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Introduction  

Paper is the foundation of modern society.  By itself, paper doesn’t seem like much of a building 
block, but when the whole of recorded history, research, and literature depends on paper to 
convey it from one generation to the next, then paper’s vital role in our lives becomes more 
apparent.  Add in the countless trivial uses that everyone has for paper – from taking notes in 
class, to working out problems, to writing grocery lists – and it’s not hard to see why paper is 
available in every color, shape and size, and can be found in nearly every corner of the inhabited 
Earth.  

Paper offers a wide variety of excellent features: it is energy efficient, cheap, compact, has a 
wide viewable angle, a simple interface, and no content restrictions or user constraints (other 
than the physical constraints of not breaking the paper).  But paper does have a significant 
drawback: it piles.  More specifically, as we use up paper, we often need to save what we’ve 
written on it, and that saved paper consumes more and more space.  

PEN (Personal Electronic Notebook) is intended to replace the piles of paper that are so 
ubiquitous in modern life.  PEN provides a cost-effective, organized, intuitive, “green” 
alternative to paper.  It offers the advantage of an electronic first-copy, reducing the need to type 
notes after the fact or scan documents for electronic manipulation or distribution.  It also sports 
an interface that is just as simple and intuitive as real paper.  PEN is battery efficient, offering 20 
hours of use between recharges, and has enough storage on unit for nearly 2000 pages.  Since 
PEN can offload those pages to a larger electronic storage device, such as a home PC, PEN 
offers consumers the chance to remove every pile of paper in their lives and replace them with a 
single, simple alternative.  

For PEN to meet the needs currently met by paper, it must be simple to use and resistant to 
failure.  Paper’s simplicity and versatility are mirrored in PEN’s interface.  Most importantly, 
PEN is designed from the ground-up to never “crash,” as a traditional computer might.  Just as a 
sheet of paper never “locks up,” PEN’s hardware-level operating system is much more resilient 
than a notebook or laptop computer.  The PEN philosophy is: Simpler and Sturdier.  

Functionality  

PEN presents users with a natural and simple interface.  The viewing screen is divided into two 
portions: the paper and the dashboard.  The Dashboard is the lower portion of the screen and is 
divided into buttons and a single readout; the paper is the upper, majority portion of the screen 
and can be drawn on with the stylus.  Drawing to the paper is as simple as pressing down on the 
stylus.  One end of the stylus will draw a thin, black line that follows the pen-point.  The other 
end will remove existing black lines with a broad eraser brush.  

The dashboard has several intuitive buttons.  The Bookmark button marks the currently visible 
page; the effect of bookmarking a page will be discussed shortly.  The Background button 
toggles the various backgrounds for the currently viewable page.  The Insert Blank button 
inserts a new, blank page, sequentially in front of the current page.  The Insert Copy button 



inserts a copy of the current page in front of the current page.  Finally, the Delete button destroys 
the currently viewed page.  

The Next page and Previous page buttons move to the next and previous sequential pages, 
respectively.  The Next Bookmark and Previous Bookmark buttons move forward or backward 
in sequence until a bookmarked page is encountered; this makes dividing PEN’s many pages into 
sections simple, providing an intuitive way to create organization in the notebook.  

Technical Specs  

PEN Hardware  

PEN is centered around an Intel PXA255 ARM processor, embedded in a Gumstix 400xm 
motherboard with a Gumstix Breakout gs daughterboard.  The motherboard/daughterboard 
environment give the processor access to an LCD display controller, a USB interface, 3 UART 
interfaces, multiple GPIO signals, and other accessories (those used will be specifically referred 
to as introduced).  All these resources are pre-mapped into the processor’s memory, allowing 
rapid DMA access.  The PXA255 uses ARM assembly, for which many open-source assemblers 
and compilers are available.  The current version of PEN’s software was compiled from C and 
assembled into ARM assembly by the Arm ADT software package, freely available from the 
ARM corporation.  

The CPU and all hardware provided on-board runs at 5 VDC; this includes the Flash memory 
and SDRAM.  

The high-level hardware component relationship is illustrated in figure 1:  



 

Figure 1: Hardware block diagram  

The primary output mechanism is the display.  The display actually consists of two separate 
hardware components: and LCD and a backlight.  The backlight is simply a powered lamp that 
takes a pulse-width modulated signal as input for brightness control; the CPU generates this 
signal and it is directly fed to the lamp.  There is also a single line used for reset, to reactivate the 
backlight after power interruption.  The display takes an LVDS serial signal, a common LCD 
standard.  However, the Gumstix LCD controller outputs a TTL parallel signal, a competing 
LCD standard.  To bridge these components, PEN includes an EBKLVDS2 converter, which 
takes a TTL input and produces an LVDS output.  The converter is powered by externally 
provided 3.3 VDC.  

