Amateur Satellite Tracking
Communication System

Junsung Cho chojs@cs.utah.edu
Vinh Pham vpham@cs.utah.edu
Suresh Subasinghe subasing@cs.utah.edu
December 17, 2004

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

Table of Content

A Brief History of Amateur Satellites...........coouiiiiiiiiiiiiii e
PrOJECt OVeIVIBW . ..ottt ettt et e e aeeeas
System Hardware and Software OVervieW..........c.oovuiviiiiiiiiiiiiiiiieiieaiieeinennn,
Transmission and Reception Antenna ATTay.........ooeevirieinieiirieineenieenneeneaanns,
Antenna SPeCIifiCAtIONS.uit it
Feed Matching SySteml........ovuuiiiiii i e,
SWR & Power Measurement.ovuuiiiiiiiiiiiiiiie i
Radio Specification & Modification.............c..cooeiiiiiiiiiiiii i
Cabling And WITINE. ottt e e
Preamplifier.o
Horizontal And Vertical MOtOTS.oouiiuiiiii e
Relay Circuits for Directional Controlc.ocoieiiiiiiiiiiiiiiii e,
Microcontroller CIrCUIL.ovueeut it
AUt Tracking CHEeNt.......o.uiii i e et et et e eeaeas
AULO TraCKing SeTIVeT. ... oottt e e e e ee e
TNC/Modem Terminal ClHent............oooiuiiiiiiii e
ACKNOWIEAZEMENLS. ...\ttt e e e e

Appendix A
REfEIONCES. ...t
Appendix B
What is Doppler effect?
What is the PL-67 Tone?
Why do satellites use different bands?
What are the Keplerian Elements?
Appendix C
AMSAT-OSCAR 51 Operation Parameters
Fuji OSCAR 29 Operation Parameters
AMRAD OSCAR 27 Operation Parameters
Appendix D
Other ModifiCation...........oiuiit i
LNY Pre Amp Parts.o.oooii e
Appendix F
Assembly Code for Serial Communication and Relay Control.......................

p-21
p.21
p-21
p.21

p.22
p.22
p.22

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 3
University of Utah

Distance Bearing Calculation Code for Auto Tracking Client........................ p-29
Satellite TNC | Terminal Client NET Code..........c..cooiiiiiiiiiiiiiiiiiiiien, p.31
Space Agent Client NET Code.........ccoviiiiiiiiiiiiiiiiiciiiiieeee p-35

Space Agent Server NET Code.........ccoiiiiiiiiiiiiiiiiiceeae p.37

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 4
University of Utah

A Brief History of Amateur Satellites

The first amateur satellite, OSCAR I was launched December 12, 1961 piggyback with
Discover 36, a United States Air Force satellite. Launch of OSCAR I led to the creation of The
Amateur Satellite Corporation (AMSAT) in 1969. However the first remotely controlled amateur
satellite was OSCAR 5 which was developed by electrical engineering students at the University
of Melbourne in Australia. Amateur satellites continue to be designed and built in countries
around the world. There are several new amateur satellites that will soon join the ranks above.
Latest being the Amateur Radio onboard the International Space Station (ARISS) in 2004.

Project Overview

Our objective in this project was to design an Antenna/Transmitter module to
communicate with Low Earth Orbiting (LEO) amateur Satellites in the sky. We based our design
specifically for the OSCAR series satellites AO-51, FO-29, AO-27, and FO-20.

System Hardware and Software Design Overview

The sections to follow will discuss the hardware and software designs and implementations that
were used during the course of this project. The overall system components can be summarized
below.

Hardware

® Antenna array for transmitting and receiving radio signal.
Horizontal and vertical rotators.
Relay circuits for directional control of horizontal and vertical rotators.
Transformers to step down the AC power supply to 24V DC.
Microcontroller to interface with the relay circuit and the computer software.
Coaxial cables, power cables, CATS5 cables, serial cables etc.
Joystick for Manual Control override of the antenna array.
Radio for signal transmission and reception.
Modem/TNC for decoding/encoding data packets.
Adjustable DC power supplies to power up the Radio, Modem and
Microcontroller.
Amplifiers for the relay circuit.
e Amplifier for signal amplification

Software

e (lient side software for broadcasting co-ordinates to the server and interfacing
with satellite coordinate software.
Server side software for controlling the antenna array.
Terminal software to connect to the TNC/Modem and monitor data flow.
Assembly software for programming the microcontroller.
Satellite co-ordinate tracking software.

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 5
University of Utah

Transmission and Reception Antenna Array

This satellite communication system uses two antennas, each operating at VHF!
and UHF” range of the spectrum. The VHF antenna is the primary transmitting antenna to
up link with various satellites. The UHF antenna is used as the downlink antenna.

. VHF(2 m): 145 MHz ~ 146 MHz (6 elements)
. UHF(70 cm): 435 MHz ~ 437 MHz (11 elements)

Both antennas are directional (YAGI)®, constructed from stainless steel using gamma
matching method

Figure 1: Antenna array mounted on a tripod with azimuth and elevation control rotators
Antenna Specifications
Table 1 below contains the design specifications for the VHF YAGI antenna, and Table 2

contains the design specifications for the UHF YAGI antenna. These parameters were
calculated based on the formulae provided in the “The ARRL Antenna Book™.

! Very high frequency (VHF) is the radio frequency range from 30 MHz (wavelength 10 m) to 300 MHz
(wavelength 1 m).

? Ultra high frequency (UHF) radio frequencies are those between 300 MHz and 3.0 GHz

? A Yagi-Uda Antenna, commonly known simply as a Yagi antenna, is an antenna consisting of an array of
a dipole and additional parasitic elements. The dipole in the array is driven, and another element, slightly
longer, operates as a reflector. Other shorter parasitic elements can be added in front of the dipole as
directors. This arrangement gives the antenna directionality that a single dipole lacks. Yagis are directional
along the axis perpendicular to the dipole in the plane of the elements, from the reflector through the driven
element and out the director(s)

CE Senior Design Project
University of Utah

Junsung Cho, Vinh Pham, Suresh Subasinghe

DESIGN FREQUENCY 145.92 MHz
BAND 2M Band
GAIN (With -15 db side lobes) 8.88 DBD
NUMBER OF ELEMENTS 6

DIAMETER OF ELEMENTS 4.00 mm
DIAMETER OF BOOM (0.D.) 22.00 mm
BOOM LENGTH 1873.69 mm
HORIZONTAL BEAM WIDTH 52 degrees
VERTICAL BEAM WIDTH 70 degrees
DIMENSIONAL TOLERANCE (+/-) 6.16 mm

Element Length (mm)

element spacing

REFLECTOR 1016.98 center to center mm
“OLDED DIFOLE 97178 REFLECTOR ~ FOLDED DIPOLE 380.08
FOLDED DIPOLE ~ DIR 1 162.30
DIRECTOR # 1 935.88
DIRECTOR # 2 926.21 DIR 1~ DIR 2 269,81
: DIR 2 ~ DIR 3 443.77
DIRECTOR # 3 914.08 SREPYL T o
DIRECTOR # 4 904.34

Table 1: VHF YAGI a

ntenna design details*

YAGI ANTENNA DESIGN DETAILS (UHF)

DESIGN FREQUENCY 435.30 MHz
BAND 70cm Band
GAIN (With -15 db side lobes) 12.27 DBD
NUMBER OF ELEMENTS 11
DIAMETER OF ELEMENTS 4.00 mm
DIAMETER OF BOOM (0.D.) 22.00 mm
BOOM LENGTH 1714.18 mm
HORIZONTAL BEAM WIDTH 30 degrees
VERTICAL BEAM WIDTH 34 degrees
DIMENSIONAL TOLERANCE (+/-) 2.07 mm

element length (mm) element spacing

REFLECTOR 349.86 center to center mm
FOLDED DIPOLE 325.76 REFLECTOR ~ FOLDED DIPOLE 127.41
DIRECTOR # 1 314.16 FOLDED DIPOLE ~ DIR 1 54.41
DIRECTOR # 2 310.18 DIR1 ~ DIR 2 123.97
DIRECTOR # 3 305.21 DIR 2 ~ DIR 3 148.76
DIRECTOR # 4 301.24 DIR 3 ~ DIR 4 173.55
DIRECTOR # 5 299.25 DIR 4 ~ DIR5 193.52
DIRECTOR # 6 297.26 DIR5 ~ DIR 6 207.99
DIRECTOR # 7 295.26 DIR6 ~ DIR 7 218.32
DIRECTOR # 8 295.26 DIR 7 ~ DIR 8 227.96
DIRECTOR # 9 290.30 DIR8 ~ DIR9 238.29

Table 2: UHF YAGI antenna design details*

* Elements are NOT INSULATED from the boom

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 7
University of Utah

Feed Matching System

Each antenna was tuned using the gamma matching
method. The gamma match capacitor can only cancel
reactance, it can not modify the "real part" (resistance)
presented to the feed-line. It is the simplest form of
matching, and has the lowest operating Q and loss of
any system. Adjustment of resistance requires adjusting
the diameter, spacing, or length of the gamma section.

SWR & Power Measurement

We used a SWR9 VHF/UHF Dual Band SWR/Power
meter from VANCO for tuning the antennae.

