routine to manage all the even ts related to the 1IC module
interrupt 17 void Viic_ISR(void){
byte Temp;
byte dummyRead;
Temp = IICS; /I ACK the interrupt
IICS_IICIF = 1;
if(IICC_MST==1){ /I If we are the 1IC Mas ter
if(IIC_STEP == IIC_HEADER_SENT_STATUS){ // Head er Sent

IICC_TX = IIC_DATA_DIRECTION;
IIC_STEP = IIC_DATA_TRANSMISION_STATUS;
if(IICC_TX==0){ // If we are reading data cl ock in first slave byte
Temp = 1ICD;
return;
}
}

if(IIC_STEP == [IC_DATA_TRANSMISION_STATUS){ / / If byte transmision is in
progress.
If(IICC_TX==1){ II'If Maste ris sending data
to slave

/I Send the [IC_DATA to the slave
IICD = IIC_DATA[IIC_COUNTER]; // Send the next byte
IIC_COUNTER++;
if(IIC_LENGTH <= IIC_COUNTER){
IIC_STEP=IIC_DATA_SENT_STATUS; // Mark we a re done
sending Bytes

return;
/I wait until last byte sent

}
}
if(IIC_STEP==IIC_DATA_SENT_STATUS){ /I We ar e done with the transmition.
IIC_STEP=IIC_READY_STATUS; /I Reset o ur status flag
Temp = IICS; /I ACK the interrupt
IICS_IICIF=1;
IICC_TX=0;
1IICS_SRW=0;
IICC_MST=0;// Generate a stop condition
return;
}
}
else{ /I SLAVE OPERATION
if(IIC_STEP <= [IC_READY_STATUS){ If it

the first byte tranmited
IIC_STEP = [IC_DATA_TRANSMISION_STATUS;

IICC_TX = lICS_SRW,;
transmision reception status
IIC_COUNTER =1,
/I If we are receiving data read 1IC1D to
if(IICC_TX==0)
Temp = 1ICD;
return;

if(IICS_TCF==1){
if(IICC_TX == 0){

dummyRead = IICD;
IIC_COUNTER++;

return;
else{ /| Data sent by the s
if(IICS_RXAK==1){ // If byte is not ACK en
IICC_TX =0;
Temp = 1ICD;

/I If data is received
/INC_DATA[IIC_COUNTER]=IICD;

/I Set th

get free bus and get the next byte

store it on the buffer

lave
d transmision.

IIC_STEP = lIC_READY_STATUS;

return;

}
IICD = IIC_DATA[IIC_COUNTER];

IIC_COUNTER++;
return;
}

}
}

/linterrupt handler for receiving serial packets fr
interrupt 15 void Vscirx_ISR(void) {

/I if there is too much latency in this handler w
global

/I and let main take care of inserting it into th

byte Temp;

Temp = SCIS1; // Acknowledge Receiver Full Flag

if((SCID == 0x55) && (!start)){
start = 1;

}

if(start && (buffer_index < MAX_BUFFER_SIZE)X{
ReceivedBuffer[buffer_index] = SCID;
buffer_index++;

}
if(buffer_index == MAX_BUFFER_SIZE) && (Received
buffer_index = 0;
start = 0;
}
}

void delay(unsigned int cycle){
for(z = 0; z < cycle; z++){
}

}

Reci pe. h
#ifndef _ RECIPE_H_
#define _ RECIPE_H_

#define MASTER
#define IC_ERROR_STATUS 0
#define IC_READY_STATUS 1

om the touch screen
e will need only store the SCID into a

e array

Buffer[2] = 4)){

#define IC_HEADER_SENT_STATUS 2
#define IC_DATA_TRANSMISION_STATUS 3
#define IC_DATA_SENT_STATUS 4

