

Wireless Internet Based GPS
Tracking System

(Intended for use by the University of Utah Shuttle System)

Richard Wells
Amany El Gouhary
December 17, 2006

Table of Contents

Abstract ... 3
Motivation... 3
Background Information... 4
Functionality ... 5

Use Cases .. 5
Program Installation.. 6
Optional Programs – ... 7

Hardware Design .. 7
Computing Platform.. 7
GPS Receiver .. 8
Wireless Internet ... 9
Power Circuit .. 10
Enclosure... 11

Software Components... 12
Website ... 12
Google Maps... 12
SQL Importer .. 12
Database Poller ... 12
Graphical GPS Viewer.. 12
Random Point Generator... 13
Route Simulator .. 13
Serial Emulation.. 13
WPA Supplicant.. 14
GPSd ... 14
GPSTest .. 14

Problems encountered... 15
Embedded Active Antenna Short.. 15
JavaScript, SQL, ASP.Net 2.0 Learning Curves .. 15
Equipment Configuration and Capabilities... 15
“Ubiquitous” Campus Wireless Network ... 16

Technical Specifications ... 16
Bill of Materials .. 17
Project Future.. 18
Conclusion .. 18
References... 19
Acknowledgements... 19

Abstract
 The purpose of this project is to design and construct a hand-held wireless GPS
tracking device that can be tracked from the Internet. The project consists of three parts.
The first part is a mobile device with an embedded GPS and wireless Internet connection
to transmit its current location. The second part is a web server that will receive the data,
parse it, and store it for access over the Internet. The third component is the user
interface that will allow others to visually see where the hand-held GPS device is and has
been. To view its location, one could use any device that can connect to the Internet such
as a desktop computer, laptop, PDA, or cell phone. The data available through a browser
includes a scalable map of the surrounding area, latitude, longitude, speed, and altitude of
the hand-held device. The system is intended to be a general purpose tracking device;
however, the user interface will be tailored to the university shuttle system.

Motivation
 The intended application
for our wireless GPS tracking
device is the University of Utah
shuttle system. As our group
was formulating ideas for our
project, we came to the
conclusion that both of us were
frustrated with the university
shuttle system. We had several
complaints in common: the
shuttles didn’t come often
enough; they were often late
leaving us out in rain, snow, and heat; and worst of all, sometimes they never showed up.
 In an informal study of the punctuality of the university shuttle system by group
members, it was found that on average the shuttle was three and one-half minutes late.
The distribution of the shuttle departure times is presented in the following table.

Time Frame of shuttle departure (in minutes) Percent of departures
Early by 1-5 15%
On time - 4 late 38%
Late by 5 – 10 16%
Late by > 10 23%
Never came 8%

Table 1: University shuttle punctuality

 Each of us has many “horror” stories from our shuttle riding experience. We have
seen a shuttle arrive 50 minutes late when it was scheduled to come every 10 minutes. It
was snowing, but every shuttle that came would provide us with the update that it would
“be there shortly.” We have experienced drivers running ten minutes late and going into
the Union building or hospital for five minutes to get a drink. We have encountered
shuttles that don’t come at all. Shuttle drivers are aware that they miss stops, but the
problem continues. Being students with tight time schedules, the unreliability of the

Figure 1 - University Shuttle

shuttle system can greatly affect us. We have been late to class and almost had our lack
of punctuality affect our class grade.
 We and many other university students have thought, “I wish I knew when the
shuttle was coming.” Our device is engineered to address that question. It will allow
anyone with an Internet connection to track the shuttle and know if it is early, on time, or
late. With this information students can adapt their schedule to meet the projected shuttle
arrival times.

Background Information
The basic idea of any satellite positioning

system is to calculate the distance between a
satellite and the user’s current location. The
position of each satellite is known. Using the
calculated distance from four satellites, one can
narrow their current position to exactly one place
on earth’s surface. The accuracy of the
positioning depends on how accurately the
distance is measured and how precisely the
position of the satellite is known.

