

Jerry Davidson, Robert Bray

Project Goal

Develop an IR based GPS enabled laser tag system that can download scoring information, and GPS data to a PC base station in order to graphically replay the game events.

Project Tasks

Create test harnesses for each module

- GPS
- MCU/EVB
- IR Emitter / Sensor
- LCD / Display
- Gun/Station Uplink
- Game Replay Software

Success Indicators

- We define a list of success indicators to keep us on track.
 - LCD: Shot count increments on LCD screen when trigger is pulled.
 - Transmit an IR message from an emitter to a sensor 50 meters apart.
 - Hit count increments on LCD screen when the IR message hits the sensor.
 - GPS data is transferred from the GPS unit to the MCU and stored in memory

Success Indicators

- Scoring data and GPS data are transferred to the base station.
- Software uses the scoring and GPS data to graphically replay the events.

- The GPS module will track player's position and movements
 - Test Plans: Write a test harness with our MCU which will decode the information sent to it by the GPS module. Display that information to a terminal. Check for accuracy.

MCU

Will be the brains of the design

- Talks to each other module
- Tests include:
 - Test IR Emitter Communication
 - Create set of outgoing messages Send those messages to the gun via the input Port designated for the IR Emitter – send the information to a terminal using SCI – check to make sure information was displayed correctly.
 - Test LCD
 - Display test messages after integration, test gun data
 - Test IR Sensor Communication
 - Create set of incoming messages send those messages to the MCU port – decode message – output to terminal

MCU

Will be the brains of the design

- Talks to each other module
 - Test GPS
 - Create mock GPS output send to MCU decode information then send interperatation to terminal – check if correct.

Test Uplink

 Create mock gameplay data including GPS information, hits, shots fired, etc... - send to MCU – decode – output interperatation to terminal – check for accuracy

IR Emitter Test

- IR Emitter will need to be configuered to send a strong signal to communicate up to 80 meters away.
 - Test Plans: Perform needed calculations to determine power requirments. Start at close distances. Send a signal through the lens to a target. Check target to see if it was hit. Check various ranges up to 80 meters.

IR Sensor

- Should be able to receive information from up to 80 meters away.
 - Test Plans: Send an IR signal to the sensor at close distances. Check to see if it received the message.
 - Once IR Emitter and Sensor have both been tested seperately, use the two modules to test each other.

LCD

No need to test seperately. All testing can be done in the 'MCU LCD Test'

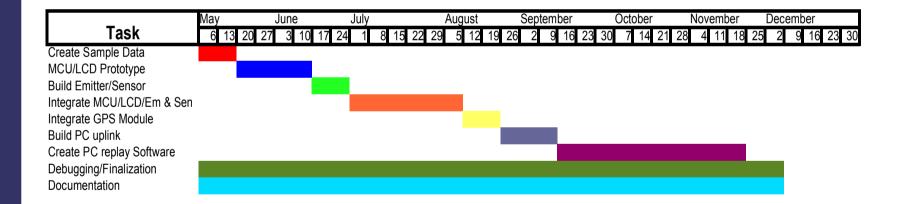
Game Replay Software

- Will reproduce the gameplay visually on a laptop or desktop including player motions, hits, shots fired, and scores.
 - Create sample gameplay scenario. Reproduce the sample scenario. Check for accuracy.

Integration Plan

Milestones

Create sample data


- Using spec sheets and reference manuals, create sample data impersonating each module (GPS,Emitter,Sensor,LCD,etc..).
- Build a MCU and LCD prototype
 - Pass all tests mentioned in testing section
 - Use LCD as part of the testing
- Build emitter and sensor
 - Pass the emitter and sensor testing mentioned
- Integrate MCU, LCD, Emitter, and Sensor
 - Build scoring prototype

Milestones

- Integrate GPS module
- Build PC Uplink
- Create graphical replay software

Schedule

Schedule Flow

Bill of Materials

Part:	1 st Source	Risk:
GPS:	Synergy Systems	low
IR Emitter:	Mouser	low
IR Sensor:	Mouser	low
⇒ LCD:	Mouser	low
⇒ MCU:	School	low
Board:	PCB123	low
Eclosure:	Self Made	low
Lens:	Edmund Sci	low
Various discrete components		

Any Questions?