#define HOME 0x00
#define NEXT 0x01
#define BACK 0x02

#define DINNER 0x11
#define DESSERT 0x12
#define BREAKFAST 0x13

#define RECIPE 0x14

#define MIDDLEO 0x30
#define MIDDLE1 0x31
#define MIDDLE2 0x32

#define BOTTOMO 0x40
#define BOTTOM1 0x41
#define BOTTOM2 0x42

#define DEFAULT 0x55

#define ROUND_CHANGED 0x60 //MCHANGED
#define SQUARE_CHANGED 0x61 //BCHANGED

#define MAX_BUFFER_SIZE 10

typedef struct {
char * lines[10];

}recipe_line_s;

typedef struct{

char round_buttons; //middle_val
char square_buttons; //bottom_val
char button_event;
}screen_place_s;

#endif

FFT

void fft_double (unsigned int p_nSamples, bool p_bl
double *p_IpRealln, double *p_Iplmagln,
double *p_IpRealOut, double *p_IpImagOut)

{
if(lp_IpRealln || !'p_IpRealOut || !p_IpImagOut)
unsigned int NumBits;

unsigned int i, j, k, n;
unsigned int BlockSize, BlockEnd;

double angle_numerator = 2.0 * PI;
double tr, ti;

if(IsPowerOfTwo(p_nSamples))
{

return;
}

if(p_bInverseTransform) angle_numerator = -an

NumBits = NumberOfBitsNeeded (p_nSamples);

nverseTransform,

return;

gle_numerator;

for(i=0; i < p_nSamples; i++)

j = ReverseBits (i, NumBits);
p_IpRealOut[j] = p_IpRealln[i];
p_lplmagOut[j] = (p_lplmagin == NULL) ? 0.0

BlockEnd = 1;
for(BlockSize = 2; BlockSize <= p_nSamples; Bl
{

double delta_angle = angle_numerator / (dou
double sm2 = sin (-2 * delta_angle);

double sm1 = sin (-delta_angle);

double cm2 = cos (-2 * delta_angle);

double cm1 = cos (-delta_angle);

double w = 2 * cm1,

double ar[3], ai[3];

for(i=0; i < p_nSamples; i += BlockSize)
ar[2] = cm2;
ar[1] = cm1,;

ai[2] = sm2;
ai[1] = smi;

for (j=i, n=0; n < BlockEnd; j++, n++
ar[0] = w*ar[1] - ar[2];
ar[2] = ar[1];
ar[1] = ar[0];
ai[0] = w*ai[1] - ai[2];
ai[2] = ai[1];
ai[1] = ai[0];
k = j + BlockEnd;
tr = ar[0]*p_IpRealOut[k] - ai[0]*p
ti = ar[0]*p_IpImagOut[k] + ai[0]*p

p_IpRealOut[k] = p_IpRealOut[j] - t
p_lplmagOut[k] = p_IplmagOut][j] - t

p_IpRealOut[j] +=tr;
p_lplmagOut([j] += ti;

}
}

BlockEnd = BlockSize;

if(p_blnverseTransform)
double denom = (double)p_nSamples;
for (i=0; i < p_nSamples; i++)

p_IpRealOut[i] /= denom;
p_IpImagOut[i] /= denom;

1 p_lplmagln[i];

ockSize <<=1)

ble)BlockSize;

_IplmagOut[k];
_IpRealOut[k];

r;
i;

FPGA code:

mai n. v
‘timescale 1ns / 1ps

module main(CLK, RESET, RGB, HSYNC, VSYNC, recipe, DATA, SW7, SW6, SW5, ADDR, CS0, OE,
WE,/*debug values*/hCount,vCount,blank,pblank,pixel ,SSG,AN,LED);

input CLK; //50MHz

input RESET;

input [4:0] recipe;
input [7:0] DATA;
input SW7;

input SW6;

input SW5;
output [18:0] ADDR;
output CSO;
output OE;
output WE;
output [2:0] RGB;
output HSYNC;
output VSYNC;