In 1973, the Department of Defense
funded the Navigation Technology Program that
resulted in Navigation System and Ranging Global Positioning System (NAVSTAR
GPS), now known as GPS. The current GPS system consists of satellites in 6 different
orbits. At present, there are 29 active satellites circling the globe at an altitude of 20,200
km. They are arranged to provide at least four satellites within the line of sight of any
point on the globe.

GPS satellites broadcast three kinds of data. First is the almanac data. It sends
the course time information along with status information about the satellites. The
second is the ephemeris data which contains highly accurate orbital information about the
satellites. Each GPS satellite is continually updated from continuous measurements made
from Earth. The time information consists of the course acquisition code (C/A), a pseudo
random code which repeats every millisecond.

 The GPS receiver calculates its position from the timing information. It
compares the C/A code to against its internal crystal oscillator clock and the C/A code the
receiver generates. This timing mechanism is highly accurate. An error of a
microsecond yields an error of 30 meters. Position can be determined to about 1% of a
bit time or 3 meters under optimal conditions. Based on the timing calculations and the
ephemeris data, the GPS receiver can calculate its current position.

During late 2005, the first of the next-generation of GPS satellites was launched.
One of the main civilian benefits is a second signal named L2C that will yield increased
accuracy and precision. Additional civilian signals are in the works. Additional
measures such as the Wide Area Augmentation System (WAAS) and Differential GPS
(DGPS) are available to increase the accuracy of the GPS readings. Improvements to
increase the accuracy of GPS position readings continue.

Figure 2 - GPS satellites assisting in
position calculation

Functionality

Use Cases
The two main use cases for this project tracking the University Shuttle system include an
end-user, such as a student, accessing a web page an Internet capable device. The user
sees a map and a column on both sides. Clicking on the route name in the column on the
left displays the route information and position. The column on the right has a drop
down box which allows the user to choose which route they want the map to center on
and follow. Below the tracking selection box are checkboxes that allow the user to select
the route or routes of which they want to see the recent path displayed.

There are three version of this screen available: widescreen, standard, and PDA. They
are optimized to fit various screen sizes.

From the website the student can create a user account and log in. When logged
in, the three screen sizes are still available. User-specific functions were an addition to
the project and only partially implemented with plans to complete the implementation
shortly. From here the user can select times that they would like to be alerted of the
shuttle’s progress. Another feature that will be implemented in the future is keeping
track of the state of the map display, including the route to center on, routes to show
current information about, and tracks to show. This would be restored to the last setting
whenever a user logs in.

Specific users can be designated as administrators. Administrators have the
option to view and modify all users. There are several additional features we have
planned to implement here including administering the alerts settings, sending email to
users, uploading routes, etc.

The second use case involves a user deciding that they want to use their favorite
GPS program to follow the tracking unit. They would start up the serial emulator, start
up their favorite GPS program, connect their favorite GPS program to the com port the

Figure 3 - Web User Interface

serial emulator is feeding data to, and use their favorite GPS program as normal from
anywhere in the world.

Program Installation
This project consists of a chain of about 5-10 applications, depending on

configuration. Prerequisites for the installation process include a working instance of
SQL Server 2005 and Microsoft’s .NET Framework 2.0. Currently the project comes in
a ZIP file. Unzip the files into an easily accessible folder. More detailed information
about the functionality of these programs is found later on in the software components
section.

1) GPSData Database – Using the SQL scripts, create a database named GPSData with
two tables titled GPSPoints and UnitOnRoute. Also create the RouteStatus view using
the SQL script provided. The GPSPoints table contains all the latitude, longitude, speed,
and altitude measurements received from the tracking units. The UnitOnRoute table
contains information about the routes that the tracking units are simulating. The
information includes route name, route number, driver, etc.

2) ASP Membership Database - To configure user accounts, the ASP membership
database needs to be created. It can be done by going to the SQL Server command line
and typing the command aspnet_regsql.exe -E -S localhost -A mr to create the database.
Administrators can be configured by using Visual Studio’s Web Administration Tool
(SWAT).

3) Website - Copy the website code to the virtual directory desired. Configure it through
Internet Information Services to run as an application.

4) Google Maps API Key - Register for a Google Maps API Key at
http://www.google.com/apis/maps. Insert that key into the loggedOut.master and
loggedIn.master files.

