
Project WEAVER
Wireless Enabled Active Video

Experimental Rover
Manual

EE/CS 3992
Tyler Lloyd

Amber Blake
Janos Opra

December 16, 2004

Table of Contents

INTRODUCTION... 3

DESIGN OVERVIEW.. 3

ROVER HARDWARE COMPONENTS.. 3

POWER REGULATION CIRCUITRY... 3
DSP CIRCUITRY... 4
WIRELESS TRANSMISSION CIRCUITRY... 4

Table 1: PCMCIA Connections..6
COLLISION AVOIDANCE CIRCUITRY... 6
MOTION CONTROL.. 6

Table 2: Left, Right Truth Table...6
Table 3: High, Low Gear Truth Table.. 7

WIRELESS CAMERA... 7
PCB DESIGN AND VERIFICATION.. 7
BASIC ASSEMBLY.. 7

DEBUG STRATEGY.. 7

CONCLUDING REMARKS \ REQUIRED MODIFICATIONS...8

ROVER SOFTWARE COMPONENTS... 8

WIRELESS COMMUNICATION... 8
MOTION CONTROL.. 10
SENSOR PROCESSING AND COLLISION AVOIDANCE.. 11
VIDEO INTERFACE... 12
FRAMEWORK SOFTWARE.. 12

CONCLUSIONS AND LESSONS LEARNED...13

ACKNOWLEGEMENTS... 13

APPENDIX A .. 14

APPENDIX B.. 15

BILL OF MATERIALS.. 15

APPENDIX C.. 17

WEAVER REVISION 1A SCHEMATIC.. 17

2

INTRODUCTION

This paper will detail our design of a wirelessly controlled vehicle equipped with a camera and a collision avoidance
system that we developed as a senior design project. This project contains both hardware and software design
aspects. Hardware was designed to replace the original motor driving electronics on the vehicle, drive the collison
avoidance modules, and interface to an 802.11 PCMCIA card. Central to the hardware design was the Digital Signal
Processor, DSP56F807. Software was developed to run on this DSP to control the systems on the vehicle, and
additional application software was developed for the PC to receive commands from the user and send them to the
vehicle over a wireless connection. The following documentation will detail both the hardware and the software
components. The hardware component will be discussed first, followed by the software component.

DESIGN OVERVIEW

The entire system can be summarized by referring to the block diagram in Appendix A. The bill of materials
associated with this high level overview is included in Appendix B.

From the block diagram, it can be seen that our project entails two major blocks one block contains the work
required on the PC and the other is the work for the vehicle. The PC block really does not contain a hardware
aspect; it contains the application level software to communicate commands from the user to the vehicle. The second
block is the vehicle which has a lot of hardware associated with it. The vehicle itself is a modified RC vehicle. We
are using a RC truck, because it provides more space, but the actual chassis of the vehicle is unimportant. At the
heart of the implementation is a DSP. The Camera that will be used is a commercial 802.11b enabled camera. We
chose to use this camera due to the difficulty we experienced in obtaining a video encoder integrated circuit. Motion
control will be handled by using H-bridge motor drivers and Pulse Width Modulators (PWMs) available on the DSP.
The IR LEDs and Sensors shown in the block diagram are for motion control. They are driven using a PWM and are
read back by the DSP. Two battery packs will be included on the vehicle, one for the motors and another for
everything else. The voltages for all the parts excepting the motors will need to be regulated.

Connecting these two blocks is a wireless interface. The Wireless standard that we chose to use is IEEE 802.11b.
We chose this protocol to accommodate the interface of the camera.

ROVER HARDWARE COMPONENTS

The following sections detail the hardware components. Each section describes a particular group of components
that perform a function. The sections include our reasoning behind our component choices. A complete schematic
of the hardware can be found in appendix C.

POWER REGULATION CIRCUITRY
Regulators:
The Texas Instruments PT6213P and PT6302B integrated switching voltage regulators
were chosen for their high current capacity and high efficiency. They were also chosen
because they are packaged as a 12 pin single in-line IC. This makes them much easier to
use and install because they only need one external capacitor to operate. The PT6213P has
84% efficiency for 3.3V output with a 2A max current and a 9V minimum input voltage.
The 3.3V is needed to power the wireless card, Motorola DSP, collision avoidance, and
other circuitry. The high current capacity of this regulator will be needed mostly for the
wireless card which requires 430mA to run. The PT9302B has 89% efficiency for 5.0V output with a 3A max
current and a 9V minimum input voltage. The 5.0V is only needed to power the Dlink wireless camera and the
infrared sensors. The 3A high current capacity was chosen because we thought the camera needed 2.5A at 5V;
however, we later discovered that only 900mA was needed. This additional current capacity will allow us to add
additional features later without needing to change parts.
Batteries:
NiMH batteries were chosen for their high current capability, big capacity, and reusability. Alkaline batteries might
have supplied the high current but they had less than half the capacity of NiMH. Alkaline batteries would also have
cost more in the long run since they are not rechargeable and we will need to test and run our equipment more than

3

one time. We bought ten Accupower C-cells and eight energizer AA-cells. Ten C-cells will
provide 12V and will be used to power the two switching regulators. These cells have a
4500mAh capacity that will give about 4-5 hours of running time for our circuitry and
camera. The eight AA-cells have a 2300mAh capacity and will be used to power only the
motors on the vehicle. The motors were kept on a different power supply because of possible
noise interference with the sensitive circuitry.