/ldebug

output [9:0] hCount;
output [9:0] vCount;
output blank;
output pblank;
output [7:0] pixel;
/lend debug

reg [18:0] ADDR_O = 0;
wire [18:0] ADDR_W;
wire [7:0] DATA;

reg clk25MHz = 0;

output [0:6] SSG;
output [0:3] AN;
output [0:7] LED;

reg [0:6] SSG;

reg [0:3] AN;

reg [0:7] LED;

reg clk_1Hz;

reg [0:24] counter_50M;

parameter BLANK =7'01111111;

parameter ZERO = 7'b0000001;

parameter ONE =7'h1001111;

parameter TWO =7'b0010010;

parameter THREE = 7'b0000110;

parameter FOUR =7'b1001100;

parameter FIVE = 7'b0100100;

parameter SIX = 7'b0100000;

parameter SEVEN =7'h0001111;

parameter EIGHT = 7'b0000000;

parameter NINE = 7'b0000100;

parameter A = 7'b0001000;

parameter B =7'b1100000;

parameter C =7'b0110001;

parameter D =7'b1000010;

parameter E =7'b0110000;

parameter F =7'b0111000;

vga vgal(.clk(clk25MHz), .reset(RESET), .addr_i(AD DR_O), .addr_o(ADDR_W),
.rgb(RGB), .hSync(HSYNC), .vSync(VSYNC), .data(DATA), .cs1(CS0), .0oe(OE), .we(WE),/*debug
values*/.hCount(hCount),.vCount(vCount),.blank(blan k),.pblank(pblank),.pixel(pixel));

assign ADDR = ADDR_W;

/I clock divider for VGA timing 50MHZ/2 = 25MHZ
always @(posedge CLK)

begin

clk25MHz <= clk25MHz"1;

end

/l output current recipe number on 7seg

/I 1Hz CLK
always @ (posedge CLK or posedge RESET)
begin
if (RESET)
begin
clk_1Hz <= 0;
counter_50M <= 0;
end
else
begin
counter_50M <= counter_50M + 1;
if (counter_50M == 25_000_000)
begin
counter_50M <= 0;
clk_1Hz <= ~clk_1Hz;
end
end
end

always @ (posedge clk_1Hz or posedge RESET)

begin
if (RESET)
begin

LED <= 811111111,

end
else
begin

LED <= 8'h00000000;

AN <= 4'b0111,

end
end

always @ (recipe)
begin

case (recipe[3:0])

0

~N O

: begin

: begin

: begin

: begin

: begin

: begin

SSG <= ZERO;
ADDR_O <= 19'h00000;
end

SSG <= ONE;
ADDR_O <=19'h12C00;
end

SSG <= TWO;
ADDR_O <= 19'h25800;
end

SSG <= THREE;
ADDR_O <= 19'h38400;
end

SSG <= FOUR;
ADDR_O <= 19'h4B000;
end

SSG <= FIVE;
ADDR_O <= 19'h5DCO00;
end

1 SSG <= SIX;
: SSG <= SEVEN;

/Il toggle the internal cl

/I turns on led's

/I enables 7-seg0 right most d

isplay

8: SSG <= EIGHT;
9: SSG <= NINE;

10: SSG <= A;
11: SSG <= B;
12: SSG <=C;
13: SSG <=D;
14: SSG <=E;
15: SSG <=F;
default: SSG <= BLANK; // all segments are off
endcase
end
endmodule
vga. v
‘timescale 1ns / 1ps
/1 640x480 @ 25MHz clk
module vga(clk, reset, rgb, hSync, vSync, addr_i, a ddr_o, data, csl, oe, we,/*debug
values*/hCount,vCount,blank,pblank,pixel);

/ldebug
output [9:0] hCount;
output [9:0] vCount;
output blank;
output pblank;
output [7:0] pixel;
/lend debug

input clk; //25MHz
input reset;

output [2:0] rgb;
output hSync;
output vSync;
output [18:0] addr_o;
input [18:0] addr_i;
input [7:0] data;
output cs1,;

output oe;

output we;

reg [9:0] vCount = 0;
reg [9:0] hCount = 0;
reg [7:0] pixel = 0;

reg [2:0] rgb = 3'b000;
reg vSync = 1,

reg hSync = 1;

wire blank;

reg pblank;

reg [18:0] memCount = 0;

