REMOTE VEHICLE INTERFACE

A Computer Engineering senior project by

Travis Johnson & Ben Moon

University of Utah — Fall 2004
Advisor: Al Davis

- Final Documentation -

Table of Contents

Introduction & Motivation Page 2
Description of User Interfaces Page 2
Description of Design Page 3
Design Decision Log Page 7
Parts List Page 8
Citations Page 8
Conclusions Page 8
Acknowledgements Page 9
Appendix A — Security Page 10
Appendix B — WebUI Source Page 12
Appendix C — PhoneUl Source Page 19
Appendix D — Microcontroller Source Page 28
Appendix E — Block Diagrams Page 32

Introduction & Motivation.

The RVI Project improves upon commercially available remote start/keyless-
entry systems. In addition to a key-ring transmitter, users can use a telephone or WWW
interface to start/kill their vehicle’s engine or lock/unlock their vehicle’s doors. The RVI
system employs the same amount of security as a traditional key-ring device, but offers
far greater range.

There were two primary motivations for this project. First, key-ring transmitters
are limited to a range of usually less than tens of meters. For users that work in large
office buildings or users that have campus-like parking this is very inconvenient. On a
cold night, it would be nice to start your car when you begin your fifteen minute walk to
the parking lot. Second, if a user were to lock their keys in the car, then a key-ring
transmitter’s usefulness has pretty much been undermined. With the RV system, the user

just needs to get to a phone in order to unlock their doors.

Description of User Interfaces.
A user has two options available for interacting with the RVI system. Each
interface is treated separately below by giving a walkthrough of a typical transaction.
e Telephone (RVI PhoneUl)
A user dials the number of the RVI system, and the server answers the
call. A voice prompts the user for their 10-digit phone number and 4-digit pin
number; these are used for authentication. After being authenticated, the user is

presented with a menu of available commands they can send to their vehicle. The

user can select as many of these as they want before terminating the call. Once the
command is received from the user, it is immediately forwarded to the vehicle.
e World Wide Web (RVI WebUI)

A user can navigate to www.remotevi.com, and click on the Login button.
They will then be prompted for a username and password. After entering these,
they can either hit Enter on the keyboard or click on the Submit button with their
mouse. After logging in, a user stays logged in until they explicitly log out or until
they close their web browser. Hence, a user can navigate away from
remotevi.com, but when they return they will not be prompted for authentication.
An extremely user-friendly menu has four buttons available for clicking on, one
for each RVI command (start, kill, lock, & unlock). When a logged-in user clicks

a button, the appropriate command is sent to the vehicle.

Description of Design.

This section will have a bulleted entry for each major component of the overall
design. Under each entry, a high-level description of that particular component will be
given. Source code, schematics, drawings, etc. are available in the various Appendices at
the end of this document, all of which are labeled as to what they contain and are listed in
the Table of Contents on the cover page.

e User Database

A database was needed to store information about each client receiver. In
the end, monetary issues permitted us to demonstrate only one vehicle hooked up

to the RVI system, but the system was built to handle far more.

A Microsoft Access database was employed to store personal,
authentication, and RF-security information about each individual client. Personal
information allowed dynamic web content, which the client could update using
the WebUI. Authentication information consisted of the PhoneUl pin number and
the WebUI username/password. RF-security information such as PRN seed,
offset, and MAC address were also stored (RF security overview can be found in
Appendix A).

Connectivity with the database was easily coded in both user interfaces
using the System.Data.OleDb class, which is a part of the .NET framework. This
class allows for application data caching in order to minimize actual database
accesses.

e Web User Interface

The WebUI component is used to host information about the project, and
also act as the WWW user interface for sending commands to the vehicle.
Obviously it accommodated HTTP requests, but it also used the COM port for
output to the RF transmitter.

This component was developed using Microsoft Visual Studio .NET 2003.
Graphically, the user was presented with ASP .NET webforms; these offer more
functionality and maintainability than traditional HTML. Additionally, ASP code
is translated to HTML on the server end to prevent users from gleaning critical
system information about services such as database connectivity, cookies, and

authentication scheme. C# .NET was used to code the functionality behind the

various buttons/menus on the RVI website. When a user clicks a form button on
the website, the RV server executes the C# routine corresponding to that button.

This one-two punch of C# and ASP .NET made developing the web
interface very intuitive. Neither team member had ever worked with ASP, and
only one member had (very limited) experience with C#. Still, this component
was probably the easiest part of the overall design.

e Phone User Interface

The PhoneUIl component is used to accept incoming calls, where it
authenticates users and allows them to send commands to the vehicle.

