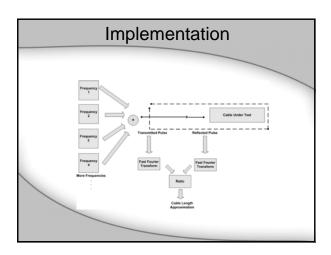
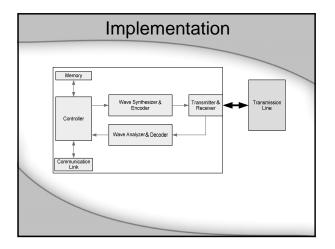
Data Integration in Multicarrier Spread Spectrum by Afshin Edrissi Credits: Dr. C. Furse

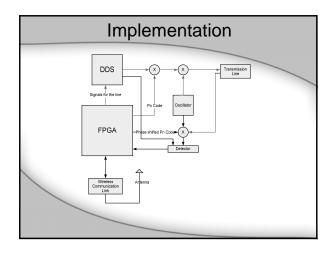
TOPICS

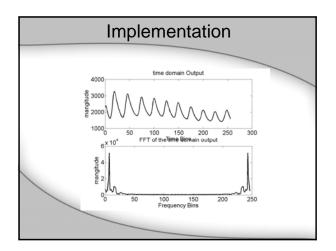
- Introduction
 - What is the project about
 - What makes it different
 - Problems
- Implementation
 - Block diagrams and graphs
 - Goals

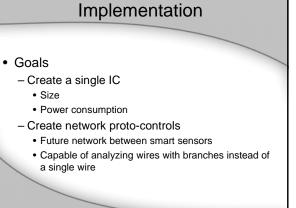
Introduction


- We want to detect the location of a fault!
 - Types of fault
 - Open
 - Short
 - Other faults (water dripping, bad connection,...)
 - Some common methods
 - TDR (Time Domain Reflectrometry)
 - FDR (Frequency Domain Reflectrometry)


Introduction


- What is different in MCR (Multicarrier reflectrometry)
 - Speed
 - SNR is very low
 - Reliable
 - Data transmission (Networking capabilities)


Introduction


- Problems
 - Speed! Need to sample over 1GHz
 - Dispersion effect of difference frequencies
 - Power consumption
 - \$\$\$ can be very expensive!
 - Complexity

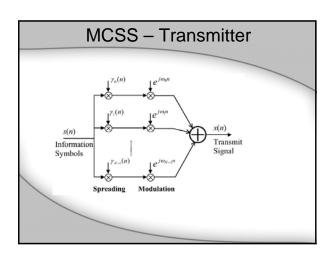
Data modulation in Smart Sensor

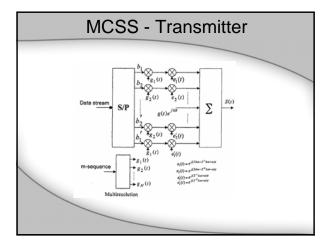
- Why data? Aren't they smart enough?
 - Analyzing branches of transmission line
 - Increasing the accuracy on finding fault locations
 - Communication to the outside world through other sensors
 - Fault detections of other sensors

Data

- General formula of a signal $\sum A\cos(\omega t + \phi)$
- To transmit a data
 - Change Amplitude
 - Change Frequency
 - Change Phase
 - OR any combinations of the above

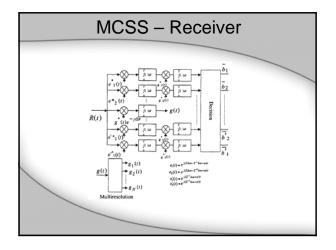
Data


- Phase shift can give us higher SNR
- But it needs more precise electronics and higher processing power
- By phase modulation, we no longer can use estimation for signal detection


MCSS

- MCSS (Multicarrier Spread Spectrum)
 - Combination of two existing systems
 - CDMA (Code Division Multiply Access)
 - FDMA (Frequency Division Multiply Access)

MCSS


- What is the advantage of the MCSS vs. the mentioned systems?
 - Higher SNR if the "Noise" is known
 - To our system, the biggest noise is the existing data communication on the line
 - By Increasing the SNR, its possible to lower the transmitted signal, thus less interference with the existing systems

MCSS - Receiver

- Since we need high accuracy at the receiver's input, for prototyping we will use the special oscilloscope's ADC which is designed for microwave frequencies
- After receiving the data, we will need to do signal processing and extract the data from reflected waves that contain the fault location

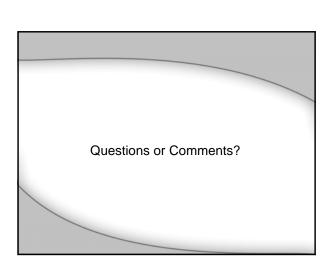
Project Goal

 The goal of my project is to successfully transmit data from one sensor to the other without interfering with other existing signals on the line

Project Tasks

- Analysis on data transmittivity between smart sensors on Aircraft wires
- Analysis of data modulation in the MCSS system
- Design and implementation of data modulation in the MCSS system

Project Tasks


- Testing
- Documentation

Project Schedule

- 2 semester project
 - Fall
 - Complete all the analysis and create an efficient data modulation
 - Know the MCSS system thoroughly to design/modify it for data modulation
 - Pick the hardware/software for implementation
 - Order the necessary parts

Project Schedule

- 2 semester project
 - Spring
 - Design the actual HW/SW
 - Start to integrate components together
 - Testing the system
 - Writing the final report
- Note: there is no BOM at the current time