/I horizantal pixel counter
always @(posedge clk or posedge reset)

begin
if(reset)
begin
hCount <= 0;
end
else if(lmemCount == 76800) //(640*480)/4 = 76800 , If this value is >
76800 the image scrolls, kinda cool
memCount <= 0; /lafter a whole frame
has been drawn reset the memory "pointer"
else
begin /I horiz. pixel counter rolls-over afte r793
pixels
if(hCount<793) // 31.77*PixelCLK-1 note:this is a constant we are

going to use 25MHz
begin

hCount <= hCount+1;

if(hCount%4 == 0) && ~blank) // increment mem

"pointer" every 4 counts of hCount

memCount <= memCount+1;

end
else
hCount <= 0;
end
end

/I vertical line counter
always @(posedge hSync or posedge reset)

begin
if(reset)
vCount <= 0;
else
begin
if(vCount<527) // total frame lines = 16784/31.7
a constant
vCount <= vCount + 1;
else
vCount <= 0;
end
end

/I horizantal sync control
always @(posedge clk or posedge reset)
begin
if(reset)
hSync <=1,
else
begin
if(hCount>=664 && hCount<759)
<23> + ViewablePixels+?Lblank?+1
hSync <= 0;
hsync period = 3.77*PixelCLK+1
else
hSync <=1,
end
end

/I vertical sync control
always @(posedge hSync or posedge reset)
begin
if(reset)
vSync <= 1;
else
begin

/I hsync start =

if(vCount>=491 && vCount<493) // vsync start = .

ViewableLines
vSync <= 0;
vsync period = .064*PixelCLK + 1
else
vSync <=1,
end
end

/I blank video outside of visible region: visible
assign blank = (hCount>=640 || vCount>=480) ? 1:0;

always @(posedge clk or posedge reset)
begin
if(reset)
pblank <= 0;
else
pblank <= blank;

region 640x480

ory

7 - 1 note:this is

.94*PixelCLK

1

45*PixelCLK +

I

end

assign csl = 0;
assign we = 1;

assign oe = blank; //fenable the RAM outputs when v

assign addr_o = addr_i+memCount;

always @(posedge clk or posedge reset)

pixel <= 0;

[Ithis is reading memory every 4 counts of hCoun
if(hCount[1:0] == 2'b00)

begin
if(reset)
else
begin
else
end
end

pixel <= data;

pixel <= pixel[7:0]<<2; //left shift pixel regi

always @(posedge clk or posedge reset)

rgh <= 3'n000;

if(pblank == 1'b0)

begin
if(reset)
else
begin
begin
RGB
end
else
end
end
endmodule
mai n. ucf

NET "CLK" LOC ="T9",

case(pixel[7:6]) //[1:0] only uses bottom 3 bit

2'b00: rgb <= 3'b000; //black

2'b01: rgb <= 3'b111; //white

2'b10: rgb <= 3'b001; //blue

default: rgb <= 3'h100; //red
endcase

rgb <= 3'b000; //black

NET "RESET" LOC = "L14"; #Button3 active high

#NET "recipe<0>" LOC = "C10";
#NET "recipe<1>" LOC = "E10";
#NET "recipe<2>" LOC = "C11";
#NET "recipe<3>" LOC = "D11";
#NET "recipe<4>" LOC = "C12",

switches

#NET "recipe<0>" LOC = "F12"
#NET "recipe<1>" LOC = "G12"
#NET "recipe<2>" LOC = "H14";
#NET "recipe<3>" LOC = "H13";
#NET "recipe<4>" LOC ="J14";
#B14,6,8,10,12

NET "recipe<0>" LOC ="C10";
NET "recipe<1>" LOC = "E10";
NET "recipe<2>" LOC ="C11";

ideo is not blanked

t which is 4 pixels

ster

s for color

NET "recipe<3>" LOC ="D11";
NET "recipe<4>" LOC ="C12";

NET "SW7" LOC = "K13",
NET "SW6" LOC = "K14",
NET "SW5" LOC = "J13";