Figure 3 DaI Band Power meter

Radio Specification & Modification

A TM-741 Kenwood multi band Radio transceiver was
used for connecting to the antenna system. This radio
operated in the Frequency Ranges 144MHz ~ 147MHz
and 434MHz ~ 450MHz

We were able to send/receive voice communications
using this unit. However because it does not support a
9600 bps TNC/Modem connection for data transfers,
we had to modify the radio to receive an unfiltered
signal from discriminator. This was done by measuring
the incoming signal on an oscilloscope and soldering a Figure 4 TM-741 Kenwood radio
wire at a node before the signal was filtered (see

Appendix D section 1)

Cabling and wiring

We used two, 200 feet long 50 ohm coaxial cables to carry radio signals to and from the
antenna to the radio. To power up the two rotators and carry directional control signals to
them a CAT-5 Ethernet cable was used. Serial communication cables were used for
connecting the transceiver, motor driver control circuit and the tracking server.

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 8
University of Utah

Preamplifier

During the initial testing of the antenna reception, we observed that the incoming
signal to the transceiver was much weaker than anticipated. This could have been due to
the atmospheric interferences or simply because of a weak transmission signal. The
length of the cables being used was also a major factor in signal loss.

As a solution to this problem we implemented an inline preamplifier based on the LNY
receiver preamplifier circuit design5.

— = ?Lﬂ
O
R OUTPUT L

Figure 5 : LNY receiver preamplifier circuit

This amplifier circuit was placed at the antenna before connecting to the coaxial cables,
and it improved the receiver signal quality significantly. Following this modification we
were able to listen to a wide range of satellites for voice and data including the amateur
radio onboard the International Space Station.

Prior to these modifications we had the added advantage of being able to use both
antennae as transmitters. However after placing the amplifier circuit in place the UHF
antenna could no longer be used as a transmitter anymore.

> http://www.hamtronics.com/pdf/inst%20manuals/LNY %20Preamp.pdf

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 9
University of Utah

Horizontal and Vertical Motors

Ideally we would have liked to construct the antenna array controller using
stepper motors. However, because we were designing our system for outdoor use and
because of budget constraints, we decided to use normal rotator motors.

A total of two rotators were used, one for elevation control of the antenna array and
another is for azimuth control of the antenna array. Each rotator could be controlled for
direction and they required 24V to operate. Directional control signals had to be in the
order of 5~10V.

We were able to burrow one rotator from the Electrical Engineering department and
purchase the other rotator. Each rotator also came with a transformer/controller box that
could be plugged in to a wall power supply. These controllers use AC synchronous
motors that run at a predictable speed, and the control box simply runs the motor for the
amount of time needed to turn. We also burrowed a tripod from the Electrical
Engineering department to mount the two rotators.

Figure 6: Antenna Rotator with transformer and controller.

Relay Circuits for Directional Control

The rotators consume about 3~4 Amperes on average depending on the load that
is being mounted on them. Each rotator could be powered with 24V DC; however the
directional control of the rotators also requires a significant amount of current even under
a low voltage.

Therefore in order to conduct the high current and turn on the motors using
microcontroller output signals which were very weak, we designed an array of transistor
switches connected to Voltage regulators and relays for each directional control signal.

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 10
University of Utah

To motar power sup phy

TIF1Z20
[[4w]

To microcontroller snubber dicde
output pin (1 N300

Figure 7 : Each microcontroller output pin is connected to a transistor switch circuit

Each directional control signal requires 5 Volts to become active. The voltage output of
the transistor switch is connected to a 7805A voltage regulator to supply a constant 5V
output to the relay switches.

The relay switch is connected to one end of the voltage regulator output and the other end
is connected to the directional control pins of the rotator. The two capacitors on either
side of the regulator smoothen out the voltage, as the relay switch and the motor will
cause spikes and dips when it turns on and off.

+59 to 153V +aW

(input) (output)
: 7805 B

=i

10wk 1 uF

Figure 8: Voltage regulator circuit to smoothen out the spikes caused by the switches & motors.

In order to power up the two rotators we used the original controller that came with them,
and modified the circuits for our needs. We bypassed the built-in timer and the dial
controller so that we could use the built in transformer. The only use of these controller
boxes was its transformers. Directional control pins were connected to the
microcontroller outputs.

Figure 9 shows the overview of the motor driver control circuit. On the left
microcontroller output signals control the transistor switches. In turn they turn the relays
on and off causing the rotators to move in any given direction individually or
simultaneously.

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 11
University of Utah

Harizantal Raotator CW Direction

)J Relay
anny TIF 120
M

1KD

Ve

:

[=T1AN] £ =7
It 04

’

FGi1)

Herizonial Rosator OEW Directicn

PB(2) g —
L -
= AN |J TIF 120 .
1 KE }"“-u-. vod
=il
RS04
Vartizal Recator OW Direction
g —
A RFelay
MAN TIP 120
1 KO }‘“\-.
e
el
)
4004
Werlical Rotatar (PCW Dirsction
T
)J Ralay
ATATaY, TIP 120
1KQ |""-..
Visd
=1
4004
G

Figure 9 : Overall view of the motor driver control circuit

Microcontroller Circuit

We used a Motorola 68HC11E1 series microcontroller to control the Motor driver
control circuit. The MCU was mounted on an evbplus2 development board with 30KB
RAM, 8KB EEPROM and onboard debugging capabilities.

The primary task of the microcontroller is to communicate with the host program via its
RS232 interface and control the motor driver circuit with its output signals accordingly.

The host program issues a set of commands that the MCU interprets and moves the
motors in a certain direction.

These commands (please refer to Table1) allow the basic four way motion of the rotators
by 1 degree, and they can be used in any combination to achieve diagonal motion or

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 12
University of Utah

another preconfigured pattern. The MCU also responds to each command by sending an
acknowledge signal back to the host program after every execution.

A (Acknowledge) MCU sends a READY message back to the host. This is used
for checking the MCU status.

U (up) MCU signals the elevation control rotator to move up by 1
degree. When it’'s done moving, an acknowledge signal is
sent back to the host.

D (down) MCU signals the elevation control rotator to move down by 1
degree. When it's done moving, an acknowledge signal is
sent back to the host.

R (right) MCU signals the azimuth control rotator to move clockwise
by 1 degree. When it’'s done moving, an acknowledge signal
is sent back to the host.

L (Left) MCU signals the azimuth control rotator to move down
counter clockwise by 1 degree. When it's done moving, an
acknowledge signal is sent back to the host.

Table 3 : Control commands interpreted by the MCU

The MCU is programmed and calibrated to control the timing of the directional control
signals to move it exactly by 1 degree in each direction. It also makes use of the onboard
LCD display and LED display to notify the status of each signal and controller status.
We used these feature for monitoring the control system and debugging firmware.

Please refer to Appendix F section 1 for the assembly program used in the MCU

PC1 /I—I\ 7 N HOST PC
(Far downloading RS422, R5232 SCI, RS232 [sends motion control
the program) commands to the
MCLI)

Microcontroller

HC1108 E 4'\ ertical Rotator
Horizontal Relator PORTB(OA) Motorala M‘/ Control Relay circuit

Control Relay circuit \Ii

LED autputfor L} EB outputs (3:0) LCD Output(7:0) | 16 Character LCD
signal monitorirg \Ii —I/ Soreen

Figure 10 : Block level representation of the MCU and its interfaces to other peripherals

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 13
University of Utah

Auto Tracking Client

During the research phase of our project we found two viable methods of
obtaining live satellite coordinate data. The primary one being the web based Java applet
J-Track that ran on NASA’s website. The second option was NOVA for windows from
http://www.nlsa.com. Both were free for use; however we decided to choose NOVA
because of its ability run on the local host. This gave us more control over the software
and allowed us to integrate it in to our client module without much hassle.

NOVA provides a user friendly GUI interface to display available satellites and
their footprints. It also allows script tracking (ability to track a given list of satellites in
order). For us to use NOVA as part of the client side software, we designed a software
module that was able to interface with NOVA and extract the data it was displaying on the
screen. This was done using a technique called DDE (Dynamic Data Exchange)®. Once
the information required is extracted, it would then connect to the Tracking software that
is running on the server side and transmit the data using TCP/IP over the internet.

The data that is being transmitted to the server from the client side is formatted as a
continuous string value, where each field is delimited by a space character.

SatName AZ:Azimuth EL:Elevation RR:RangeRate where

SatName = the current auto tracking satellite name as derived from the AMSAT
database, maximum 12 characters;

Azimuth (AZ) = current satellite azimuth, 0.1 degree precision, no sign;
Elevation (EL) = current satellite elevation, 0.1 degree precision, signed;

RangeRate (RR) = satellite rate of change of distance from the observer expressed
as a signed floating point number in units of 1
Speed of Light

Doppler Frequency (Hz) = -Freq (Hz) * RR * (1.0/299792.458)

Table 4 : Explanation of the data transmitted by the Auto Tracking Client to the Auto Tracking
Server and Doppler Frequency calculation based on the Range Rate value.

The client software module has a GUI designed using Microsoft .NET SDK framework.
Figure 11 shows a screenshot of the Auto Tracking client connected to NOVA running
on the client side using DDE and to server over the Internet using TCP port 4711.

* DDE enables two running applications to share the same data. For example, DDE makes
it possible to insert a spreadsheet chart into a document created with a word processor.
Whenever the spreadsheet data changes, the chart in the document changes accordingly.

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 14
University of Utah

Please see Appendix F section 4 to view code for the Auto Tracking Client module.

Data from database Data send to server J Server Port

Space Agont Client

From Database |40-40 £Z:020.8 EL:-5?.?|H:-2.443369315?AH:N /
R

Sending Data |40-40 AZ:020.8 EL:-57.6 RR:-2. 4433690157 AH:N
Server |IP Address SewverIP [1559868.32 Server Port [4?11

Connect to local Nova database Stop sending data to server Exit Application

Figure 11 : Screenshot of the Auto tracking Client software

Auto Tracking Server

Once the Auto Tracking client selects a satellite and begins transmitting
coordinates, the Auto Tracking Server running on the server side will decode the
incoming data and send a series of commands to the MCU which in turn positions the
antenna grid accordingly, and follows the path as the satellite as it moves. The server was
designed using Microsoft NET SDK framework. Figure 12 shows the tracking server in
action.