Battery Charger:
The Accupower Accumanager 20 was chosen because it can quickly charge batteries and
it is able to charge high capacity batteries. It is a microprocessor-controlled charger
capable of charging any size cell with any size capacity. It can sense the capacity of the
cell so it can increase the charging rate for larger batteries and will stop charger only
when the cell has reached its full capacity. This decreases the charging time and will
prevent the overcharging of batteries, which most chargers cannot do. Other battery
chargers only have a timer controlling the amount of charge a cell will receive so they are
not able to charge the high capacity cells or change the rate of charge.

DSP CIRCUITRY
We chose to use a DSP56F807 DSP by Motorola. It has a lot of microprocessor functionality built in that will make
it easier to use, since no one in our group has programmed DSPs before. We chose this DSP for many reasons.
First, it has twelve pulse width modulator (PWM) pins. We ended up using all of them. Second, it is programmed
using a JTAG interface that will also aid in circuit debugging. Third, we already had access to the software
development kit because of a seminar Tyler attended. The final reason we chose this processor is because a
reference design was available.

The DSP circuitry includes an 8 MHz crystal that is multiplied by ten inside the chip by a PLL to provide an 80 MHz
system clock. Using an 8 MHz crystal and a PLL improves power efficiency according to Motorola. Since the
vehicle is battery operated power consumption is a concern to us. The crystal driving circuitry on the DSP is driven
from the analog power pins. The analog voltage is supposed to be really clean, and slightly lower than VCC. Since
we are not performing any analog to digital conversions we do not care to keep the power ripple free. We used the
diode D6 to drop the voltage a little. We actually used a schottky diode instead of the silicon junction diode
specified in the schematic to keep the voltage drop to a minimum.

The JTAG programming connector P3 on the schematic is connected into the appropriate processor pins. The switch
J4 and the diode D7 provide a way to reset the processor without resetting the JTAG port. These parts were called
out in the reference design.

Power supply bypassing is very important to the operation of the DSP. We used a 0.1 µF capacitor for every VCC
and AVCC pin. The two 2.2 µF capacitors are required according to the data sheet, and reference design, and must
have an ESR of less than 150 milliohms.

Other components that can be loosely grouped with the DSP include a DB9 connector for serial RS-232
communication. However, we forgot to include a level shifter to get true RS-232 levels on the schematic, and had to
rework the board to add one. We chose a Maxim MAX3221 RS-232 level shifter for this purpose. The J6, J7 and J2
components provide places to probe signal levels, and access unused I/O pins that can still be used. J2 even includes
a 3.3 V and a Ground pin with a bypass capacitor.

There are two LEDs that will be used for debugging. We can set the LEDs to flash, or toggle in software. They can
be used to signal when a message was received over the wireless, or when a certain command decoded in the motor
driver. The processor pins do not have enough current driving capacity to drive the LEDs directly, so an inverter was
used to act as a buffer and increase the current capacity. R4 and R5 provide current limits for the LEDs.

WIRELESS TRANSMISSION CIRCUITRY
The wireless transmission circuitry consists of a low-voltage PCMCIA connector, 802.11b PCMCIA card, pull-up
resistors, and bypass capacitors to regulate the input voltage. We chose to use a 3Com 802.11b card
(3CRWE62092B) because it was readily available. Since the other components were standard, we used the ones that

4

we had readily available through work and other resources.
The pin connections of the PCMCIA interface were researched, and all of the necessary
connections were drawn out to the processor. Most of these connections are simply wires;
however, some have pull-up resistors as required by the PCMCIA standard. There were
also signals that were not drawn to the processor, but required external connections such as
the signals VS1 and VS2. VS1 and VS2 are voltage sensing outputs used to determine
whether the card is low-voltage or not. Since we are only using one type of card, these signals did not provide us
with useful information. Therefore, the required pull-up resistors for these signals were attached, but the signals are
not connected to the processor. A test point was placed on the signal INPACK as it is not required to run the card,
but provides useful information for debugging purposes. Specifically, this signal is asserted low by the card when it
recognizes the memory address. It is expected that this will be useful in debugging the software on the DSP to
control the wireless card. Standard bypass capacitors were used in parallel on the Vcc and Vpp voltage inputs to the
card to provide additional current to the card, and to reduce noise.

The external address and data bus on the DSP were used as the address and data lines to the wireless card. The
address bits A16 up to A25 were pulled to ground since the address bus on the DSP is not that wide, and there is not
enough memory on the wireless card to require all of these bits.

A table of all of these connections is included below. Together these connections will allow for detection of the PC
card, reading the card’s information structure (CIS), and performing the I/O transactions between the laptop and the
vehicle. In order to perform these operations the card must be started up in memory mode to read the CIS. The card
must then be switched into I/O mode to download the firmware, and read and write to the registers containing the
data received and sent by the card. This is done by simply changing the purpose of some of the pins on the card, and
did not require a significant hardware change. A circuit diagram is attached in Appendix C.