7-segement display

NET "SSG<0>" LOC ="E14";
NET "SSG<1>" LOC ="G13";
NET "SSG<2>" LOC ="N15";
NET "SSG<3>" LOC ="P15";
NET "SSG<4>" LOC ="R16";
NET "SSG<5>" LOC ="F13";
NET "SSG<6>" LOC ="N16";
#NET "SSG<7>" LOC ="P16";
NET "LED<0>" LOC ="K12";
NET "LED<1>" LOC ="P14";
NET "LED<2>" LOC ="L12";
NET "LED<3>" LOC = "N14";
NET "LED<4>" LOC ="P13";
NET "LED<5>" LOC ="N12";
NET "LED<6>" LOC ="P12";
NET "LED<7>" LOC ="P11";
NET "AN<0>" LOC ="D14";
NET "AN<1>" LOC ="G14";
NET "AN<2>" LOC = "F14"
NET "AN<3>" LOC ="E13";

NET "RGB<0>" LOC = "R11"; #blue
NET "RGB<1>" LOC = "T12"; #green
NET "RGB<2>" LOC ="R12"; #red
NET "HSYNC" LOC ="R9";

NET "VSYNC" LOC ="T10"

#NET "CS1" LOC = "B7"; #FLASH
NET "CS0" LOC = "A5"; #SRAM
NET "OE" LOC = "A4";

NET "WE" LOC ="A3";

NET "ADDR<0>" LOC ="E6";
NET "ADDR<1>" LOC ="C5";
NET "ADDR<2>" LOC ="C6";
NET "ADDR<3>" LOC ="C7";
NET "ADDR<4>" LOC ="C8";
NET "ADDR<5>" LOC ="C9";
NET "ADDR<6>" LOC ="B8";
NET "ADDR<7>" LOC ="A7";
NET "ADDR<8>" LOC ="A9";
NET "ADDR<9>" LOC ="A8";
NET "ADDR<10>" LOC = "A10";
NET "ADDR<11>" LOC = "B10";
NET "ADDR<12>" LOC = "B12";
NET "ADDR<13>" LOC = "B11";
NET "ADDR<14>" LOC = "B13";
NET "ADDR<15>" LOC = "A12";
NET "ADDR<16>" LOC = "B14";
NET "ADDR<17>" LOC = "A13";
NET "ADDR<18>" LOC = "D9",

NET "data<0>" LOC = "D5";
NET "data<1>" LOC = "D6";
NET "data<2>" LOC = "E7";
NET "data<3>" LOC ="D7";
NET "data<4>" LOC = "D8";
NET "data<5>" LOC = "D10",
NET "data<6>" LOC = "B4";
NET "data<7>" LOC = "B5";

test VAA. v
‘timescale 1ns / 1ps
module testVGA,;

/Il Inputs

reg CLK;

reg RESET;
reg [4:0] recipe;
reg [7:0] DATA,;

/I Outputs

wire [5:0] RGB;
wire HSYNC;
wire VSYNC,;
wire [18:0] ADDR,;
wire CSO;

wire OE;

wire WE;

wire [9:0] hCount;
wire [9:0] vCount;
wire blank;

wire pblank;

wire [7:0] pixel;

/I Instantiate the Unit Under Test (UUT)

main uut (
.CLK(CLK),
.RESET(RESET),
.RGB(RGB),
.HSYNC(HSYNC),
.VSYNC(VSYNC),
.recipe(recipe),
.DATA(DATA),
.ADDR(ADDR),
.CS0(CS0),
.OE(OE),
.WE(WE),
.hCount(hCount),
.vCount(vCount),
.blank(blank),
.pblank(pblank),
.pixel(pixel)

)i

always
begin
#1
CLK=CLK"1;
end

initial begin
/I Initialize Inputs
CLK =0;
RESET =0;
recipe = 0;
DATA =0;

/I Wait 100 ns for global reset to finish
#100
$display("\nStarting tests...");
RESET = 0;
#10
while(1)
begin
RESET = 0;
#10;
end
end

endmodule