5) RouteCreator - Use the RouteCreator to create routes that you want to emulate. This
involves running the program, entering in the information about the route that you are
going to simulate, and driving along the route desired. The MAC for the route and the
tracking unit has to be identical.

6) Database Poller – The program extracts the information from the SQL database and
outputs it into the format that Google Maps requires. Configure the
outputXML.exe.config file with the parameters desired. The parameters include: time
between polling of the database, file path to write the XML files too, and the connection
string to the database.

7) SQLImport – This program needs to have input the IP address and port that you
desire to listen for tracking units communicating on. It also requires the database
connection string. Once these parameters are set, run the program and it will receive
incoming connections from a tracking unit.

Optional Programs –

1) GPSGraphical – The program is a utility to diagnose the strength of the GPS fix,
wireless Internet connection, basic status of the Linux operating system on the tracking
unit, and to compare for accuracy against a commercial GPS receiver. Input in the port
that the serial GPS is on, if desired. Run the program. Input the IP address of the
tracking unit into the Gumstix column and then click the radio button next to “From
Gumstix.” Readings will come over the Internet.

2) Serial Emulation – This process allows you to access the tracking unit over the
Internet with any program that will connect to a serial GPS. The first step is to install
com0com, an open source null terminal emulator. Two modifications have to be made
using regedit. The ports have to be renamed to comX depending on the current com ports
of the computer. The baud rate emulation parameter also has to be set. At this point the
data should be available over the output com port that was just renamed.

Hardware Design
On conception of this project, we realized that we would need more than a

traditional microcontroller. We knew we needed to run several programs simultaneously
on the tracking unit. We also knew that we could not implement some of the tasks by
ourselves, such as WPA authentication. We chose to purchase a board that would
support a minimal operating system and that would have a suite of programs available.

Computing Platform
In our search for a

platform that would support
these characteristics, we
discovered a company called
Gumstix. They manufactured a
board about the size of a stick
of gum. It has on it an XScale
PXA255 chip which runs at
400MHz, 64Mb of RAM, and
16Mb of flash. It is capable of
running a stripped down version of Linux. The basic footprint was under 4Mb. It was
able to fit in this amount of space because it uses a busybox implementation of many of
the common Linux programs. We knew that would leave us plenty of room to install
additional programs and to hold the programs we would write. The platform turned out
to be highly stable and with a little research everything we desired was able to be
accomplished with this platform.

Figure 4 - Gumstix Board

GPS Receiver
 During our project we
realized it would be difficult to
obtain our planned GPS engine
because the company tailored
to OEMs. Also the
documentation left much to be
desired. While we were
searching for a suitable GPS
receiver, Gumstix developed a
new expansion board with a
GPS engine. The board
interfaces with the processor
through a TTL serial
connection. The GPS expansion board is only slightly bigger than the Gumstix board
with the processor, flash, and RAM.
 The expansion board had a
remarkable GPS engine. It is the
U-blox LEA-4H. The GPS Engine
itself is programmable and has an
additional feature called
SuperSense which integrates the
GPS signal over time to allow it to
track GPS signals down to -158dB.
It measures just 17 x 22 mm. Its
features include antenna short
circuit detection, antenna open
circuit detection, 16 channel
receiver, low noise amplifier, USB
output, SPI, serial output, and its
own ARM7TDMI processor. It
supports an active or a passive
antenna. It has a software
customization kit. It can also support a backup battery to maintain the ephemeris and
almanac data.
 After we had received the GPS expansion board with the U-blox LEA-4H GPS
engine module on it, we endeavored to find an antenna. We found that the GPS engine
board was only configured to support a passive antenna. Another characteristic our
antenna needed was to be small and easily embeddable. We could not find a passive
antenna that met those characteristics. We did find a couple of active embedded
antennas. Using the engine module’s system integration manual and the accounts of a
few people who have previously modified their U-blox modules to support active
antennas, we modified our board to support an active antenna. This included connecting
the V_ANT pin to Vcc through a 10Ω resistor to prevent excessive current. The engine
module filtered the power and then provided the antenna with the voltage and current
necessary to power the antenna’s LNA. With this configuration we saw more sensitivity

Figure 5 - GPS Expansion Board

Figure 6 - GPS Active Antenna Modification

and better tracking of satellites than with any other GPS system we had previously used.
 One problem that we ran into is that intermittently we would power the unit on
and we would not be able to track satellites. The problem was traced to the active
antenna modification. The problem was the pin that connected Vcc was extremely close
to a ground post of the SMA antenna connector. Intermittently it would touch the
antenna connector. It would draw excessive current and the engine module’s short circuit
detection would shut it down. We inserted a small layer of insulation between the ground
post and the wire. It solved the problem.