Signal Pin # Pull-up Resistor Description
IORD# 44 N/A I/O read command signal

IOWR# 45 N/A I/O write command signal

OE# 9 N/A Output Enable

WE# 15 N/A Write Enable

REG# 61 N/A Register Select

CE2# 42 N/A Card Enable 2

CE1# 7 N/A Card Enable 1

ISIO16# 33 N/A 16 bit I/O register access signal

WAIT# 59 10 Kohm Wait signal for long transactions

CD1# 36 10 Kohm Card Detect 1

CD2# 67 10 Kohm Card Detect 2

READY 16 10 Kohm Ready signal

IREQ# 16 10 Kohm Interrupt Request

RESET 58 N/A Reset signal

INPACK# 60 10 Kohm Input Acknowledge – Test Point

VS1# 43 100 Kohm Voltage Sense 1 – Not connected to processor

VS2# 57 100 Kohm Voltage Sense 2 – Not connected to processor

A25:A0 ---------- N/A Address lines

D15:D0 ---------- N/A Data lines

Vcc 51 & 17 N/A Voltage supply

5

Signal Pin # Pull-up Resistor Description
Vpp1 18 N/A Voltage supply

Vpp2 52 N/A Voltage supply

Ground 35, 1, 68,
34

N/A Ground

TABLE 1: PCMCIA CONNECTIONS

COLLISION AVOIDANCE CIRCUITRY
There were two main parts to the collision avoidance hardware, IR sensors (part number: PNA4602M)
and IR LEDs (part number: QEC113). We chose to use these parts because we had previous experience
with them and they are easy to use. The circuit will notify the processor when an object is detected within
its sight. The IR sensors assert a low signal when they see an infrared light beam with a 38 kHz frequency.
In order to utilize this feature, a 38 kHz signal will be sent from the processor to the IR LEDs. When the
emitted light beam strikes a wall or other solid surface, it will be reflected back. The IR sensors will
detect the IR light and assert a low signal. This signal was fed back into the processor through a Schmitt
Trigger inverter to translate the low assertion into a high signal of 3.3 V. In order to minimize the number
of PWM pins necessary to drive the LEDs, Schmitt Trigger inverters were also used to amplify the 38 kHz signal and
send it through potentiometers to each of the three IR LEDs. This decision allowed us to use only one PWM pin
instead of three to drive the three IR LEDs. Potentiometers were included in series with each IR LED so that the
current passing through the IR LEDs can be modified to adjust the likelihood of the signal being detected by the IR
sensors. These potentiometers will be adjusted initially to provide the most reliable detection possible with the
actual current resulting from the circuitry on the vehicle. Real time sensitivity control will be performed using
software residing on the DSP. A circuit diagram is included in Appendix C.

MOTION CONTROL
The RC truck that we acquired to use has three motors. One motor is used to control left and right steering. One
motor is used to move forward and backward, and the last motor controls the gear ratio for the forward and backward
motor.

Most high end RC vehicles use a servo to turn left and right. We did not buy a high end vehicle. Our turning motor,
B3 on the schematic, is connected to an H-bridge. The MOSFETs, AND gates, and resistors form a circuit that will
provide bidirectional control of the motor and brake capability.

The turning motor is composed of a simple motor that turns a gear that turns the steering arm. The steering arm has
contacts that ride on a PCB. There are six wires that connect to this motor. Two are for the motor to rotate left or
right. The other 4 connect to the PCB and provide the mapping to where the arm is located. We will call LR1 and
LR2 the outputs and because of the pull down resistors and the contacts on the PCB to the two 3.3 V wires, we can
create a truth table to explain how to move the motor.

LR1 LR2 Behavior
0 0 Straight
0 1 Not maximum left
1 0 Not maximum right
1 1 Maximum left or right

TABLE 2: LEFT, RIGHT TRUTH TABLE

The steering arm has a spring that will return the wheels to a straight direction. In order to keep the vehicle turning
the motor must be moved to the desired position and then the brake must be applied to keep it in the correct position.
If the motor does not provide enough torque to stay still when the break is applied, the H-bridge must be used to
keep the arm in the same position.

The motor that controls high and low gears works in a similar manner. The H-bridge driver is identical to that used
for the turning motor. There are only five wires on the gear motor, B2 on the schematic. Again, two wires connect
directly to a motor that can rotate left or right. The other three wires are connected to contacts on a PCB. There is

6

one wire that can connect to either the low gear wire or the high gear wire, but not both. The truth table for this
motor output is shown in table 2.

Low_Gear High_Gear Behavior
0 0 Undefined
0 1 High gear selected
1 0 Low gear selected
1 1 Not Possible

TABLE 3: HIGH, LOW GEAR TRUTH TABLE

The Main drive motor, B1 on the schematic, is set up differently. The motor has a no load current of 0.5A, and is
rated to at 3.29A for maximum efficiency. To supply as much current as possible, we found a DMOS full-bridge
motor driver IC. This part, manufactured by Allegro, is capable of supplying 2.8A of repetitive current. We should
get plenty of speed from our vehicle through this part. The part has its own charge pump to turn on the internal
FETS completely. It requires 4 processor pins. One is a PWM that determines speed, one is a sleep pin, and the
other two determine direction and braking. The part has a heat sink built in, that is connected to a large surface
ground plane on the PCB.

WIRELESS CAMERA
Our original plan was to purchase a video compression IC and CCD camera separately and design our own video
hardware. However, since the frame rate was one of our primary concerns and we were unable to purchase
any video compression hardware as previously intended, we chose to purchase an 802.11b enabled camera.
We chose the Dlink DCS900W Internet camera because it has an integrated 802.11b wireless connection
and video compression for higher frame rates. It has a 640x480 resolution at a frame rate of 20, which will
provide a high quality video stream. We require the high frame rate to ensure we can see where the vehicle
is traveling in real time. The camera is also ActiveX and Java compatible which made it easier to write the
software needed for viewing the video stream. This camera was mounted to the top of our vehicle to give us
the best view for driving the vehicle remotely.