The backlight runs on DC voltage, from 7V to 15V (theoretical; we never actually “pushed” the 
upper voltage limit).  This power is largely used to drive the screen inverter, which steps the DC 
voltage up to a high-voltage AC (>100 VAC) signal at about 56 kHz.  The inverter’s output 
drives the lamp used by the backlight.  The display uses 3.3V logic to control the liquid crystal 
array based on LVDS input.  

Because the TTL and LVDS standards are very specifically defined in generally available 
literature, they are for simplicity’s sake excluded from this document.  

The CPU has access to 64 megabytes of SDRAM for fast-access memory.  The memory is 
“internal” to the CPU, meaning to explicit external memory access mechanisms are required.  
Similarly, the CPU has access to 16 megabytes of Flash memory for permanent (powerless) 
storage.  Although the Flash is likewise “internal” to the CPU, is cannot be accessed in the same 
way as the SDRAM.  Because Flash memory is, by design, block erasable only, the Flash 
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memory is treated largely as an external component.  The memory is “primed” by sending 
specific commands to its block-0 memory address; these commands set the memory to “read-
mode” or else instruct the Flash to erase specific blocks and, if necessary, to write data to those 
recently erased blocks.  In read-mode, the Flash behaves simply as an extension of internal 
memory, in that it can be randomly accessed via the familiar memory structure; for writing 
purposes, however, the Flash is treated as an external device, and data is exported through the 
established command protocols.  

The Flash memory was manufactured by Intel, and the command structure for interacting with it 
is freely available online from Intel Corp.  For specifics on PEN’s implementation, refer to the 
source code in the appendices of this document.  

PEN’s primary input mechanism is a Wacom digitizer and stylus.  The digitizer uses 3.3VDC to 
power its logic and a huge array of tiny, powered coils.  The stylus contains a similar coil array, 
although smaller and more directionally oriented.  As the stylus approaches the array, the 
inductance interaction between the coils creates current variations; these variations are measured 
and interpreted by the digitizer logic to determine pen position and point pressure (the force with 
which the pen’s tip is being pressed).  This information is then output to a UART serial interface.  
The CPU receives this input on one of its DMA-mapped UART channels, and then processes the 
information as described later.  The digitizer’s UART information is at 19200 baud, 8-bt format 
with no parity bits.  

For debugging and programming purposes, PEN provides a terminal output via a powered 
RS232 serial output.  The terminal runs at 115200 baud, 8-bit format with no parity bits, and is 
used for both output and input.  PEN’s terminal interface will be described more fully in the 
software section; specifically, the terminal interface is intended for connection to a COM port on 
a PC, and has not been tested with any other device.  

The CPU has DMA access to an Intel-designed USB controller; this controller interfaces the 
USB interface as defined in Intel’s USB standard.  Because USB is not featured prominently in 
the current version of PEN, this document does not include significant discussion of USB 
operation standards.  

Power is provided by the power bus illustrated in figure 2:  



 

Figure 2: Power circuit schematic  

PEN is designed to draw power primarily from a 3-cell 11.1VDC lithium-ion battery.  This 
battery supplies a single 11.1V signal, which goes directly to the display (the “screen load”); the 
same signal also passes through a voltage regulator to produce a 5 VDC signal for use by the 
CPU and Gumstix components (the “logic load”).  This 5 VDC signal is further reduced to 3.3 
VDC by another regulator for use by the digitizer and display logic, and the LVDS converter.  



To provide non-battery power, PEN has a second power input channel, intended for a 12VDC 
input provided by a standard AC/DC adapter plugged in to a wall socket.  This “wall signal” not 
only powers PEN while present, but charges the battery simultaneously.  To accomplish this, a 
specially designed lithium-ion battery charger is integrated and powered only by the wall signal; 
it has no access to the battery power circuit.    

The volatile nature of lithium based batteries precludes a constant-current charging scheme, and 
in fact requires that the battery itself be completely isolated from the power circuit while in 
charge mode.  To accomplish this, DC relays are used to disconnect the battery from the circuit 
while the wall signal is present.  The battery is also constantly plugged in to the charger.  Thus, 
when the wall signal is introduced, the battery is instantly disconnected from the circuit, and the 
charger activates, charging the battery; at the same time, PEN experiences only a momentary 
interruption in power supply due to the transfer.  To counter this interruption, the “logic load” is 
in parallel to a high capacitance, as is visible in the schematic; this capacitance ensures that the 
approximately 1 ms interruption does not cause a system reset.  The “screen load” is not 
insulated against interruption because the load is too excessive to be protected by reasonably 
available capacitors.  The power loss does cause the screen to go blank; however, once power is 
restored (approx 1 ms after the blackout) the CPU sends a reset signal to the backlight, which 
causes it to resume normal operation.  