Apart from its ability to automatically control the antenna array, the tracking server also
allows the user to manually take control of the motion using the buttons on the GUI or a
joystick. This is a useful feature that comes in handy when the software is initially
started, because it assumes that the antenna grid is positioned at zero, zero.’

The software also allows the user to customize the boundary limits of the antenna
movement, which can be useful when there are rotator constraints to be concerned about.
If for some reason the server stops receiving any updates from the client, it will
automatically position the antenna grid to its default position and realign to zero, zero.

Please refer to Appendix F section 5 to view code relevant to the Auto Tracking Server
software module.

7 Default positioning of the antenna grid is assumed to be 0 degrees elevation and 0 degrees azimuth.

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 15
University of Utah

Server TCP Pori § Connect / Disconneci P Tracl;gg;‘nformahon

fmspace Agent =l

Server IP Tracker Auto Trackin

‘ Al
Address Server_ Part Disconnect | | Satelite: A0-40
=]

EL: 58 Delay Se
AR 2443550157
T

Tracking Data

Connected bo 155,98.68.32 on port 4711

Connection l b arual Cantral

=
Status L Serial |cum1 ~| Delay [ms]|2DD -]

Serial COM
Port

Message
Center

Exit Program

On/Off Auto Tracking
= Move Up « Degree

. Move Right 1 Degree

Center to Initial Position

Move Down “ Degree

Local Time - 12/14/2004 7:35:01 FM Reset to New Origin
Information §

r— Configuration

Move Lefl 1 Degree

ekt lirmiit
right limit
up limit

User diown limit
Test Antenna

Confi bl ‘
on |gl|1_rii1it2 I 5“-“"’""““-' Horizontal and

Vertical Limits

(g1
iy
o

Show/Hide Configuration

—
)
o

oo
o

D|

Figure 12 : Screenshot of the Server side tracking software
TNC/Modem and Terminal Client software

The TNC/Modem facilitates the decoding of a packet radio signal. We used a
PacComm SPIRIT-2 TNC/modem. In order to view the data that is being decoded, we
designed a terminal client software program that was able to connect to the modem via its
serial interface and download the data. The terminal client connected to the modem using
the settings (9600, N, 8, 1). Table 5 contains a list commands that are recognized by the
modem that can be entered via the terminal program in order to successfully send and
receive data packets. Figure 13 shows the terminal program in action.

command argument Action

MY Callsign Set callsign unique ID.
BEACON | Every|After n Send alive signal every ‘n’ seconds.

CONNECT | Callsign string | Command requires callsign. We acquired a callsign
previously used by other University student.

List Lists the 10 latest messages.
Read N Reads message number n.
Send data Send a message.

Bye Disconnects from PMS.

Table 5 : Modem Commands

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 16
University of Utah

el

Clear Terminal Wwindow

™ options
COM Port: -

Baud rate: 9600
— b
Parity: MNone

Drata bits: g

x Cancel
Stop bits:

i

Figure 13 : Screenshot of the TNC | Terminal program

Satellite TNC Terminal Window program was designed using the Microsoft .Net SDK
framework. This program uses a COM port to communicate with the modem. It could be
run on the server side computer. However we were able to run it on the client side
computer using virtual serial port mapping supported by Windows Remote Desktop.

Please refer to Appendix F section 3 to view code relevant to the Auto Tracking Server
software module.

Using the system to communicate
Setting up the Auto Tracking Server

1. Initialize the Antenna Grid to so it is positioned at zero, zero. 8

2. Turn on the Motor Driver Control circuit and power up the microcontroller.
When the microcontroller is ready, it will display a message on the LCD screen
saying “Controller Ready, reading signal”

3. Start the Auto tracking Server program. When the program is first launched it
will start querying all the serial ports and try to determine the COM port the
microcontroller is connected to. If an error message is displayed make sure that
the serial cable to the microcontroller is connected and that the microcontroller is

powered up.

¥ Default positioning of the antenna grid is assumed to be 0 degrees elevation and 0 degrees azimuth.

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 17
University of Utah

Setting up the Client Software

4.
3.

Start the NOVA client program.

Start the Auto tracking Client program and click on the Connect button. If there is
an error message, make sure that the port number is the same port that the server
is listening to.

The Tracking server will continue to track the selected satellite until it is out of
range, to select a different satellite simply click on the orbit of another satellite

from NOVA or wait until the same satellite comes back in to range.

Setting up the Radio and Modem

10.

11.
12.

Set the proper frequency for a beacon signal which is just a beep.

Open filter for listening all sound. Set the transceiver on the lowest power.

Set the PL - 67 KHz Tone Signal for opening a channel for the satellite.

If a beacon signal can be heard, adjust the beacon frequency to an operational
frequency which is considered by Doppler Effect. Transmit a short signal and if
you can hear it back from the receiver side after a short delay, the radio is
correctly setup and is ready for communicating with the satellite.

For voice communications, listen to the radio and use the handset to transmit.

For data communication, turn on the Packet Modem and launch the TNC terminal
Program. By typing commands in Table 5 you can send and receive data from

digital satellites.

Satellite Communication Etiquette

Listen for the satellite beacon or other operators before transmitting.

Use as little power as needed to complete the QSO.

When pileups occur, give your information (callSign, gridSquare) quickly.
Be courteous to other operators.

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 18
University of Utah

Acknowledgements

We cannot fully express our gratitude to everyone who helped us coordinate our
efforts to put this project together. For their generous assistance in lending equipment,
providing access to the roof and facilitating other needs we are thankful to Corey from
the DSL lab, Ernie Flynn, Marvin Match (Laboratory Supervisor / PC Computer
Specialist), and Bob (carpenter / Door Shop — supervisor).

Our gratitude goes to Professor Al Davis, for his superb guidance and keeping us
on track to complete this challenging project.

Conclusion

When we first started this project, satellite data communication was a fairly new
subject for us, and all we had was a radio transceiver (which is how we came up with the
idea). As a team we had little experience in radio communication, packet decoding and
networking. During the first semester, we spent time researching the AMSAT website
and other ham radio related websites trying to understand the process of communicating
with satellites. It was a great learning experience for most of us, because in general we
thought that satellite communication is not something that the public was able to do
without special equipment, licenses and possibly paying a fee.

Once we came up with a project plan and submitted the proposal to design and build a
satellite communication system with auto tracking capabilities, we spent the summer
collecting parts, designing circuit layouts, and assembling various equipments.

Even though we started off with four team members, by the end of the summer one
member dropped out. After a swift reassignment of tasks, we were able to make headway
in our overall project. Antenna design was completed by the end of the summer and we
had partially built our motor control system by that time. After the preliminary phase of
troubleshooting and debugging we had an antenna and the controller system in place for
the software to be written. We spent the last two months of our project writing the Auto
Tracking Client, server and TNC Terminal software programs and testing them with the
complete system.

During these testing phases we ran in to some minor and critical problems. On the
antenna system, we noticed significant signal loss shortly after setting it up. We had to
build an amplifier to be placed inline with the coaxial cable, and this solved most of the
signal loss problems.

The physical limitations of the rotators were overcome by reconfiguring the software to
work around these limitations. For example the rotators could not continuously rotate
around its axis; instead they have to rotate back and forth the opposite directions. This
was a more evident when we were tracking a satellite with azimuth starting from 90
degree or higher to about 270 degrees.

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 19
University of Utah

The mountains surrounding our location also caused blackout areas for radio reception.
Especially when covering the South East hemisphere.

Another problem we had was repositioning the antenna array when the system is being
initialized because we did not use an active feedback system. We overcame this problem
by allowing manual override of the control system using a joystick controller, which
proved useful when debugging the control software to protect the motors.

Both the above problems can be overcome if we were to use a stepper motors in place of
the rotator motors.

During mid semester we found out that some of the satellites were not operational,
however we were still able to communicate with AO-51, AO-27, FO-29. Once the system
was operational this was not a big concern, however during testing periods we had to wait
up to 5 hours before another available satellite came into range to test our system.

Even though it was a minor problem, having access to the roof was quite critical during
the testing phase of our antenna system. There were occasions when the motors got stuck
because of software bugs, or had to readjust the antennae, and we had to wait up to five
days before we could make a simple fix. This was valuable testing time for us. Once
again had we used stepper motors this probably would not have been a big concern.

While dismantling the antenna system we found some problems that we did not notice
before. We found water inside the coaxial cable connectors that can contribute to noise.
Later we found that grounding the entire system including the antenna, controller and PC
can help improve the signal quality.

We also got some recommendations that suggested we might be able to get better
performance from our inline amplifier, if we connected it as close as possible to the
antenna itself.

After standing on the roof for about a month going through warm and cold weather
cycles, and constant movement, we noticed that the pipes connected to the antennae had
loosened. This caused vibrations when the antennae array was rapidly moving while
trying to lock in to a satellite orbit. We overcame the vibration by allowing some time to
settling between moves. Another fix for this problem would be to use some other material
instead of plastic pipe to hold the antenna and securing it.

In conclusion we were quite happy with the overall system performance despite the
minor drawbacks. Each team member lived up to their expectations and delivered when it
came to completing their assigned tasks. We successfully communicated with about ten
different satellites including the International Space Station.

We hope that our project will raise awareness and boost interest in amateur satellite
communication amongst others and that our work will be a basis for designing their
satellite communication systems.