PCB DESIGN AND VERIFICATION
We used Protel DXP 2004 by Altium for our schematic and PCB design software. Tyler has used this family of
software extensively. We made all of the components for the schematic view and for the PCB footprints that were
not already available. We measured the available space in the vehicle and made the new board outline so that it
would be big enough for our needs. We are using the mounting holes that were used on the factory board. After the
board was designed, and the schematics were reviewed as a group, gerbers were created. The gerbers were sent to a
PCB fabricator and complete boards were returned one week latter. Finally the boards were reviewed for
correctness. From the five boards that we received, we failed 3 because of manufacturing defects that created
obvious shorts between traces.

BASIC ASSEMBLY
We populated the PCB and performed some basic continuity checks on the power pins. Initially, we intended to put
the entire vehicle together, and then work on software. As we got to the point of putting things together, we decided
that we needed the board to be exposed while we did some more testing. We didn’t know exactly what current the
motor drivers are capable of delivering, nor did we know what current the turning and gear motors require. We
didn't want to destroy the motors because we turned them too far or to fast. It made more sense to keep the board
exposed while we worked on the basics, then we finished the assembly.

DEBUG STRATEGY

We rejected three boards out of our lot of five because of visual defects. We populated one of the boards that
remained and performed a continuity check on the ground pins. Next we supplied power to the regulators and
verified that the voltage outputs are within tolerance. We checked voltage levels around the card, and total current
consumption for the card. The next step was software on the DSP to disable the motor drivers. That software was
not necessary to this point, but once the motors drivers could be turned on and off, their current capacities could be

7

measured, and appropriate series resistors could be ordered. Hardware testing and modification continued
throughout the software development process until the hardware was at an acceptable level.

CONCLUDING REMARKS \ REQUIRED MODIFICATIONS

We started the hardware design process with a functional description of what we wanted the hardware to do. As we
designed the schematic we thought of more parts that we should add, including the serial connector, and the
expansion port on the available I/O pins. We completed the schematic and started working on the board. As we
designed the board outline, we had to make some calculated guesses at dimensions, printout some scaled outlines,
compare to the mechanical body, and make adjustments. Eventually we got the board ready to build, and sent out the
files. As soon as it was too late to change anything, more changes were found; most notable is the missing RS-232
driver. We have to make modifications to our existing hardware because the PCB is too expensive to revise. The
board does fit in the space required, and the mounting holes line up with the mounts in the vehicle.

ROVER SOFTWARE COMPONENTS

WIRELESS COMMUNICATION

This task combined two separate components, one on the laptop and the other on the DSP. The laptop software sent
commands to the vehicle over the 802.11 link, to the DSP where they were supposed to be received through the
hardware interface designed above. The DSP software will be discussed first, followed by the PC software.

The intent was to develop a somewhat simplified driver for the DSP to allow it to drive the 802.11 card through the
hardware interface designed above. However, we were unable to communicate appropriately with the card due to the
limitations of the processor that we were unaware of during the hardware design process. Specifically, the address
bus on the DSP would not acknowledge a wait signal from the 802.11 card. The wait signal informs the host
machine that the 802.11 card requires more time to complete the operation. The inability to recognize this signal
results in unreliable communication.

The faulty hardware design resulted from our incomplete understanding of the functionality of this specific DSP.
We believed that the address bus on the processor was a peripheral to GPIO ports, so that we could generate our own
bus logic if necessary by directly driving the GPIO ports. This was not the case. Only a few of the address and data
pins could actually be driven as GPIO ports, and the external memory interface on the processor was very limited.
The only control over the timing of the signals was through wait states; at this point we also discovered that the
external memory interface was not timed using the system clock but the PLL clock output. This meant that the
external bus speed was twice that which was expected. The processor was slowed down to try to make the wait
signal irrelevant, but the necessary speed would not allow the processor to drive the 40kHz signal necessary to drive
the IR LEDs for the collision avoidance module. This fix also did not guarantee that the wait signal would never be
a problem.

There was one other problem that we were unable to resolve due to the hardware design, but it requires a little more
explanation about the internal workings of the 802.11 card. This type of a PCMCIA card can be accessed in two
separate ways. The card is initially brought up by the system using the PCMCIA memory only interface, and the
Card Information Structure is read from the attribute memory space on the card by a card services driver. This
structure contains information about the capabilities of the card, from which the card services driver determines what
firmware is required by the card. The interface used to access the card is then switched from the PCMCIA memory
interface to the PCMCIA IO interface and the firmware is downloaded on to the card. In the PCMCIA IO interface,
address and data registers can be written and read to access another memory bank, the common memory bank, on the
card. In order to read and write these registers, different read and write strobes than in the memory only interface
must be used. Due to the limitations of the DSP's external memory interface, we were unable to quit driving the
memory read and write strobes. This resulted in an inability to download the firmware onto the card even when the
processor was slowed. An attempt was made to write to the memory space using the address and data registers and
then read the data back; however, the operation was not successful even when the wait signal was not asserted during
either operation. This led us to conclude that the read and write strobes were the problem. This could be fixed by

8

multiplexing the memory read and write strobes to the two separate pins on the PCMCIA card, and only driving one
or the other. Another possible solution would be to not access the card in the memory only interface since we do not
need the information in the Card Information Structure if we limit ourselves to only using one type of card.
However, neither of these solutions would allow us to recognize the wait signal, so any communication would be
unreliable at best and most likely non functional. The only real solution to this problem is to add a host bus adapter
between the processor and the PCMCIA connector, possibly an FPGA. The FPGA could then latch the address, data,
a flag indicating a read or write operation, and a flag indicating IO or memory read write with the timing of the host
bus. A flag could then be raised to the processor indicating that the data from the PCMCIA card is ready and waiting
in an internal register on the FPGA. A second memory access could then be used with a specific address to retrieve
the data. If the operation was a write operation, then the FPGA will not need to notify the processor when the write
operation is complete, but it would need an internal buffer to ensure that one write operation is completed before
another one is started. This solution was considered during the hardware design, but was decided against due to cost
and hardware complexity considerations. By the time the necessity was apparent, there was neither time nor money
to perform the hardware modification.