Wireless Internet
To obtain a wireless Internet
connection, our original plan
consisted of using a Compact
Flash based wireless Internet
card. However, it had driver
incompatibilities with the newer
version of Linux we were
running. Connection with the
university’s wireless Internet was
done with an expansion board
from Gumstix. The expansion
board has the Marvell®
88W8385 module and a couple
of chips to interface with the
Gumstix using the PCMCIA
protocol. The Marvell module implements the 802.11g standard for a bandwidth of 54
Mbps. The open source driver supported 802.1x, WPA, WPA2, and WEP so we could
connect to practically any access point for testing.
The wireless Internet module had adjustable power settings allowing us to tune the
parameter to save battery life or have maximum range. We found the connection to be
superior to older laptop wireless Internet connections and comparable with current
wireless Internet connections.

Since the proposal of the project, the university decided to phase out the old
secure.utah.edu network and replace it with a new secure wireless network called
uconnect.utah.edu. The old secure.utah.edu network used dynamic WEP for encryption
and 802.1x for authentication. The uconnect.utah.edu network uses 802.1x for
authentication and WPA or 802.11i for encryption. The new encryption standards are a
lot more processor intensive and not as well supported or suited for embedded systems.
We had initially planned to utilize Xsupplicant, an open source program that was
developed mainly by a staff member here at the University of Utah. However, because
that had never been tested on an ARM based processor, we decided to go with a better
known and deployed supplicant called WPA Supplicant. It had also been tested and was
compatible with the open source driver that interfaces with the Marvell wireless chipset.

The university supports preconfigured clients for Windows and Macintosh. They
do not support Linux or publish the technical specifications of the network to allow
someone to connect easily using Linux. We did a lot of research and pulled pieces of

Figure 7 - Wireless Internet Expansion Board

information from many sources to figure out what standards were used in the network.
Authentication to uconnect.utah.edu uses EAP/TTLS with the second phase using PAP.
It also took a lot of work to find a certificate that was in the proper format for Linux to
use. Once we had the correct information, connecting with WPA Supplicant was not
trivial. We had to get the right format and order of the configuration file. We also had to
trace through the debug logs to find several errors. The most surprising of which was we
had to set the time on the tracking unit before it would authenticate the certificate. The
certificate had a beginning date and on initial power-up the tracking unit has a date from
1970 because there is no battery backup on the system clock.

Power Circuit
 Constructing the circuit to
power the tracking module proved to
be more difficult than we anticipated.
Initially, we had designed a switching
power supply. However, due to the
number of external components
required and their relative size, we
decided to switch to a power circuit
based on linear voltage regulators.
Another benefit of that choice is that
the GPS module is extremely sensitive
to high frequency noise in the power
supply and does not perform well with
a switching power supply.

 The circuit was designed
with two parallel input channels
for an external power source and
a battery. The external power
source was designed to function
with a car adapter we constructed
out of an old cell phone charger.
It also functioned off of AC
power with the help of an adapter
that would rectify the power and
lower its voltage to 7.5V. Each
channel would pass through a
linear voltage regulator that had
its output fixed at 5V. A couple
of capacitors were present at the
input and output of the voltage
regulators to smooth the output
power.

The voltage of the output of the
battery powered a Maxim 703
microprocessor power supervisory chip.

Figure 8 - Dual Input Power Supply

Figure 9 - Power Supply Circuit

The chip had a voltage comparator circuit. It was utilized to detect a low battery
condition. From the battery input, a voltage divider was constructed to a level that
indicated a low battery condition when the center of the voltage divider was at 1.25V.
High resistance resistors were used to minimize quiescent power. When the voltage at
the center of the voltage divider went below 1.25V, an output pin was set low. The
output of the voltage comparator circuit went through a chip which implemented a not
function and powered an LED when the battery voltage was low.