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 20
University of Utah

Appendix A

References

The ARRL Antenna Book (19th Ed./Book & CD-ROM) by R. Dean Straw
The Radio Amateur’s Satellite Handbook published by The American Radio Relay League.
http://en.wikipedia.org

http://www.nlsa.com/index.html

http://science.nasa.gov/RealTime/JTrack/

http://www.arrl.org/

http://www.sat-net.com/winorbit/index.html#winorbit

© N o o kw0 DD~

http://www.tele-satellite.com/

9. http://www.amsat.org/amsat/sats/n7hpr/satsum.html

10. http://www.tbs-satellite.com/tse/online/

11. http://www.amsat.org/amsat/ftpsoft.html

12. http://www.saao.ac.za/~wpk/index.html

13. http://home.nycap.rr.com/capcom/fsattrak.html

14.http://home.hiwaay.net/~wintrak/

15. http://www.riverland.net.au/~hutchja/tracking antenna.htm

16. http://web.usna.navy.mil/~bruninga/astars.html
17. http://www.gsl.net/kd2bd/predict.html

18. http://www.amsat.org/amsat/instanttrack/sattrack.html

19. http://www.jpl.nasa.gov/releases/96/leoterm.html

20. http://www.kantronics.com

21. http://www.shpc.pe.kr/sbaycom.html

22.http://users3.ev1.net/~medcalf/

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 21
University of Utah

Appendix B
Satellite FAQ

What is Doppler Effect and how does it impact satellite communication?

The Doppler Effect in satellite communications is the change in frequency of an
electromagnetic signal that results from the relative speed of the satellite and the Earth
terminal. When the orbital parameters of a satellite are known, Doppler shift can be used
to determine the position of the Earth terminal. When an Earth terminal's position is
known, Doppler shift can be used to estimate the orbital parameters of a satellite. When
the satellite (or the Earth station) is moving rapidly, the Doppler Effect is an important
consideration in satellite communications.

For example, for a working satellite frequency of 436.795 MHz, it will begin around
436.805 at Acquisition of Signal (AOS). At the center of path, it will reach 436.795MHz
and eventually reaching 436.785MHZ at Loss of Signal (LOS). The transceiver we used
does not have the ability to automatically adjust with the Doppler frequency shift. Table 4
shows how the Doppler Frequency is calculated using the Range Rate value.

What is the PL-67 Tone?

It is a 67 KHz signal used for protecting the receiver circuit onboard satellites from
unexpected ground station transmissions. For instance, when trying to transmit a signal to
the AO-51 satellite, a tone signal should be loaded with the main signal. Most FM radios
have this functionality.

Why do satellites use different bands?
Satellites do not have the physical space to separate receiving and transmitting antennae a
great distance, therefore they use different bands.

What are Keplerian Elements?

Sample Keplerian Elements for AO-7 satellite
1 07530U 74089B 04140.70617484 -.00000029 00000-0 10000-3 0 2774 2
07530 101.6834 187.8825 0012044 277.9198 82.0507 12.53568957350341

® Keplerian elements are the inputs to a standard mathematical model of spacecraft
orbits. With the "keps", the correct time, and the ground station location, we can
compute when the satellite will be in view and where to point the antennae. This
is the main technique used by tracking programs to predict where a satellite is at
a given time.

Need to be updated periodically

Most tracking programs do this over the internet

Two formats —

B NORAD Two Line Elements (TLE — most common)

B AMSAT Verbose Format

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 22
University of Utah

Appendix C

1) Operational Satellites and frequencies as of 12/17/04

AMSAT-OSCAR 51 (Echo or AO-51)

Analog Uplink: 145.920 MHz FM (PL - 67Hz)
1268.700 MHz FM (PL - 67Hz)

Analog Downlink: 435.300 MHz FM
2401.200 MHz FM

PSK-31 Uplink 28.140 MHz USB

Digital Uplink: 145.860 MHz 9600 bps, AX.25
1268.700 MHz 9600 bps AX.25

Digital Downlink: 435.150 MHz 9600 bps, AX.25
2401.200 MHz 38,400 bps, AX.25

Broadcast Callsign: PACB-11

BBS Callsign: PACB-12

Launched June 29, 2004

Status: Operational

AMSAT-OSCAR 51 or Echo as it is more commonly known is a FM satellite carrying 4
VHF receivers, 2 UHF transmitters, a multimode receiver and a 2400MHz transmitter. It
can handle voice and FSK data up to 76.8Kbps. Echo was launched into a low, sun-
synchronous polar orbit approximately 850 km high. You must transmit a 67Hz PL tone
in order to access the Echo voice repeater.

Please note the change in operational phone downlink frequency to 435.300 MHz.

Fuji OSCAR 29 (FO-29)

Analog Uplink 146.000 to 145.900 MHz CW/LSB

Analog downlink 435.800 to 435.900 MHz CW/USB

Beacon 435.795 MHz (normally CW telemetry)

Digital Uplink 145.850, 145.870, 145.910 MHz FM

Digital Downlink 435.910 MHz 1200 baud BPSK or 9600 baud FSK
Digitalker 435.910 MHz FM

Launched 17 August 1996

Status: Operational
Despite a failure in June 2003 probably due to solar flares, FO-29 continues strong
operation and has become very popular in the wake of the failure of UO-14. The analog
mode is operational.

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 23
University of Utah

AMRAD OSCAR 27 (AO-27)
Uplink 145.850 MHz FM
Downlink 436.795 MHz FM
Launched 26 September 1993

Status: Operational

The AO-27 Team has reported that a new schedule has been uploaded. If the batteries
hold then it should continue to run. If the batteries get too low then the software will turn
the schedule off and the control operators will have to compute another one. The current
schedule indicates that AO-27 is turned on for analogue operations during a 6 minute
pass on the ascending pass. As in the past, the analogue mode is preceded and followed
by 1 minute of digital TLM. A TLM stream is also transmitted for one minute on the
descending pass.

CE Senior Design Project

University of Utah

Appendix D

Junsung Cho, Vinh Pham, Suresh Subasinghe

24

1) A wire is soldered at the point before the signal is being filtered (Other end is connected

to the modem input)

2) Parts used in the LNY preamp.

Ref # Value (marking)

C3, C4
c7, C8
D1

11, 32
Q1

R1

R2, R3
R4

U1

C1, C2, C5, C6

L1, L2
L3

.001 uF chip cap

.001 pF chip cap

1N4148 diode

RCA jack (rf type)

Philips BF-998 MES FET
620Q chip resistor

86KQ chip resistor

47Q chip resistor
78LO8BACD voltage regulator
4.5pF variable

2T #20 bus 6-19 screw form
0.33 pH choke

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

Appendix F

1) Assembly Code for serial communication and relay control

Fhkkkkkkkkkhkkhkkhkkhkkhk

* RS 232 at 1200,8,N,1,Xon/Off
* Tested with COM1 HyperTerminal Oct 6,2004

Kkkkkkkkkkkkkkkkkkkkkkkkk

*Constants cont

BAUD: EQU $102B
SCCR1: EQU $102C
SCCR2: EQU $102D
SCSR: EQU $102E
SCDR: EQU $102F

PB4: EQU 16 ;BIT4 OF PORTB

PB3: EQU 8 ;BIT 3 OF PORT B
PB2: EQU 4 ;BIT 2 OF PORT B
PB1: EQU 2 ;BIT 1 OF PORT B
PBO: EQU 1 ;BIT 0 OF PORT B

CARRIAGE_RET EQU $0D
LINE_FEED EQU $0A

STACK: equ $FF

Fhkkhkkkkkk kR hk Rk hkkhkkhkkhhkhhkk

* Subroutines

Kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

*

delay_1s:

pshx

ldx 50000 ; 50000 x 16 = 200,000 cycles = 1s
delts: dex ; 3 cycles

nop ;2cycle

nop ; 2 cycle

nop ; 2 cycle

nop ; 2 cycle

nop ;2. cycle

bne delts ; 3 cycles

pulx

rs
delay_10ms:

pshx

ldx 2500 ; 2500 x 8 = 20,000 cycles = 10ms
del10ms: dex ; 3 cycles

nop ; 2 cycle

bne del10ms ; 3 cycles

pulx

25

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

rts

*

delay_1ms:

pshx

ldx 250 ; 250 x 8 = 2,000 cycles = 1ms
delims: dex ; 3 cycles

nop ;2. cycle

bne delims ; 3 cycles

pulx

rs

init |daa #$33 ;1200 baud
staa BAUD
|daa #$00 ;mode
staa SCCR1
|daa #$0C ;tie=rie=0,
staa SCCR2 ;te=re=1
rs

InChar Idaa SCSR ;status
bita #$20 ;rdrf?
beq InChar
|daa SCDR ;SClI data
rs

*

OutChar Idab SCSR ;status
bito #$80 ;tdre?
beq OutChar
staa SCDR ;output
rts

*

; Output a string to the SCI
; Inputs: Reg X points to string
; String ends with 0
; Outputs: none
OutString Idaa 0,X
beq OSdone ;0 at end
bsr OutChar
inx
bra OutString
OSdone rts

moveHorRight:
pshx
LDX #$1000 ;XREGISTER POINTS TO THE REGISTER BLOCK
BSET 4,X PBO;TURN ON THE PBO LED =1
JSR delay_10ms
JSR delay_10ms
JSR delay_10ms
JSR delay_10ms
JSR delay_10ms
JSR delay_1ms
BCLR 4,XPBO0;TURN OFF PBOLED =0
pulx
rs