To allow the rest of the project to be completed, a serial interface was designed so that the vehicle could accept
commands over the serial port. The command instruction that was agreed upon required sixteen bits to communicate
a command. Since, the serial interface on the DSP only allows one byte to be received at a time; a state machine was
defined to receive the entire two byte command. Each command that was sent was proceeded by the byte 0xFF to
synchronize the commands. The state machine diagram is given below.

In State 0 the FSM waits for a byte containing all ones, 0xFF, before moving to State 1 where it receives the high
byte of the command. Once the high byte is received, it moves to State 2 where it receives the low byte of the
command. Then the FSM transitions back to State 0 to wait for the next synchronizing byte.

The development of the wireless communications software on the PC was more successful than that on the DSP. The
code to send the commands over the 802.11 link was successfully written and tested. This code was structured as a
class where the opening of the socket was performed in the constructor, and member routines were written to send
and receive data over the 802.11 link using the Ws2_32 library. A console application was created as a test program
to either send or receive data over a network connection on a computer. Once the operation of the base class was
verified using this program, it was integrated into the main GUI. Final testing was performed by using the main GUI
to receive the commands from the joystick code, and send the command over the 802.11 link. The console
application placed on another machine in a receive-only configuration so that the data being transmitted could be
viewed.

When the unfortunate problems with the DSP wireless communication were discovered, this code had to be replaced
by serial communications code. The serial communications code is also structured as a class that creates the COM
port in the constructor and uses member functions to receive and send data. The Platform SDK functions for
creating and reading files were used to perform these operations as outlined in the MSDN documentation. One
difficulty that was encountered was that the name of the COM port had to be prepended with \\.\ to open COM ports

9

State 0

FF

State 1

HB

State 2

LB

 !FF FF

 !FF

 FF

 FF

! FF

with certain numbers. This is not easily found in the MSDN documentation, and was discovered by researching
programming discussion boards on the internet. This code was tested using another test console application that sent
a single command to the car and waited for the DSP to echo the command back. This test application and the
debugging software for the car were used to verify that the commands sent from the PC were actually received by the
car. Then, the test application was modified to send commands in a loop similar to the one in the main GUI, and
that code was executed to verify that the DSP could receive commands in rapid succession. Finally, the code to
control the serial port was integrated into the GUI and tested again.

MOTION CONTROL

We decided to use a joystick as our input source. The joystick provided a variable source that offers ease of use, and
maps well to the motion of the car. The joystick has two controls, one for forward/reverse, and one for left/right. We
also mapped a couple of buttons to enable, and disable the collision avoidance, and to switch from high to low gear.
The joystick provides an output for each axis that varies positive and negative. We scaled the output to provide ten
steps in each direction, using two nibbles of data. We mapped the forward/reverse, left/right command bits to
another nibble. We used two bits from a fourth nibble for obstacle avoidance, and high/low gear selection. These
four nibbles were aggregated to form a two byte word that was then set to the vehicle. The high byte determines the
motion commands, six possible combinations, and the low byte contains the magnitude, with 21 combinations
possible. The command byte includes settings for forward, reverse, right, left, collision avoidance, and stop. The
magnitude byte consists of the two magnitude nibbles; the most significant nibble represents the forward/reverse
magnitude and the least significant represents the left/right magnitude. A command was never issued with a
magnitude of one because the joystick didn't always return to the center. Unless the first position was ignored, the
joystick would send out movement commands when the vehicle was supposed to be stopped. The table below shows
the different possible values for the command and magnitude bytes. These may be combined using a logical OR
operation to form commands such as forward and right or reverse and left. For example, to move forward and right,
OR the commands for forward and right for the high byte, and OR the magnitude of forward with the magnitude of
right to get the low byte.

The motion control on the vehicle was developed in stages. The first stage was to decode the incoming message into
the nibbles used to form the word. This process was done using a series of AND and shift operations. Each nibble is
compared to what the car is currently doing, and any differences are implemented immediately. This allows each of
the motors to be controlled independently from each other, and prevents decreasing the duty cycles significantly. We
wrote a set of unit tests that verified that the command was being decoded correctly.

The next phase of development actually ran the motors. We experimented with some PWM frequencies before
measuring the values from a functional RC vehicle. The forward/reverse motor uses a 64Hz frequency that has the
following available duty cycles, corresponding to magnitudes issued from the laptop: 0%, 55%, 60%, 65%, 70%,
75%, 80%, 85%, 90%, 95%, and 100%. We burned out one two PWM pins on the processor and two of the motor
driver ICs before we learned that the frequency should be this slow. We lifted the dead PWM pin, and routed a spare

10

Command Magnitude

Right 00000001 Center 00000000 00000001 00010000
Left 00000010 Right/Left 2 00000010 Forw/Rev 2 00100000

Reverse 00000100 Right/Left 3 00000011 Forw/Rev 3 00110000
Forward 00001000 Right/Left 4 00000100 Forw/Rev 4 01000000

Right/Left 5 00000101 Forw/Rev 5 01010000
10000000 Right/Left 6 00000110 Forw/Rev 6 01100000

Right/Left 7 00000111 Forw/Rev 7 01110000
Right/Left 8 00001000 Forw/Rev 8 10000000
Right/Left 9 00001001 Forw/Rev 9 10010000

Right/Left 10 00001010 Forw/Rev 10 10100000

Collision
Avoidance

Off

I/O pin to the trace so that we did not need to replace the processor.