The output of both voltage regulators were fed into a power switching circuit.
Using the output of the external power adapter channel, another microprocessor
supervisory chip was powered. When it sensed that the voltage was too low or non-
existent, it opened the gate of a 1A P channel power MOSFET for power from the battery
to flow through. Otherwise, the chip closed the gate on the transistor and power from the
external power adapter powered the circuit. The output had a power adapter that fit into
the power adapter plug on the Gumstix making it removable. Our unit also has an on and
off switch which is implemented with a double throw single pole switch to connect or
break both input channels simultaneously.
 In initial assembly of the power supply circuit, we found that the low battery
detection was functioning while the circuit was running on an external power supply. We
found that we were trying to get too much functionality out of our power management
chip. This is what led us to use two Maxim 703 chips because we only wanted the one
that controls the low battery detection to be powered when we were powering the
tracking unit with the battery.
 Choosing the proper battery proved to be more difficult than expected. We had
chosen to use a NiMH 9V battery in the initial design. Upon the completion of the
construction of the tracking module, we tested its power consumption. We found it
consumed .41A while actively processing and .3A normally. Since the battery was rated
at 150 mAh we expected it to last 20-30 minutes. We found that it lasted about 6-10
minutes. In researching NiMH batteries, we found that under high current drain they do
not last as long as under low current drain. We went searching for another battery. We
found a camcorder battery that provided 8V. That lasted for over thirty minutes.
However, in testing the output voltage level from the voltage regulator started varying by
about .5V after fifteen minutes. We tracked down the cause of that to the voltage
regulators having a high dropout voltage. It was about 2.5V, 0.5V higher than the
datasheet claimed. We replaced the linear voltage regulators with low dropout voltage
regulators (NTE 1951) and it fixed the problem.

Enclosure
 Our enclosure consisted of a 4” x 6” x 2” ABS plastic box. With our battery,
power circuit on separation posts, and Gumstix it proved to be about the right size. We
made openings in the case for the switch and external power adapter. However, with the
knowledge of a prior implementation and fabrication of a circuit board, the tracking unit
could be made significantly smaller.

Software Components

Website
 The website will be the software component that the end user interacts with. It is
written in ASP.Net 2.0 using C# as the code behind language. It makes significant use of
JavaScript which Google Maps is based off of. Its functionality was described in the use
cases section above.

Google Maps
Google provides a well documented API for Google Maps. In order to use it, a

user has to obtain a Google Maps API Key. Google Maps can be interfaced with using
JavaScript. Some of the functionality of Google Maps that was implemented on the
website includes: icons, polylines, map panning, satellite view, and AJAX to refresh the
shuttle history and current position.

SQL Importer
The SQL Importer is a multithreaded application written in C#. It opens up a

listening socket on a port (currently port 6000) and waits for the GPS tracking units to
connect to it. When it receives data from a unit in the form of an XML file, it parses the
file into individual readings. It is written so that units may send an arbitrary number of
readings at a time. It then takes each individual measurement and extracts the latitude,
longitude, speed, altitude, and MAC address from the XML file. It then puts a row into
the SQL database for each position measurement from the unit.

Database Poller
 Database poller’s overall purpose is to extract information from the database for
each route and to output a XML file containing past and present points for Google Maps
to use to display current position and a track history. This application is written in C#.
From the UnitsOnRoute table in the database, it reads the routes that are available. For
each route, it extracts a finite time amount of the route’s track history from the GPSPoints
table in the database. It takes the information and formats it into an XML file and stores
it on the disk on the Web Server. The XML file is then used by the Google Maps API in
an AJAX manner to
dynamically update the current
shuttle position and track
history without refreshing the
page.