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

moveHorLeft:

pshx

LDX #8$1000 ;XREGISTER POINTS TO THE REGISTER BLOCK

*

BSET 4,X PB1;TURN ON THE PB1 LED =1
JSR delay_10ms

JSR delay_10ms

JSR delay_10ms

JSR delay_10ms

JSR delay_1ms

JSR delay_10ms

BCLR 4,XPB1;TURN OFF PB1LED =0
pulx

rts

movelUp:

pshx

LDX #$1000 ;XREGISTER POINTS TO THE REGISTER BLOCK

*

BSET 4,X PB2;TURN ON THE PB2 LED =1
JSR delay_10ms

JSR delay_10ms

JSR delay_10ms

JSR delay_10ms

JSR delay_10ms

BCLR 4,XPB2;TURN OFF PB2 LED =0
pulx

rts

moveDown:

pshx

LDX #8$1000 ;XREGISTER POINTS TO THE REGISTER BLOCK

BSET 4,X PB3;TURN ON THE PB3 LED = 1
JSR delay_10ms

JSR delay_10ms

JSR delay_10ms

JSR delay_10ms

JSR delay_10ms

BCLR 4,XPB4;TURN OFF PB3LED =0

pulx
rs
org $F000
start: jsr delay_10ms
jsr delay_10ms ; delay 20ms during power on
jsrinit
ldx #HELLO ;CONTROLLER IS READY
jsr OutString
loop:

jst InChar ;Next input
;jst OutChar ;Echo

cmpa #A

27

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

beq acknowledge
cmpa #R

beq horRight
cmpa #L

beq horlLeft
cmpa #U

beq verUp

cmpa #D

beq verDown

jmp loop

acknowledge:
pshx
ldx #READY ; READY for PORTD/RS232, x points to READY
jst OutString
pulx
jmp loop

horRight:
pshx
jsr moveHorRight
jsr OutChar ;echo after COMPLETE
pulx
jmp loop

horLeft:
pshx
jsr moveHorLeft
jsr OutChar ;echo after COMPLETE
pulx
jmp loop

verUp:
pshx
jsr moveUp
jsr OutChar ;echo after COMPLETE
pulx
jmp loop

verDown:
pshx
jsr moveDown
jsr OutChar ;echo after COMPLETE
pulx
jmp loop

READY: FCC "CONNECTED TO CONTROLLER"
MSG1: FCC "CONTROLLER READY"

MSG2: FCC "READING SIGNAL.."

HELLO: FCC "CONTROLLER INITIALIZED"
MSG3: FCC "READING SIGNAL"

End

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

2) Distance Bearing Calculation Code to be used with the Auto Tracking Client

// Subject: DISTBEAR // Date: Mar.05,2004

// Modifier: Junsang Cho (chojs@cs.utah.edu)

// Note: This code is converted from the codes that were made in Basic
language.

//

// DISTBEAR provides distance and bearing information for two stations
P1l

// and P2, on the surface of the Earth. With small modifications it ca
provide

// azimuth and elevation antenna aiming information for a ground
station at P1

// and a subsatellite point at P2.

#include <iostream>

#include <string>

#include <math.h>

using namespace std;

float fnarccos(float z);

int sgn(float a); //Check the sign of a given value

int main () {

string sLocationl = "Baltimore";
string sLocation2 = "Moscow";

float fLatitudel = 39.3; //'deg. E**
float fLongitudel = -76.6;

float fLatitude2 = 56.1; //'deg. E**
float fLongitude2 = 37.5;

float PI = 3.141593;

float fRadians2Deg = 180.0/PI;

float fDeg2Radians = PI/180.0;

float fKm2mile = 0.6214;

float fMeanEarthRadius = 6371.0; //killometer
float fLatl = fLatitudel * fDeg2Radians;
float fLngl = fLongitudel * fDeg2Radians;
float fLat2 flLatitude2 * fDeg2Radians;
float fLng2 = fLongitude2 * fDeg2Radians;
float dsp,dlp;

cout << "Starting... Program DISTBEAR ..." << " from " <<
sLocationl << " to " << sLocation2 << endl;

if (abs(fLatitudel) > 89.99) { // Pl is North or South Pole

cout << "If Pl is North or South pole then azimuth is not
defined" << endl;

cout << "Point antenna along P2 longitude (short path) or"
<< endl;

cout << "P2 longitude + 180 degree (long path)." << endl;

if(sgn(fLatl) == sgn(fLat2))

dsp = fMeanEarthRadius*(PI/2 - abs(fLat2));

if(sgn(fLatl) !'= sgn(fLat2))
dsp = fMeanEarthRadius*(PI/2 + abs(fLat2));

cout << "Short path: " << dsp << "km" << endl;

29

14

n

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 30
University of Utah

cout << "Long path: " << int(2*PI*fMeanEarthRadius - dsp)
<< "km" << endl;
exit (0);
}

float fCosBeta = sin(fLatl) * sin(fLat2) * cos(fLatl) *
cos (fLat2) * cos(fLng2-fLngl);

if(fCosBeta > 0.99999) {
cout << "points coincide." << endl;
exit (0);

}

if (fCosBeta < -0.999999){ //Antipodes
cout << "Antipodes, azimuth not defined, distance = " <<
fMeanEarthRadius * PI << " km" << endl;
exit (0);
}

float fBeta = fnarccos(fCosBeta);
float fDistanceShortPath = fBeta * fMeanEarthRadius;
//Distance
short path float fDistanceLongPath = 2*PI*fMeanEarthRadius
— fDistanceShortPath; //Distance
long path float fCosAZ = (sin(fLat2)-
sin(fLatl) *cos (fBeta))/ (cos (fLatl) *sin (fBeta)) ;
float AZ = 0;
1if (fCosAZ > 0.999999) {
AZ = 0;
} else 1if (fCosAZ < -0.999999) {
AZ = 180; 3
} else {
AZ = fnarccos(fCosAZ) * fRadians2Deg;
}

float AZSP 0;
float AZLP = 0;

if (sin(fLng2-fLngl) >= 0) {
AZSP = AZ; AZLP = 180 + AZ;
}

if(sin(fLng2-fLngl) < 0){
AZSP = 360 - AZ; AZLP = 180 - AZ;
}

AZLP int (AZLP*10 + 0.5)/10; //round off

AZSP = int (AZSP*10 + 0.5)/10; //round off

dsp = int (fDistanceShortPath + 0.5);

dlp = int (fDistanceLongPath + 0.5);

int dspmi = int (fDistanceShortPath * fKm2mile + 0.5); //
km —> miles

int dlpmi = int (fDistanceLongPath* fKm2mile + 0.5);

cout << "Short Path: " << dsp << "km (" << dspmi << "mi.) "
<< AZSP << " Deg. E of N" << endl;
cout << "Long Path: " << dlp << "km (" << dlpmi << "mi.) "

<< AZLP << " Deg. E of N" << endl;

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

return 0O;

float fnarccos(float z) {

float PI = 3.141593;

return (PI/2 - atan(z/sqgrt(l-z*z)));
}

//Sign checker
int sgn(float a) {

if(a > 0) return 1;

if(a == 0) return O0;

if(a < 0) return -1;
} //END

3) Satellite TNC | Terminal Client Code (Figure 13)

Private Sub Menultem2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Menultem2.Click

Dim options As New Options ()
options.ShowDialog ()

If options.Go Then
sbr.Panels (0) .Text

options.ComboBoxl.Text

sbr.Panels(l) .Text = options.ComboBox2.Text & " - " &
options.ComboBox3.Text & " - " _
& options.ComboBox4.Text & " - " & options.ComboBox5.Text

_port = CInt (Mid(options.ComboBoxl.Text, 4))

_baud = CType (CInt (options.ComboBox2.SelectedItem),
RS232.BaudRates)

_data = CType (CInt (options.ComboBox3.SelectedItem),
RS232.DataSizes)

Select Case options.ComboBox4.SelectedIndex

Case O

_parity = RS232.Parities.Even
Case 1

_parity = RS232.Parities.Odd
Case 2

_parity = RS232.Parities.None
Case Else

_parity = RS232.Parities.Mark

End Select
Select Case options.ComboBox5.SelectedIndex
Case O
_stopBit
Case Else
_stopBit = RS232.StopBits.Bit2
End Select

RS232.StopBits.Bitl

_rs232.CommPort = _port
_rs232.BaudRate = _baud
_rs232.DataSize = _data
_rs232.Parity = _parity

_rs232.StopBit = _stopBit

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 32
University of Utah

' or

' _rs232.Settings = "9600, n, 8, 1"
_rs232.InBufferSize = 4096

_rs232.Inputlength = 0 ' read everything in the buffer.
_rs232.ReceiveThreshold = 1

_rs232.PortOpen = True

Menultem2.Enabled = False
Menultem3.Enabled = True
ToolBarl.Buttons (0) .Enabled = False
ToolBarl.Buttons (1) .Enabled = True
TextBoxl.Enabled = True
TextBox2.Enabled = True
Buttonl.Enabled = True

End If
options.Dispose ()
End Sub

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

_rs232 = New RS232()
Dim i As Integer

For i = 0 To 3
General.Comm (i) = IsPortAvailable(i + 1)
Next

End Sub
' This function attempts to open the passed Comm Port. If it is
available, it returns True, else it returns False. To determine
availability a Try-Catch block is used.
Private Function IsPortAvailable (ByVal port As Integer) As Boolean
Try
_rs232.CommPort port
_rs232.PortOpen = True
_rs232.PortOpen = False
Return True
Catch

If it gets here, then the attempt to open the Comm Port
was unsuccessful.
Return False
End Try
End Function