The DC relay system pictured makes use of single-pole, single-throw relays and a single 
optoisolator.  The optoisolator is analogous to a “normal closed” DC relay, which passes current 
from the battery to the DO relays.  DO relays are “normal open;” in the presence of only the 
battery, these relays are energized and closed by the battery signal coming through the 
optoisolator.  The battery is then connected to the main power circuit through these relays.  
When the wall signal is introduced, it closes the optoisolator; the loss of current from the 
optoisolator causes the DO relays to de-energize and open, which isolates the battery in an open 
circuit.  The battery is then safe to charge.  

PEN Software  

PEN is operated by a threaded OS.  This OS ensures proper display, processes digitizer input, 
interacts with the terminal, and manages memory.  The OS runs five primary threads.  PEN’s 
thread scheduler is round-robin; no thread is weighted above any other.  Hardware interrupts are 
preemptive over any thread, although the information produced by any interrupt may not be 
applicable to all threads.  

Before examining PEN’s threads, it is instrumental to discuss the PEN lexicon as used in this 
document.  A page refers to the information corresponding to a single display, analogous to a 
page of paper in a notebook.  Thus, when discussing the movement of pages in memory, the 
reader is reminded to think of blocks of 1024x768 pixel structures, and not virtual memory pages 
or any other page structure used in computer science.  Pages are stored in three locations.  The 
primary cache, resident in SDRAM, contains four pages in decompressed format.  Decompressed 
pages consist of 1024x768 pixel structures, each of which contains information about that pixel’s 
color.  The LCD controller receives a pointer to one of these four cache slots, indicating where in 
memory it should read information for export to the screen; thus, the primary cache has one “on-



screen” page and three “off-screen” pages.  Pages that are not cached are stored in LZW 
compressed format in a FAT32 drive on the SDRAM.  Finally, this FAT32 drive is mirrored onto 
the Flash memory for non-volatile storage.  

Pages are stored in sequential order.  When a new page file is created, it is assigned a random 
numeral for a file name; that numeral is then mapped to a page number, or sequence number.  
Sequence numbers are stored in the booklet.dat file, in the root of the FAT drive.  When a “next 
page” or “previous page” event is invoked, the OS looks up the current page’s sequence number, 
increments or decrements, and then looks up the page file associated with the resulting sequence 
number.  That file is then displayed.  

The first of PEN’s five threads is the main thread.  The main thread is responsible for the 
display and the processing of digitizer input.  This thread executes a loop in which is reads the 
digitizer input buffer and translates that input into either draw or keypress events.  The digitizer 
buffer and its processing will be discussed in detail later; draw events represent input on the 
“paper” area of the display, while keypress events represent input on the dashboard area.  For 
draw events, the main thread alters the on-screen page by writing to that page’s cache location.  
For keypress events, the thread invokes the appropriate method for the key pressed.  Because the 
LCD controller uses a pointer to a predefined cache space location to update the screen, the main 
thread only needs to write pixel changes to that location to update the screen; the controller 
displays the changes when it automatically reads the page’s contents.  

The second thread is the terminal thread.  The terminal thread scans the RS232 channel for 
input, parses terminal commands, and invokes the appropriate system methods.  It also provides 
terminal echo and diagnostic output.  

The third thread is the cache manager.  The cache manager selects which pages will be 
decompressed and placed in the primary cache, and then decompresses those pages from the 
FAT drive into a cache slot.  The cache manager always ensures that the two sequential 
neighbors of the currently viewed page are in cache, and generally uses a last-accessed 
replacement policy.  

The fourth thread is the FAT manager.  The FAT manager scans the cache for dirty (changed) 
pages.  When a page is dirty, the FAT manager compresses the page into a GIF file and 
overwrites that page’s existing GIF file in the FAT drive, thus updating the page in FAT memory 
to reflect its current status in cache.  The FAT manager then marks the page as clean.  The FAT 
manager handles compression in the event of a “page dump,” where a dirty page must be 
removed from cache to make room for a desired page.  

The final thread is the Flash manager.  The Flash manager periodically compares the contents 
of the SDRAM FAT drive to the FAT image stored on Flash memory; when changes are found, 
the Flash manager erases the corresponding Flash blocks and mirrors the information from the 
SDRAM FAT drive onto the Flash.  In this way, the Flash manager ensures that PEN’s non-
volatile memory is up-to-date, in the event of unexpected power loss.  