Graphical GPS Viewer
 During the early stages
of system integration testing,
we saw a few points of
weakness. First, we did not
have a way to tell the strength
of the wireless Internet signal

Figure 10 - GPSGraphical

between an access point and our unit. Second, Gpsd did not have a way to display the
signal strength, azimuth, and elevation of each GPS satellite that the GPS engine was
currently tracking. We did not know which direction was best for the antenna to point, if
enough satellites were available for a fix, and how strong our GPS signals were.
Additionally, we saw some inaccuracies and jumps once we plotted the data we received
from the unit. We needed a standard to compare it too. Another commercial GPS unit
was available and was used to compare our readings against. This program was designed
to solve those problems.
 GPS Graphical was designed to connect over the Internet to the unit and retrieve
its current GPS readings. It would display the latitude, longitude, speed, altitude, time,
PDOP, VDOP, and HDOP from the unit. Over a serial connection another GPS receiver
can be connected and its readings displayed for the various measurements. If both have a
GPS fix, the distance between the two measurements is calculated.
 Some variations on this are integrated into the program. The serial GPS can
record its measurements to the database, thus simulating a tracking unit. The Gumstix
can use the latest values direct from the database to compare against the serial GPS.
 To deal with signal strength problems we parsed and displayed the satellite
number, elevation, azimuth, and signal to noise ratio (SNR) of each satellite that the GPS
unit was receiving. This allowed us to compare relative signal strengths and evaluate if
improvements helped us receive the GPS satellite signals better.
 Over the Internet, the program also queries the tracking unit for various system
status measurements. It reports the connection status, link quality, load average, free
memory, bytes sent over the network, and bytes received from the network.

Random Point Generator
 Quickly it was discovered that testing of the user interface required having an
active GPS tracking unit. With varying weather conditions, ability to move equipment
outside, and hardware assembly still in progress it was deemed necessary to write a
program to simulate a tracking unit. The random point generator is written in C#. It is
given a MAC address and a starting point and using random numbers, it will move a
small amount in a random direction each second. Each movement is independent of the
last. It would insert the data points into the SQL database as a traditional tracking unit
would. This allowed testing on the front-end Internet interface.

Route Simulator
 To be able to demonstrate the capabilities of the system on demo day and
hopefully to the University Shuttle System, a way was needed to demonstrate the
capacity of this system to handle more than one shuttle. Route Simulator was written to
fill the need. It is written in C#. This program has a table representing each shuttle route.
It also polls a controller table to decide what routes there are to simulate. It simulates the
actual traffic that the shuttle routes will generate.

Serial Emulation
 Many useful and very well written programs have been coded for GPS units.
However GPS units are assumed to be within a serial or USB connection of the computer.
Several statistics and graphical representations of data that were generated by other

programs were desired. The general functionality of being able to use any program
written for a GPS unit was seen to be beneficial.
 The implementation that was used to overcome this problem involved two
software components. The first component was an open source null terminal emulation
program, com0com. It allowed
serial data to be input into a virtual
COM port and then output over
another virtual COM port.
 The second software
component involved in this
solution was a program that was
written in C#. It configures GPSd
to make available the raw NMEA
data. The raw NMEA data is then
transmitted over the Internet. The
program forwards it into one end
of the null terminal emulation and
on the other end of the virtual null
cable the user is free to attach their
favorite GPS program. A benefit
of this approach is that as long as the tracking unit is within wireless Internet range, the
arbitrary GPS program can be used from anywhere in the world.

WPA Supplicant
WPA Supplicant is an open source supplicant for WPA and 802.1x systems. It supports
EAP/TTLS and PAP authentication during phase two. These are the standards that the
uconnect.utah.edu network implements. With some patches provided by Gumstix to
make the WPA supplicant code compatible with ARM systems, we compiled the code
and installed it on the tracking unit. We obtained the certificate needed from the
university. With some trial and error in the configuration file and setting the current
time, we were able to connect to the uconnect.utah.edu network.

GPSd
GPSd is a daemon program that attaches to a serial port and parses the NMEA data
coming over the serial port and it makes it available externally through a socket. When a
client program connects to it over a socket, it accepts one letter commands and will return
the latest information it has from the GPS receiver that corresponds to the command. For
example, sending it an “a” over the network port will return the current altitude.