Private Sub ToolBarl_ButtonClick (ByVal sender As System.Object, ByVal e
As System.Windows.Forms.ToolBarButtonClickEventArgs) Handles
ToolBarl.ButtonClick
Select Case ToolBarl.Buttons.IndexOf (e.Button)
Case O
Menultem2_Click (Menultem2, New System.EventArgs())
Case 1

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

MenulItem3_Click (Menultem3, New System.EventArgs())
Case Else
MenulItem5_Click (Menultemb, New System.EventArgs())
End Select
End Sub

Private Sub Menultem3_Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Menultem3.Click

_rs232.PortOpen = False

Menultem2.Enabled = True

Menultem3.Enabled = False
ToolBarl.Buttons (0) .Enabled = True
ToolBarl.Buttons(l) .Enabled = False
TextBoxl.Enabled = False

TextBox2.Enabled = False
Buttonl.Enabled = False
End Sub

Private Sub Forml_Closing(ByVal sender As Object, ByVal e As

System.ComponentModel.CancelEventArgs) Handles MyBase.Closing
If Menultem3.Enabled Then Menultem3_Click (Menultem3, New

System.EventArgs())

End Sub

Private Sub Menultem5_Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Menultem5.Click

Me.Close ()
End Sub

Private Sub Buttonl_Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click

Try
' Enable the timer.
' Write an user specified Command to the Port.
If CheckBoxl.Checked Then
_rs232.0utput (Encoding.ASCII.GetBytes (Me.TextBoxl.Text &
Chr (13)))
Else
_rs232.0utput (Encoding.ASCII.GetBytes (Me.TextBox1l.Text))
End If
' unremark to output what you just sent.
' WriteMessage (TextBoxl.Text, True)
Catch ex As Exception
' Warn the user.
MessageBox.Show ("Unable to write to comm port")
Finally
TextBoxl.Text = ""
TextBoxl.Focus ()
End Try

End Sub

' This subroutine writes a message to the txtStatus TextBox.

Private Sub WriteMessage (ByVal message As String)
Me.TextBox2.Text &= message & vbCrLf

33

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

TextBox2.SelectionStart = TextBox2.Text.Length
End Sub

34

' This subroutine writes a message to the txtStatus TextBox and allows

! the Carriage Return to be suppressed.

Private Sub WriteMessage (ByVal message As String, ByVal linefeed As

Boolean)
Me.TextBox2.Text &= message
If linefeed Then
Me.TextBox2.Text &= vbCrLf
End If
TextBox2.SelectionStart = TextBox2.Text.Length
End Sub

Private Sub oCP_OnComm (ByVal sender As Object, ByVal e As
DBComm.CommEventArgs) Handles _rs232.0nComm

Me.Text = e.Event.ToString & " - " & Now

If _rs232.InBufferCount > 0 Then

Do
WriteMessage (_rs232.Input, False)
If _rs232.InBufferCount = 0 Then
Exit Do
End If
Loop
End If

End Sub

Private Sub TextBoxl_TextChanged(ByVal sender As System.Object,
As System.EventArgs) Handles TextBoxl.TextChanged

End Sub

ByVval e

Private Sub Button2_Click (ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click
TextBox2.Clear ()

End Sub

End Class

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

4) Space Agent Client Code (Figure 11)

' enable send tcp data to server

Private Sub disTCP_Click()
Timerl.Enabled = False
enTCP.Visible = True
disTCP.Visible = False

End Sub

' disable tcp data to server

Private Sub enTCP_Click ()
Timerl.Enabled = True
enTCP.Visible = False
disTCP.Visible = True

End Sub

'begin form load. 1Initialized data here.
Private Sub Form_Load()
StopNDDE.Visible = False
disTCP.Visible = False
Me.Caption = "Nova DDE Stopped”
Timerl.Enabled = False

tcpSERVER.Protocol = sckTCPProtocol
tcpSERVER.LocalPort = 4711
tcpSERVER.Listen ()

Textl.Text = "Not running..."

Text3.Text = "Not running..."

Text2.Text = tcpSERVER.LocalIP

Text4.Text = tcpSERVER.LocalPort
End Sub

'exit client

Private Sub ExitDDE_Click ()
Unload (Me)

End Sub

'send data to server function

Private Sub sendnova ()
tcpSERVER. SendData (Textl.Text)
Text3.Text = Textl.Text

End Sub

'connect to NOVA database
Private Sub StartNDDE_Click ()
Dim Ret As Integer
On Error GoTo DDE_Nova_Error

Me.Caption = "Nova DDE Started"
StartNDDE.Visible = False
StopNDDE.Visible = True

Textl.LinkMode = 0
Textl.LinkTopic = "NFW32|NEFW_DATA"
Textl.LinkItem = "NFW_SERVER"

35

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe

University of Utah

Textl.LinkMode = 1
Textl.Text = "TUNE ON"
Textl.LinkPoke ()

Exit Sub

DDE_Nova_Error:

Ret = MsgBox ("Error Opening the Nova DDE interface,

Err.Description, vbCritical, "Nova DDE Error")
Err.Clear ()
End Sub

'disconnect from NOVA database
Private Sub StopNDDE_Click ()
Dim Ret As Integer
On Error GoTo DDE_Nova_Error
Me.Caption = "Nova DDE Stopped"
StartNDDE.Visible = True

StopNDDE.Visible = False
Textl.LinkMode = 0
Textl.LinkTopic = ""
Textl.LinkItem = ""
Textl.LinkMode = 0
Textl.Text = "TUNE OFF"
Timerl.Enabled = False

Exit Sub

DDE_Nova_Error:

Ret = MsgBox ("I can't be stopped!! Muhahaha!
Err.Description, vbCritical)

Err.Clear ()
End Sub

Private Sub Timerl_ Timer ()
Call sendnova ()
End Sub

Error:

&

36

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

5) Space Agent Server Code (Figure 12)

Public Class Forml
Inherits System.Windows.Forms.Form
Dim WithEvents wsTCP As New OSWINSCK.Winsock
Private comPORT As New RS232
Dim COM1_2 As Integer
Dim COMspeed As Integer

Dim ISTracking As Boolean
Dim curAZ As String
Dim curEL As String
Dim curSAT As String

Dim startAZ As Integer
Dim startEL As Integer

Dim counTerl As Integer
Dim counTer2 As Integer
Dim counTer3 As Integer
Dim counTer4 As Integer

Dim cordLeft As Integer
Dim cordRight As Integer
Dim cordUp As Integer

Dim cordDown As Integer

Dim leftLIMIT As Integer
Dim rightLIMIT As Integer
Dim upLIMIT As Integer

Dim downLIMIT As Integer

Dim isCENTER As Boolean

Dim defaultWIDTH As Integer
Dim defaultHEIGHT As Integer

Dim xdir As Integer
Dim ydir As Integer

Dim isdemo As Boolean

FHEHFHFFFFFFFF#### 44 Windows forms codes omitted###F#F##E#F#FFFF#H###H

Private Sub Forml_Load(ByVal sender As System.Object,
System.EventArgs) Handles MyBase.Load
chkCON.Enabled = True
chkCON.Interval = 100
TextBox3.Text = ""

defaultWIDTH = 310
defaultHEIGHT = 320
Me.Width = defaultWIDTH
Me.Height = defaultHEIGHT

ByVal e As

37

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

ISTracking = False
CoM1l_2 =1
COMspeed = 100

cordLeft = 0
cordRight = 0
cordUp = 0
cordDown =
xdir = 0
ydir = 0

TextBox1l.Text = "155.98.70.190"

TextBox5.Text = 215
TextBox6.Text = 105
TextBox7.Text = 80
TextBox8.Text = 0

1leftLIMIT = TextBox5.Text
rightLIMIT = TextBox6.Text
UpLIMIT = TextBox7.Text

downLIMIT = TextBox8.Text

1isCENTER = True

counTerl =
counTer?2
counTer3
counTerd =

Il
o o oo

startAZ = 0
startEL = 0
isdemo = False

'Label8.Text = "(U)" & cordUp & " (R)" & cordRight & " (D)" &
cordDown & " (L)" & cordLeft
'Label8.Refresh ()

If IsPortAvailable (SEL_COMPORT.SelectedIndex + 1) Then
COM1_2 = SEL_COMPORT.SelectedIndex + 1

TextBox3.Text = "Program loaded successfully." & vbCrLf &
"Program settings: " & vbCrLf & "Serial Port: COM" & COM1_2 & vbCrLf &
"COM Delay: " & COMspeed & "ms" & vbCrLf &
"Auto Track: " & ISTracking & vbCrLf & "Track Server: " & _
TextBoxl.Text & vbCrLf & "Track Server TCP
Port: " & TextBox2.Text
enDIRbutton ()
Else
TextBox3.Text = "Program loaded successfully." & vbCrLf &
"Program settings: " & vbCrLf & "Serial Port: COM" & COM1_2 & " not

available" & vbCrLf & _
"COM Delay: " & COMspeed & "ms" & vbCrLf &
"Auto Track: " & ISTracking & vbCrLf & "Track Server: " &

CE Senior Design
University of Utah

Port: " & Te

End

End Sub

'connect
Private

Project Junsung Cho, Vinh Pham, Suresh Subasinghe

TextBox1l.Text & vbCrLf & "Track Server TCP

xtBox2.Text

disDIRbutton ()
If

to server
Sub tcpCON_Click (ByVal sender As System.Object,

System.EventArgs) Handles tcpCON.Click

Dim
Dim
serv
serv
wsTC
tcpD
tcpC
Text
servIP & vbC
Text
End Sub

'disconn
Private

servIP As String

servPORT As String

IP = TextBoxl.Text

PORT = TextBox2.Text

P.Connect (servIP, servPORT) 'state = 7

ByVal e As

IS.Visible = True

ON.Visible = False

Box3.Text = "Connected using: " & vbCrLf & "Server: " &
rLf & "Port: " & servPORT

Box3.Refresh ()

ect from server
Sub tcpDIS_Click (ByVal sender As System.Object,

System.EventArgs) Handles tcpDIS.Click

wsTC

tcpD

tcpC

Text
Disconnected
Text

End Sub

'get inc

P.CloseWinsock () 'state = 8

IS.Visible = False

ON.Visible = True

Box3.Text = "Track data has stopped with reason:
from server."