Initially, we could not turn on the h-bridges to drive the left/right, and high/low gear motors on the vehicle. We had
to modify our circuit to make them work. We initially had P type MOSFETs in the H-bridge. In order to drive the
MOSFETs on, we would need a voltage that is higher than the supply, and unavailable. We changed the MOSFETs
to N type, and then discovered that we needed to reverse the source and drain pins. The discovery was made
because the circuit would over-current every time the supply was connected to the motor power. The MOSFETs we
used have built in flyback diodes, that are always forward biased when the source and drain are reversed. Our two h-
bridges provided four low impedance paths to ground, which caused the high current draw. After making these
modifications, we still could not supply a lot of current to the turning motors. This resulted in limited turning ability
with the additional friction when the car was driven on the ground. Our solution was to replace the motor that turns
the wheels with an airplane servo. The servo moves to a position defined by an input frequency and duty cycle. The
carrier frequency is 68 KHz, and the duty cycle is 7% for center, ±0.7% in 0.1% increments for left and right.

SENSOR PROCESSING AND COLLISION AVOIDANCE

Most of the sensor processing and collision avoidance software was located on the DSP. The only component on the
PC was the code in the GUI to alter the command code and the bitmap on the GUI depending on whether or not the
collision avoidance feature was active. The sensor processing and collision avoidance software on the DSP
consisted of two separate functions. The first function read the input pins that the sensors were connected to and set
global variables indicating which sensors were detecting objects. The second function took the encoded command
word, called the sensor polling function, and modified the command word to avoid any obstacles that the sensors
detected. The algorithm used to modify the command input takes into account both what is seen by the sensors and
what direction the given command is telling the car to go. After the command was modified, it was copied into the
global variable that was used by the motor control software so that the modified command would be executed instead
of the one received from the user.

The algorithm used actively avoided the obstacles that were detected in the sensors; the logic is as follows. If all of
the sensors detected obstacles, the command would be altered to stop the vehicle. If only the left and right sensors
detected objects and the command received from the user was to move forward, the command would be modified to
move forward at half of the received speed. This was done to alert the user, but not to divert the course since there
were no sensors in the front of the car. If only one of the sensors detects an object, and the given command is to
move in that direction, then the command is modified to move in the opposite direction with half of the magnitude
received in the original command. On the other hand, the left and right sensors are ignored when the command
received is to move the car backwards unless something is also detected in the back sensor. In this case, the
algorithm modifies both the forward/reverse and left/right portions of the command as if the both detecting sensors
were the only ones detecting.

The command decoding and modification function was written and tested on a PC, using a console application,
before being transferred to the DSP. The console application has a test mode where it reads commands out of a
buffer in order, generates random values for the sensors, modifies the command according to these sensor readings,
and finally checks the result against a truth table of values for that particular command. If the result was not what it
should have been, an error message was printed to the screen. A set of commands was generated that included all
different possible combinations of forward, reverse, left, and right. These commands were run and checked with
1000 different sets of random sensor readings to ensure that the function was operating correctly. The console
application was also capable of operating in a simulation mode that allowed the user to input the directions and
magnitudes for the vehicle. The program would output the changes it made to the original command, if any, based
on a random set of sensor readings. After this testing procedure the code was moved onto the DSP with very little
trouble.

The code to monitor the sensors could not be tested on the PC; consequently, it was written and tested on the DSP.
The code checks the value on each of the PWM fault pins that the sensor outputs are connected to and sets the global
flags used by the decoding function accordingly. This function was tested by driving an LED from the DSP each
time one of the global flags was set. The LED was also used to tune the distance that the sensor could see by
adjusting the potentiometers and sensors.

11

Once this testing was completed, the code was merged into the main loop of the code on the DSP such that if the
collision avoidance feature was active, the command modifying function was called before the motor control
function. Subsequent testing of the integrated system was successful.

VIDEO INTERFACE

The video interface software component was necessary to capture the video coming across the 802.11 link from the
camera on board the vehicle and display it in the GUI. This code actually ended up being fairly simple since the
camera came with an ActiveX control. The hardest part of this task was determining what an ActiveX control is, how
to insert it into the program, and how to access its features. After digging through the MSDN documentation, it was
discovered that it was fairly simple to insert an ActiveX control into a dialog. The control is simply drawn into the
graphical editor, the desired ActiveX control selected, and the compiler auto-generates the code. However, until this
point the GUI was a non-dialog based MFC application; nothing could be found about how to insert the ActiveX
control into this type of an application. In order to use the ActiveX control, the GUI was rewritten as a dialog based
application and the ActiveX control was inserted. This ActiveX control was not documented since it was not meant
to be used by the general pubic, so in order to use it (or even find which one to use) we had to be a little sneaky. It
was fairly easy to determine which ActiveX control to use. Since the ActiveX control had to be installed on the
computer, we only had to observe which .ocx file was being installed. To figure out how to use the control to view
the video from the camera, we analyzed the JAVA code that was used to display the video using the ActiveX control
from the standard webpage interface that is normally used for the camera. This code was essentially a bunch of
function calls to the ActiveX control that acquired the camera and displayed the video. These calls were translated
into the framework given by our application, but it didn't quite work. Analyzing the other available functions in the
ActiveX control revealed a function called GetRealTimeData. An educated guess was made that this would acquire
the data from the camera, and this function call was added. This time the video was displayed in the window as
expected. We had some difficulty with the video freezing, but this occurred even with the standard webpage access.
This led us to the conclusion that it was a problem with the ActiveX control. Another interesting thing is that
accessing the camera this way does not require the security login required by the standard interface, kind of scary
considering it was relatively easily to implement.