GPSTest
This is the program that we implemented on the tracking device. It is written in C.
GPSTest is a client program for GPSd. At a fixed interval, it will poll GPSd through a
socket for the information that we are interested in. Currently that information includes
latitude, longitude, speed, and altitude. It appends the MAC addresss to the information
so SQLImport can uniquely identify tracking units. GPSTest stores each reading in an

Figure 11 - MapPoint 2006 using Serial Emulator

XML format for transfer over the network. It stores the last ten seconds of readings in a
file.

Problems encountered

Embedded Active Antenna Short
 The weekend before demo day, we hooked up our unit as normal and our software
did not show that the GPS engine was tracking any satellites. This caused us great
concern. We initially thought that the problem was related to the active antenna
modification. We verified that the wire that was providing power for the active antenna
was not shorted. To confirm what we thought was the diagnosis we found a way to
access the NMEA data sentences that were coming from the GPS engine module. It
seemed to support our diagnosis. It would report that the unit’s antenna status was okay
to start with, but it would short as the antenna was connected. We thought that we saw
possible beads of solder bridging pins. We cleaned the area around the solder connection
with no success. We removed and soldered the active antenna modification. That did not
help. Al then measured the resistance of the embedded active antenna and found out that
it was shorted. When the problem was discovered, we did not have time to order
anything else over the Internet and the parts needed were not available in Utah. The best
thing that we could find was a large wide band antenna. We tried it and the antenna did
not short the GPS engine out. That confirmed our new diagnosis. We went with our
back up plan. To obtain the NMEA data we used a previously acquired commercial GPS
unit. We connected to our tracking module an expansion board that would do the voltage
level conversion from RS232 to TTL. We connected the serial output of the GPS to this
board and pointed the GPSd program to the serial port we had just connected and started
getting the NMEA data.

JavaScript, SQL, ASP.Net 2.0 Learning Curves
 As we were preparing the project proposal, we discovered that some of the
software tools and technologies best suited to the project, we had not used previously.
However, we were willing and excited to learn them. They included JavaScript, SQL,
and ASP.Net 2.0. JavaScript was the language that was necessary to interface with
Google Maps. A SQL database was needed to store all the data the tracking module
would create. A database was also helpful to be able to customize the data we extracted
from it. ASP.Net 2.0 was needed over generic HTML to provide extra functionality,
security, and membership accounts. With each of these technologies there was a learning
curve, but with proper reference manuals we were able to figure out exactly how to use
these technologies the way we desired in our project.

Equipment Configuration and Capabilities
 For our senior project we were given a Windows and a Linux computer to use.
We used the Linux computer for the custom buildroot toolchain to cross compile the
software and kernel for the tracking module. It was also used to maintain our weekly
logs. We used the Windows machine to serve as our web server. However, because of
security restrictions, these machines could not be accessed from outside the School of

Computing network without a vpn connection. This made testing from home impossible.
We tried to keep a copy of our latest software on the machines, but they were too slow to
make it practical. We decided to use our own laptops for portability and speed. Another
thing that was noticed is that others would change the configuration of the computer,
breaking our software. We were able to track down some of the changes others made,
while some we were not.

“Ubiquitous” Campus Wireless Network
When we formulated the idea for our project, we researched the campus wireless

network. They stated that they would have the wireless network to the state of
“ubiquitous” around campus by the time our project was scheduled to be complete.
Along with everything else in the wireless network, that changed. Now the scheduled
completion date for the campus “ubiquitous” wireless network is 2008. That makes our
project forward thinking. While it would work in some areas and we have programming
measures to mask a lost connection, it would not provide the smooth real-time updates
that the system is designed to provide.

Technical Specifications
Embedded System
Processor PXA 255 (400 MHz XScale)
RAM 64Mb
Flash 16Mb
Connectors 1 HiRose, 1 92pin
Max Current .4A

Embedded Software
Linux Kernel 2.6.17
Other used software packages WPA_supplicant, Ntp, Gpsd
Frequency embedded software queries
position

2 sec

Frequency between position transmit 10 sec
Language of embedded programs C

Power System
Max Current 1A
Typical Load .3A - .4A
Input Voltage 6V - 20V
Output voltage 4.2V
Battery Model Canon BP-508
Battery Chemistry Li-Ion
Battery Voltage Rated at 7.4V
Battery Capacity 800 mAh
Low Battery Detection Voltage Detected at 6.8V
Available Power Sources Battery, Jack for power from an AC or car

adapter

Wireless Internet
Chipset Marvell® 88W8385
Security Mechanisms available None, WEP, WPA, WPA2, 802.1x
Transmit Power 100mW, variable
Wireless Standard 802.11g
Antenna Connector SMA female