Box3.Refresh ()

oming data

ByVal e As

Private Sub wsTCP_OnDataArrival (ByVal bytesTotal As Integer)

Handles wsTC
Dim
wsTC

P.OnDataArrival
sBuffer As String
P.GetData (sBuffer)

getDATA.Text = sBuffer

pars

End Sub

'pars al
Private

Dim
Dim
Dim
Dim
Dim

er (sBuffer)

1 incoming data from client
Sub parser (ByvVal sBuffer As String)

dlist () As String
dlist2 () As String

sa As String
az As Double
el As Double

39

CE Senior Design Project
University of Utah

Dim rr As Double
Dim ah As String

dlist Split (sBuffer, " ")

dlist2 Split (dlist (0), ":

sa dlist2 (0)

dlist2 Split (dlist (1), ":
az dlist2 (1)

dlist2 Split (dlist(2), ":
el dlist2 (1)

dlist2 Split (dlist(3), ":
rr dlist2 (1)

dlist?2 Split (dlist(4), ":
ah dlist2 (1) .ToString

curSAT sa
displayDATA (sa,
AutoTracker (az,

az, el,

el)

rr,

End Sub

Private Sub displayDATA (ByRef sa As String,

ByRef el As Double,

ByRef rr As Double,

Junsung Cho, Vinh Pham, Suresh Subasinghe

ah)

ByRef az As Double,

ByRef ah As String)

Label3.Text = "Satellite: " & sa
Labeld.Text = "AZ: " & CType(az, Integer)
Label5.Text = "EL: " & CType(el, Integer)
Label6.Text = "RR: " & rr
Label7.Text = "AH: " & ah

End Sub

Private Sub chkCON_Elapsed(ByVal sender As System.Object,

As System.Timers.ElapsedEventArgs)
'Me.Text wsTCP.State
Labelll.Text Today & " "
If (wsTCP.State = 7) Then

Label8.Text =

& TextBox2.Text

ElseIf (wsTCP.State
Label8.Text
" & TextBox2.Text
ElseIf (wsTCP.State
tcpDIS.Visible
tcpCON.Visible
Label8.Text
" & TextBox2.Text
Else
Label8.Text =
End If
End Sub

6)

port

9)
False

True

on port

"Connected to "

"Failed to connect with

ByVal e
Handles chkCON.Elapsed
& TimeOfDay
& TextBoxl.Text & " on port

Then
"Connecting to...

" & TextBoxl.Text & " on

Then

" & TextBoxl.Text &

"Not Connected."

40

n

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 41
University of Utah

Private Function IsPortAvailable (ByVal ComPortn As Integer) As
Boolean
Try
comPORT.Open (ComPortn, 115200, 8,
RS232.DataParity.Parity_None,
RS232.DataStopBit.StopBit_1, 4096)
' If it makes it to here, then the Comm Port is available.
comPORT.Close ()
Return True
Catch
' If it gets here, then the attempt to open the Comm Port
! was unsuccessful.
Return False
End Try
End Function

"HH###4H#HF Manual Directional Movements #######FFFFEFERES
Private Sub dirUP_Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles dirUP.Click
xyMove ("u")
System.Threading.Thread.Sleep (COMspeed)

If ((xdir = 0) And (ydir = 0)) Then
1sCENTER = True
Else
1isCENTER = False
End If
End Sub

Private Sub dirDOWN_Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles dirDOWN.Click
xyMove ("d")
System.Threading.Thread.Sleep (COMspeed)
If ((xdir = 0) And (ydir = 0)) Then
isCENTER = True
Else
isCENTER = False
End If
End Sub

Private Sub dirLEFT_Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles dirLEFT.Click
xyMove ("1")
System.Threading.Thread.Sleep (COMspeed)
If ((xdir = 0) And (ydir = 0)) Then
isCENTER = True
Else
isCENTER = False
End If
End Sub

Private Sub dirRIGHT_Click (ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles dirRIGHT.Click
xyMove ("r")
System.Threading.Thread.Sleep (COMspeed)
If ((xdir = 0) And (ydir = 0)) Then
isCENTER = True

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 42
University of Utah

Else
1isCENTER = False
End If
End Sub
"H4##H#H#HES Manual Directional Movements #######F#HHFHFHFHH

'Reset coordinates to zero. This will allow user to re center the
antenna to any given origin.
Private Sub ResetCord_Click (ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles ResetCord.Click
cordLeft = 0
cordRight = 0
cordUp = 0
cordDown =
startAZ = 0
startEL = 0

0

xdir = 0

ydir = 0

TextBox3.Text = "Resetting cordinates : " & vbCrLf & "X Axis: "
& xdir & vbCrLf & "Y Axis: " & ydir & vbCrLf & "Please use manual

control to to re—-align antenna array to point NORTH."
TextBox3.Refresh ()
End Sub

'recenter the antenna array
Private Sub dirCENTER_Click (ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles dirCENTER.Click
CENTER_ME ()
End Sub

Private Sub CENTER_ME ()

disDIRbutton ()
Me.Text = "Please wait..."
While (xdir > 0)
TextBox3.Text = "Current cordinate : " & vbCrLf & "X Axis:
" & xdir & vbCrLf & "Y Axis: " & ydir

TextBox3.Refresh ()
System.Threading.Thread.Sleep (COMspeed)

xyMove ("1")
End While
While (xdir < 0)
TextBox3.Text = "Current cordinate : " & vbCrLf & "X Axis:
" & xdir & vbCrLf & "Y Axis: " & ydir

TextBox3.Refresh ()
System.Threading.Thread.Sleep (COMspeed)
xyMove ("r")

End While

While (ydir > 0)
System.Threading.Thread.Sleep (COMspeed)
xyMove ("d")

End While

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

While (ydir < 0)
System.Threading.Thread.Sleep (COMspeed)
xyMove ("u")

End While

If ((xdir = 0) And (ydir = 0)) Then

isCENTER = True

TextBox3.Text = "Center at x= " & xdir & " y= " & vydir
Else

1isCENTER = False
End If

enDIRbutton ()
Me.Text = "Space Agent"
End Sub

'move to specify amount
Private Sub xyMOVETO (ByVal amount As Integer, ByRef direct As
String)
Dim i As Integer
i=20
Select Case direct
Case "1"
If (amount >= leftLIMIT) Then
'CENTER_ME ()
TextBox3.Text = "Can not move that far. Please
consult software manual on program re-alignment."
Else
For i = 0 To amount
System.Threading.Thread.Sleep (COMspeed)
xyMove (direct)

Next
End If

Case "r"
If (amount >= 360 - rightLIMIT) Then
'CENTER_ME ()
TextBox3.Text = "Can not move that far. Please
consult software manual on program re—-alignment."
Else
For 1 = 0 To amount
System.Threading.Thread.Sleep (COMspeed)
xyMove (direct)
Next
End If

Case "u
If (amount >= upLIMIT) Then
'CENTER_ME ()
TextBox3.Text = "Can not move that far. Please
consult software manual on program re-alignment."
Else
For i = 0 To amount

System.Threading.Thread.Sleep (COMspeed)

43

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 44
University of Utah

xyMove (direct)
Next
End If

Case "d"
If (amount >= downLIMIT) Then
'CENTER_ME ()
TextBox3.Text = "Can not move that far. Please
consult software manual on program re-alignment."
Else
For i = 0 To amount
System.Threading.Thread.Sleep (COMspeed)
xyMove (direct)
Next
End If
System.Threading.Thread.Sleep (COMspeed)
End Select
End Sub

'move according to a€7directd€™ param
Private Sub xyMove (ByVal direct As String)
Me.Refresh ()
TextBox3.Refresh ()
Select Case direct

Case "1" 'move Left
If (xdir >= 1leftLIMIT) Then
'CENTER_ME ()
TextBox3.Text = "Can not move any further. Please
consult software manual on program re-alignment."
Return
Else
TextBox3.Text () = "xyMove () Moving LEFT: " & vbCrLf
& "X Axis: " & xdir & vbCrLf & "Y Axis: " & ydir

TextBox3.Refresh ()

comPORT.Open (COM1_2, 1200, 8,
RS232.DataParity.Parity_None, RS232.DataStopBit.StopBit_1, 512)

comPORT .Write (2)

comPORT.ClearInputBuffer ()

comPORT.Close ()

xdir -= 1

End If

Case "r" 'move right
If (xdir >= 360 - rightLIMIT) Then

'CENTER_ME ()
TextBox3.Text = "Can not move any further. Please
consult software manual on program re—-alignment."
Return
Else
TextBox3.Text () = "xyMove () Moving RIGHT: " &
vbCrLf & "X Axis: " & xdir & vbCrLf & "Y Axis: " & vydir

TextBox3.Refresh ()

comPORT.Open (COM1_2, 1200, 8,
RS232.DataParity.Parity_None, RS232.DataStopBit.StopBit_1, 512)

comPORT .Write (1)

comPORT.ClearInputBuffer ()

comPORT.Close ()