FRAMEWORK SOFTWARE

The framework software served as a base from which we were able to add each of the separate modules. For
example, the motion control was added to one instance of the framework, communication was developed into
another, and everything was integrated into another. The Motorola software was developed in the Codewarrior SDK
provided by Metrowerks. The basic framework provided functions to control the I/O pins, PWMs, timers, and set up
the clock phased locked loop (PLL).

GUI WRAPPER

The GUI for this project was implemented using a
dialog-based MFC application and contained four
main portions: the joystick control code, the serial
port control code, the video interface code, and
code for a supporting dialog box. The joystick
control code is the code described by the PC
motion control section above. A function within
this code was called from a timer interrupt within
the GUI to read the updated command from the
joystick. Then, the command was sent, using the
serial port control code, over the serial link to the
car. The video interface code was only called in
the constructor of the GUI to establish a link with
the camera and display the video. The supporting
dialog box was displayed by selecting
“Transmission Settings” from the system menu. This dialog box allows the user to change the COM port over which

12

the program is transmitting commands.

CONCLUSIONS AND LESSONS LEARNED

Overall this project was successful. The only notable failure was the inability to implement the embedded wireless
interface. This component was successfully replaced with a serial interface, and the rest of the project functioned as
planned. Given additional time and resources we would have been able to incorporate the necessary modifications
for a wireless connection.

Looking back other modifications become obvious. For example, since we no longer need the DSP to perform
MPEG compression, we could have used a microcontroller with better external memory support. With this
capability, we may have been able to implement the 802.11 wireless interface. We should have performed more
rigorous circuit analysis to find the logic error with the H-bridge. We also should have done more analysis of the
existing electronics in the car before gutting the electronics. Doing this analysis would have saved us some time
trouble shooting the frequencies used to drive the motors.

ACKNOWLEGEMENTS

We acknowledge Magpie systems, L-3 communications and Circuit Graphics for there help and support. We also
used typical circuits shown in data sheets from Allegro and Motorola and the sample code provided on MSDN and
included with the DirectX SDK.

13

APPENDIX A

BLOCK_DIAGRAM

Vehicle

PC
Motion
Control

PC Wireless
Card

SensorsIR LEDS
Camera

DSP

Left/Right
Motor

Forward/
Reverse

Motor

High/Low
Motor

Vehicle
Wireless

Card

Power
Regulator

Video Stream

Video
Display

Interface

801.11b
Access point /
Router / Hub

Motion Control

PC to all Wireless devices

14

APPENDIX B

BILL OF MATERIALS

Comment Description Designator Footprint Manufacturer Source
Motor RS-380SH-4045 B1 RB5-10.5 Mabuchi Motor Radio Shack RC

Truck
Motor Motor, Main Drive B2 SIP5 unknown Radio Shack RC

Truck
Motor Motor, Main Drive B3 SIP6 unknown Radio Shack RC

Truck
Battery 10 C-cells high current BT1 BAT-2
Battery 6 AA high current BT2 BAT-2
0.1uF Capacitor, non-polarized C1 M1206 unspecified Magpie Systems
10uF Capacitor, non-polarized C2 M1210 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C3 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C4 M1206 unspecified Magpie Systems
10uF Capacitor, non-polarized C5 M1210 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C6 M1206 unspecified Magpie Systems
.22uF 25V Capacitor, non-polarized C7 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C8 M1206 unspecified Magpie Systems
1uF Capacitor, non-polarized C9 M1206 unspecified Magpie Systems
100uF TPS Series Low ESR Surface Mount

Capacitor
C10 M6032 AVX Magpie Systems

0.1uF Capacitor, non-polarized C11 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C12 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C13 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C14 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C15 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C16 M1206 unspecified Magpie Systems
2.2uF sm capacitor 805 footprint C17 M805 unspecified Magpie Systems
2.2uF sm capacitor 805 footprint C18 M805 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C19 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C20 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C21 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C22 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C23 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C24 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C25 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C26 M1206 unspecified Magpie Systems
*0.1uF Capacitor, non-polarized C27 M1206 open
1uF Capacitor, non-polarized C28 M1206 unspecified Magpie Systems
100uF TPS Series Low ESR Surface Mount