Gpsstix
Engine U-blox LEA-4H
Channels 16 Parallel Channels
Output Format NMEA 2.3
Output Baud Rate 9600 baud
Tracking Sensitivity -158dBm
Antenna SMA female connector
Frequency Band L1 (1575.42 MHz), C/A code
Cold Start Time 36 s
Hot Start Time <3.5 s

GPS Active Antenna
Model VTorch G050A
Gain 26dB
Voltage 3.3V +/- 0.5V
Current 12 mA
Weight 18 g

Bill of Materials
Gumstix $129 Gumstix
Gpsstix $130 Gumstix
Active Antenna – V.torch
G050A

$11.95 Spark Fun Electronics
www.sparkfun.com

Right angle SMA adapter $5.50 Ra-Elco
Wifistix and antenna $79.00 Gumstix
Screws and Spacers $4.00 Gumstix
2 NTE 1951 voltage
regulators

$8.60 Ra-Elco

2 MAX703 $10.04 Maxim
www.maxim-ic.com

1 NOT chip $.50 BYU Electronics
1 LED $0.50 Ra-Elco
1 SPDT Switch $3.00 Allied.com
Wire Essentially Free Already owned
2” x 3” Component PC Board $1.79 Radio Shack
Wire wrap wires Essentially Free Junior Hardware Lab

(2)Wire wrap 8 pin dip
sockets

$1.00 Ra-Elco

Wire wrap 16 pin dip socket $1.00 Ra-Elco
1 1N4001 doide $0.10 Ra-Elco
1A power mosfet FDS8433A $0.68 Digi-key

www.digikey.com
BP-508 battery $19.99 NexTag

www.nextag.com
Enclosure $4.99 Radio Shack
M size coaxial power adapter $2.79 Radio Shack

Project Future
 This project has taught us a lot about embedded hardware, circuits, software, and
networking. The technologies we are using are a lot of fun to work with. We plan to
continue working on the project on our own time. During the course of the project, many
students and faculty have remarked that this is something that the University Shuttle
system needs badly. There are also many technologies such as AJAX, SQL Server
Notification Services, SQL Server Reporting Services, WAAS, SMS, and WAP that
would enhance our project and we have a desire to learn them. The tracking unit also
needs a small LCD to report basic information.
 The next phase of the project is enhancing the website. Here we plan to finish off
the membership functions by providing each user with a profile of preferred display
options. Also users will be able to set alerts. This will notify the user of the current state
of the shuttle at times specified. Administrative functions of the website will be
enhanced.
 The second phase would be to add the LCD and fabricate a circuit board for the
power supply. Once the hardware is finalized, a better battery connection socket can be
found and the unit can be made much smaller.
 The third phase would be experimenting with the new technologies previously
mentioned to enhance the usability and functionality of the tracking system.
 Upon completion of the project, we plan to present it to the University Shuttle
system to seek funding and permission to implement a tracking system on every shuttle.
If possible, Internet capable devices such as ultra mobile PCs would be deployed at major
shuttle stops so students without a mobile Internet accessible device could be updated on
the status of the shuttles.

Conclusion
 We believe that this project has been a success. We have been able to accomplish
our baseline goals and implement some of our extras. Even though along the way we ran
into many problems, our project was flexible enough to adapt to the problems we
encountered. We were able to build a successful tracking unit and implement the
software to track it. In the process we learned a lot about hardware and software that will
enable us to be better computer engineers.

References
Gumstix Wiki, Various Articles, http://docwiki.gumstix.org.

Gumstix, http://gumstix.org.

Google Maps API, http://www.gumstix.com.

Global Positioning System, Wikipedia, 15 December 2006.

Acknowledgements
We would like to thank Al Davis for his continued support, technical help,

debugging, and sessions where he taught us topics that aren’t covered in books in school,
but require hands on training.