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 45
University of Utah

xdir += 1

End If
Case "u" 'move up
If (ydir >= upLIMIT) Then
'CENTER_ME ()
TextBox3.Text = "Can not move any further. Please
consult software manual on program re-alignment."
Return
Else
TextBox3.Text () = "xyMove () Moving UP: " & vbCrLf &
"X Axis: " & xdir & vbCrLf & "Y Axis: " & ydir

TextBox3.Refresh ()

comPORT.Open (COM1_2, 1200, 8,
RS232.DataParity.Parity_None, RS232.DataStopBit.StopBit_1, 512)

comPORT.Write (3)

comPORT.ClearInputBuffer ()

comPORT.Close ()

ydir += 1
End If
Case "d" 'move down
If (ydir <= downLIMIT) Then
'CENTER_ME ()
TextBox3.Text = "Can not move any further. Please
consult software manual on program re-alignment."
Return
Else
TextBox3.Text () = "xyMove () Moving DOWN: " & vbCrLf
& "X Axis: " & xdir & vbCrLf & "Y Axis: " & ydir

TextBox3.Refresh ()

comPORT.Open (COM1_2, 1200, 8,
RS232.DataParity.Parity_None, RS232.DataStopBit.StopBit_1, 512)
comPORT .Write (4)
comPORT.ClearInputBuffer ()
comPORT.Close ()
ydir -=1
End If
End Select

End Sub

'auto tracker function. This is where auto tracking actually
happen
Private Sub AutoTracker (ByRef az As String, ByRef el As String)
Dim temp_az As Integer
Dim temp_el As Integer
Dim azimuth As Integer

temp_az = CType(az, Integer)

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 46
University of Utah

temp_el = CType(el, Integer)

If ISTracking Then 'get to the initial tracking point

! System.Threading.Thread.Sleep (COMspeed)
azimuth = temp_az 'calculate azimuth
Dim elevation As Integer = Math.Floor (el)

TextBox3.Refresh ()

If (temp_az > 180) Then
azimuth = temp_az - 360

End If

'Azimuth tracking
If (temp_az < leftLIMIT) And (temp_az > rightLIMIT) Then
'in the blocked zone
TextBox3.Text = "Error: " & curSAT & " outside antenna
movement range."
Return
Else 'valid antenna zone
'MsgBox ("Autotracking")
If (azimuth > 0) Then 'in the right half
If (xdir < azimuth) Then
xyMove ("r")
ElseIf (xdir > azimuth) Then
xyMove ("1")
End If
End If

If (azimuth < 0) Then 'in the right half
If (xdir < azimuth) Then
xyMove ("r")
Elself (xdir > azimuth) Then
xyMove ("1")
End If
End If
End If
'Elevation Tracking
System.Threading.Thread.Sleep (COMspeed)
If (temp_el > upLIMIT) And (temp_el < downLIMIT) Then 'in
the blocked zone

TextBox3.Text = "Warning: " & curSAT & " outside
antenna movement range (Below Horizon) ."
Return

Else 'valid antenna zone
'MsgBox ("Autotracking Vertical")
If (ydir < temp_el) Then
'Dim 1 As Integer
'i = temp_el
'While (ydir < 1)

'TextBox3.Text = "ydir < elevation: " & ydir &
vbCrLf & "elevation: " & elevation & vbCrLf & "llimit: " & downLIMIT &
vbCrLf & " uplimit: " & upLIMIT

' xyMove ("u")
' End While

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe 47
University of Utah

xyMove ("u")
ElseIf (ydir > temp_el) Then
'Dim i1 As Integer

'i = temp_el

'While (ydir < 1)

'TextBox3.Text = "ydir < elevation: " & ydir &
vbCrLf & "elevation: " & elevation & vbCrLf & "llimit: " & downLIMIT &
vbCrLf & " uplimit: " & upLIMIT

'xyMove ("u")

'End While

xyMove ("d")

End If
End If
End If

End Sub

'Auto track button
Private Sub aTRACK_Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles aTRACK.Click
If Me.Width <= defaultWIDTH Then
'CENTER_ME () 'no need to center anymore because program
will automatically check for it
Me.Width = 512
ISTracking = True
aTRACK.Text = "Auto ON"
aTRACK.BackColor = Color.Lime
trackEvent .Enabled = True
trackEvent.Interval = COMspeed

TextBox3.Text = "Auto Tracking Enabled."
Else
'TextBox3.Text = "Auto Tracking Disabled." & vbCrLf &
"Centering antenna array. Please wait...."
CENTER_ME ()

Me.Width = defaultWIDTH

ISTracking = False

aTRACK.Text = "Auto Track"

aTRACK.BackColor = Color.FromName ("control")
trackEvent .Enabled = False

End If
End Sub

'set COM port selection

Private Sub SEL_COMPORT_SelectedIndexChanged (ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
SEL_COMPORT. SelectedIndexChanged
TextBox3.Text = "Checking serial COM port availability. Please
"
TextBox3.Refresh ()
If IsPortAvailable (SEL_COMPORT.SelectedIndex + 1) Then

COM1_2 = SEL_COMPORT.SelectedIndex + 1

TextBox3.Text = "Serial port COM" & COM1_2 & " is available

wait....

and ready."
enDIRbutton ()

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe

University of Utah

Else

TextBox3.Text = "Serial port COM" &

SEL_COMPORT.SelectedIndex + 1 & " 1is not available.

connection and try again."
disDIRbutton ()
End If

End Sub

'disable all manual direction button

'need this when antenna array is moving

Private Sub disDIRbutton ()
dirUP.Enabled = False
dirDOWN.Enabled = False
dirLEFT.Enabled = False
dirRIGHT.Enabled = False
dirCENTER.Enabled = False
ResetCord.Enabled = False
aTRACK.Enabled = False
Button2.Enabled = False
exitBUTTON.Enabled = False

End Sub

'enable all directional button

Private Sub enDIRbutton ()
dirUP.Enabled = True
dirDOWN.Enabled = True
dirLEFT.Enabled True
dirRIGHT.Enabled = True
dirCENTER.Enabled = True
ResetCord.Enabled True
aTRACK.Enabled = True
Button2.Enabled = True
ex1tBUTTON.Enabled = True

End Sub

'check for send speed to serial port

Private Sub sendSPEED_SelectedIndexChanged (ByVal sender As

System.Object, ByVal e As System.EventArgs)
sendSPEED. SelectedIndexChanged
COMspeed = sendSPEED.SelectedItem
TextBox3.Text = "Using COM delay: "
TextBox3.Refresh ()
End Sub

'exit program

Private Sub exitBUTTON_Click (ByVal sender As System.Object,

Handles

& COMspeed &

As System.EventArgs) Handles exitBUTTON.Click

End
End Sub

'show configuration panel

Private Sub Button2_Click_1(ByVal sender As System.Object,

As System.EventArgs) Handles Button2.Click

If (Me.Height = 448) Then
Me.Height defaultHEIGHT

ms

48

Please check your

ByVval e

ByVal e

CE Senior Design Project
University of Utah

Else
Me.Height = 448
End If
'TextBox3.Text = upLIMIT & "
rightLIMIT & " - " & leftLIMIT
End Sub

'set configuration parameters

Private Sub Button3_Click (ByVal sender As System.Object,

Junsung Cho, Vinh Pham, Suresh Subasinghe

- " & downLIMIT &

System.EventArgs) Handles Button3.Click

1leftLIMIT = TextBox5.Text

rightLIMIT = TextBox6.Text

upLIMIT = TextBox7.Text

downLIMIT = TextBox8.Text

Me.Height = defaultHEIGHT
End Sub

'enable autotracker

49

ByVal e As

Private Sub trackEvent_Tick (ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles trackEvent.Tick

AutoTracker (curAZ, curEL)
End Sub

'enable demo mode

Private Sub Buttonl_Click (ByVal sender As System.Object,

System.EventArgs) Handles Buttonl.Click

If isdemo Then
isdemo = False
Else
isdemo = True
End If

If isdemo Then
TextBox4.Visible = True

COMspeed = 80
TextBox4.Text = "Moving
xyMOVETO (20, "u")

! COMspeed = 10
TextBox4.Text = "Moving
xyMOVETO (100, "1")

TextBox4.Text = "Moving
xyMOVETO (40, "r")

! COMspeed = 200
TextBox4.Text = "Moving
xyMOVETO (5, "d")

! COMspeed = 10
TextBox4.Text = "Moving
movediagnol (15, "1")

TextBox4.Text = "Moving
xyMOVETO (40, "r")

UP 30 degrees.."

LEFT 100 degrees.."

RIGHT 40 degrees.."

DOWN 5 degrees.."

DIAG 15 degrees.."

RIGHT 40 degrees.."

ByVal e As

CE Senior Design Project Junsung Cho, Vinh Pham, Suresh Subasinghe
University of Utah

TextBox4.Text = "Moving DIAG 10 degrees..
movediagnol (10, "r")

! COMspeed = 200
TextBox4.Text = "Moving DOWN 5 degrees.."
xyMOVETO (5, "d")

! COMspeed 10
TextBox4.Text "Moving DIA 15 degrees.."
movediagnol (10, "1")

"DONE"

TextBox4.Text
COMspeed = 200
TextBox4.Visible = False

End If
End Sub

'move diagonal
Private Sub movediagnol (ByVal mystep As Integer,
String)
Dim i1 As Integer
i=20
If (direct = "1") Then
While (i < mystep)
xyMOVETO (1, "1")
xyMOVETO (1, "u")
i+=1
End While
End If

'send move diagonal direction
If (direct = "r") Then
While (i < mystep)
xyMOVETO (1, "xr")
xyMOVETO (1, "u")
i +=1
End While
End If
End Sub
End Class

ByVal direct As

50