PEN’s software is driven by interrupts.  The Wacom digitizer’s UART channel has a dedicated 
interrupt to process digitizer input.  The digitizer interrupt handler simply adds the stylus’ current 
position to a buffer of digitizer inputs, and then returns control to the thread manager.  When the 
main thread runs, it empties as many of these buffered inputs as possible.  If an input is preceded 
by a period of inactivity, it is considered the start of a new line; any subsequent inputs are 
considered to be points on that line, and the main thread connects these plotted points by drawing 
short, straight lines between them, forming a pen-stroke.  If a line begins in the dashboard 
portion, a button press is detected; if that line ends (meaning the digitizer is polled and the stylus 
is not present) within the same button, then the main thread invokes the method corresponding to 
that button.  

Conclusion  

In designing PEN, one of the more significant obstacles faced by the team was the battery 
system.  A Lithium-ion battery was selected for its superior energy-volume ratio and rapid 
charge time, but, as we worked with the battery, we discovered that the drawback to lithium’s 
potency is its volatility.  Specifically, lithium batteries must be charged in very controlled 
circumstance, and are generally insulated from outside circuits by proprietary protection circuitry 
designed to prevent flame venting or other explosive results of improper charge or discharge.  
When PEN enters full production, a custom-made, professionally fabricated lithium battery will 
obviously be used; however, while in the design phase, a nickel-based battery chemistry would 
have been much more desirable.  

One interesting impediment in PEN’s evolution was a side-effect due to external, long-distance 
wiring.  The LVDS input to the LCD is a high-speed (350 MHz) serial signal; the line carries the 
information for each pixel’s color in rapid succession, with periodic synchronization signals 
provided so the screen knows which pixel is currently being transmitted.  Electrically, these 
synch signals are represented by coordinated falling edges; the line “drops low.”  The color 
white, represented by maximum intensity in all three LCD colors (red, green, blue), is 
represented (appropriately) as all 1’s.  So, for a white pixel, the screen line carries a series of 1’s, 
an uninterrupted high signal.  The spacing and length of the wires used in the prototype gave 
them an unwanted capacitance that would prevent the synch signal from manifesting itself: 
specifically, the signal could not “drop” fast enough to register as a 0, due to the stored charge in 
the wires.  To overcome this, we redefined the color “white” as something dimmer than “true 
white,” e.g. a color not represented by all 1’s.  This fix worked perfectly, and, with fabricated on-
board wiring, the “too-white” problem will disappear.  

Working with the Gumstix platform was an excellent choice.  Gumstix offered an abundance of 
features and powerful processor at a very affordable price.  However, because Gumstix is a small 
company, their products are less documented and rigorously tested than generally expected in the 
industry.  A great deal of our reference material was provided by a community generated “Wiki” 
document, housed online.  While this community was very helpful and intuitive, we often had 
trouble finding specific answers to simple questions, since such questions were considered so 
obvious as not to merit a Wiki entry.  



Additionally, the Gumstix platform is a hobbyist kit by design.  We worked with a single 
Gumstix board for 7 months with no problems or complaints.  Then, with no warning, the 
Gumstix’s voltage regulation capability disappeared, and the processor drew an excess of current 
and destroyed both itself and several of the interconnected components.  Subsequent boards 
suffered from similar power-draw issues; the fourth board finally behaved as designed.  Since 
Gumstix is a smaller company, their ability to diagnose our problem was very limited, and their 
readiness to replace or repair our faulty parts was even more limited.  

PEN is not currently complete.  Short-term features that did not make this version are: 
- an external power button, and power management algorithms, triggering a “sleep” mode 

rather than a full power-off; 
- a battery life meter, very difficult to implement in a student-lab environment with a 

lithium battery; 
- USB connectivity, allowing PEN to act as a mass storage device for interface with a PC; 

and 
- user accessible brightness control for the LCD.  

Bill of Materiel  

- 1 Gumstix basix 400xm board, from Gumstix Inc.  $130 
- 1 breakout gs board, from Gumstix Inc.  $27.50 
- 1 1024x768 SVGA LCD display and Wacom SU-015-X02 digitizer from a Gateway 

Tablet PC, purchase on eBay.com.  $75. 
- 1 EBKLVDS2 TTL-LVDS converter, from Nexxcom.com.  $40 
- 1 stylus compatible with Wacom digitizers, from eBay.com.  $40. 
- 1 11.1 V 3-cell lithium ion Winner’s Circle battery, from Amondtech.com.  $40. 
- 1 Winner’s Circle lithium ion 2-4 cell battery charger, from Amondtech.com.  $60. 
- 4 DO061B solid state DC relays, from Digikey.com.  $9 each. 
- 1 LCB110 optoisolator, from Digikey.com.  $3.25. 
- Miscellaneous analog components, wiring and connectors, from Digikey.com.  $30   
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http://www.gumstix.org
http://www.batteryuniversity.com


This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