Capacitor
C29 M6032 AVX Magpie Systems

.1uF Capacitor, non-polarized C30 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C31 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C32 M1206 unspecified Magpie Systems
0.1uF Capacitor, non-polarized C33 M1206 unspecified Magpie Systems
IR DETECTOR Bipolar Photodetector D1 SIP3 Panasonic Digi-Key
Red LED Surface mount LED D2 DIO1206 unspecified Magpie Systems
Red LED Surface mount LED D3 DIO1206 unspecified Magpie Systems
IR DETECTOR Bipolar Photodetector D4 SIP3 Panasonic Digi-Key
IR DETECTOR Bipolar Photodetector D5 SIP3 Panasonic Digi-Key
RLS4148 sm 1n4148 signal diode D6 DIO1206 unspecified Magpie Systems
SS13 1 amp Schottky Diode sm D7 DIO1206 unspecified Magpie Systems
QEC113-ND Typical INFRARED GaAs LED DS1 LED-0 Fairchild Digi-Key
QEC113-ND Typical INFRARED GaAs LED DS2 LED-0 Fairchild Digi-Key
QEC113-ND Typical INFRARED GaAs LED DS3 LED-0 Fairchild Digi-Key
DB9 Male DB-9 J1 SIP9 unspecified Magpie Systems
GPIOD+ Connector J2 SIP10 open
JUMPER1 Jumper J3 SIP2 wire

 12

*Stand Alone Programming Switch J4 SIP2 unknown Radio Shack RC
Truck

*INPACK Test-point J5 SM1 open
CLK_OUT Test-point J6 SM1 open
GPIOE4 Test-point J7 SM1 open
PCMCIA
connector

Single thru-hole PCMCIA socket P1 AMP535659-1 unspecified Magpie Systems

Camera Power Connector for the Dlink Camera P2 SIP2
DSP807 Sherlock 2.00 mm 10 pin P3 MOL 35362 Molex Magpie Systems
NDT456P P channel MOSFET Q1 SOT-223 unspecified Magpie Systems
NDT456P P channel MOSFET Q2 SOT-223 unspecified Magpie Systems
NDT456P P channel MOSFET Q3 SOT-223 unspecified Magpie Systems
NDT456P P channel MOSFET Q4 SOT-223 unspecified Magpie Systems
NDT455N N channel MOSFET Q5 SOT-223 unspecified Magpie Systems
NDS356P P channel MOSFET 1.6A, 30 V Q6 SOT-23 unspecified Magpie Systems
NDT456P P channel MOSFET Q7 SOT-223 unspecified Magpie Systems
NDT456P P channel MOSFET Q8 SOT-223 unspecified Magpie Systems
NDT456P P channel MOSFET Q9 SOT-223 unspecified Magpie Systems
NDT456P P channel MOSFET Q10 SOT-223 unspecified Magpie Systems
RESISTOR RESISTOR R1 M2512 open
10K RESISTOR R2 M1206 unspecified Magpie Systems
10K RESISTOR R3 M1206 unspecified Magpie Systems
620 Ohm RESISTOR R4 M1206 unspecified Magpie Systems
620 Ohm RESISTOR R5 M1206 unspecified Magpie Systems
10K POT VARIABLE RESISTOR R6 VARRES unspecified Magpie Systems
10K POT VARIABLE RESISTOR R7 VARRES unspecified Magpie Systems
10K POT VARIABLE RESISTOR R8 VARRES unspecified Magpie Systems
10 K RESISTOR R9 M1206 unspecified Magpie Systems
*1M RESISTOR R10 M1206 open
RESISTOR RESISTOR R11 M2512 open
10K RESISTOR R12 M1206 unspecified Magpie Systems
10K RESISTOR R13 M1206 unspecified Magpie Systems
*1M RESISTOR R14 M1206 open
1M RESISTOR R15 M1206 unspecified Magpie Systems
*1M RESISTOR R16 M1206 open
*1M RESISTOR R17 M1206 open
1M RESISTOR R18 M1206 unspecified Magpie Systems
10K RESISTOR R19 M1206 unspecified Magpie Systems
100K RESISTOR R20 M1206 unspecified Magpie Systems
10K RESISTOR R21 M1206 unspecified Magpie Systems
100K RESISTOR R22 M1206 unspecified Magpie Systems
10K RESISTOR R23 M1206 unspecified Magpie Systems
10K RESISTOR R24 M1206 unspecified Magpie Systems
10K RESISTOR R25 M1206 unspecified Magpie Systems
1M RESISTOR R26 M1206 unspecified Magpie Systems
1M RESISTOR R27 M1206 unspecified Magpie Systems
9.1 M RESISTOR R28 M1206 unspecified Magpie Systems
1M RESISTOR R29 M1206 unspecified Magpie Systems
1M RESISTOR R30 M1206 unspecified Magpie Systems
ON_SWITCH Switch S1 ON_SWITCH unknown Radio Shack RC

Truck
A3949SLP Allegro, DMOS Full-Bridge Motor Driver U1 TSSOP16 Allegro Allegro
DSP56F807 16 bit digital signal processor U2 DSP56F807 Motorola Magpie Systems
SN74HC08 Quad 2-input Positive AND Gates U3 MSO14 TI Magpie Systems
SN74HC14D Hex inverter U4 MSO14 TI Magpie Systems
SN74HC14D Hex inverter U5 MSO14 TI Magpie Systems
5V 3A ISR 5V 3A Integrated Switching Regulator V1 PSIP-T12 TI Magpie Systems
3.3V 2A ISR 3.3 V 2 A Integrated Switching Regulator V2 PSIP-T12 TI TI
8.0MHZ Crystal X1 MC505 Epson Magpie Systems
connectors Cgrid locking wire to wire connector Molex Magpie Systems
MAX3221 RS-232 level shifter Maxim Maxim

 12

APPENDIX C

WEAVER REVISION 1A SCHEMATIC

 17

 18

 19

 20

 21