This component used the computer’s COM port for output to the RF
transmitter, as well as a Supra Express56 voice modem to handle the incoming
calls. Like the WebUI, it was also developed using MS Visual Studio .NET 2003
and C# .NET. An ActiveX Control was employed for the low-level TAPI
communication (coding this by hand would have been prohibitively time-
consuming).

e RF Link (TX/RX)

The RF components in the design were Aerocomm AC4490 transceivers.
These are OEM 900 MHz transceivers that use TTL serial communication. They
allowed fast develop while maintaining the robustness we would have
implemented had we built the RF components ourselves. Each transceiver uses
frequency-hopping spread spectrum (FHSS) to eliminate interference in the

crowded 902-928 MHz (ISM) license-free band.

On the server end, a 1000mW transceiver was used as a transmitter. On
the vehicle end, a 200mW low-power transceiver was used as a receiver. They
communicated with each other using what Aerocomm deems “acknowledge
mode”. Each transmission is basically acknowledged by the receiver, and up to 5
retries are attempted. This limits packet loss and allows us to notify the user if
their command was not successfully received by the vehicle.

Because these parts employ TTL serial communication as their native
protocol, conversion from TTL to RS232 was required to connect the transceivers
to their respective devices (TX-to-server and RX-to-microcontroller). This was
accomplished on the vehicle end with a piggy-back converter from Aerocomm
that was made specifically for the low-power transceiver. For the server end, no
such part exists, so one had to be made. This just entailed a 3.3V power supply, an
RS232-to-TTL converter cable, and a lot of wire-wrapping/soldering.

e Microcontroller (Receiver)

An HCS08 demonstration board served as the brains of the receiver. This
board was chosen because of its flexibility, low power consumption, and low cost.
It came with Metrowerks CodeWarrior Development Studio, which allowed up to
4KB of C code to be written. The ability to code the behavior of the MCU in C
versus HS08 assembly was a huge time-saver.

The microcontroller resides in the car, power by the vehicles battery. It
spends it time almost exclusively in wait mode. This is a low-power mode that is
exited upon specified interrupts. For this design, an RS232 receive interrupt is the

only event that can wake the MCU from wait mode. Upon waking up, it parses

the packet that has been received for authenticity and takes the appropriate action
based on the command in the packet. It then returns to wait mode until the next
RS232 receive interrupt.
e Remote Start/Keyless-Entry
Ideally, we would have like to build this component ourselves. After
shopping some of the commercial systems available, we decided that they offered
many bells and whistles that we would like in our system, only we did not have
time to build something so substantial. Instead, we opted for a CodeAlarm CA-
535 remote start/keyless-entry package; it was purchased/installed at Circuit City.
Integrating with this system was as easy as taking apart the extra key-ring
transmitter. Going across the RF twice was not the original plan, but having the
key-ring transmitter inside the car and hooked to a constant full 6 volt supply

guaranteed reliable transmission.

Design Decision Log.

Date Description
04/01/2004 C# will be used for Ul development

04/01/2004 Access database; easy connectivity w/ C#

04/01/2004 VTapi ActiveX control for Phone Ul

04/15/2004 68HC11 Microcontroller for vehicle end

04/15/2004 AC4490-1000 transceivers chosen; best OEM part available
05/01/2004 Changed to HCS08 MCU; better price & power consumption
06/15/2004 Changed to TAPIEX control; better price

07/01/2004 Decided not to build remote start/entry system

10/15/2004 Switched vehicle end to AC4490-200; lower power/piggy-back
11/15/2004 Decided to build RS232 converter for server-end transmitter

Parts List.

Purchased Parts (Qty) Where Price
Aerocomm AC4490-1000 (1) Mouser.com $86
Aercomm AC4490-200 (2) Mouser.com $130

Motorola HCS08 Demo Board (2) Arrow Electronics $98
TAPIEx ActiveX Control License (1) Hotwind Software $60

Nearson W350 Panel Antenna (1) Nearson, Inc. $13
Nearson P467 1/2 Wave Antenna (1) Nearson, Inc. $22
Designed Parts Component Costs

6M RG-174 TM Line $42

RS232-to-TTL Converter $70

MCU-to-CA535 connections $25

Battery pack (for testing) $20

Citations.

e The JustinlO library (by Justin Harrel at Aciss Systems, Inc.) was used to gain

COM port functionality in C# .NET.

Conclusions.

A number of valuable lessons were learned during the course of this project. The
main snag we encountered involved the transceivers. Part of it was bad planning, and part
of it was issues with the vendor. To put a 3.3V/1500mA part in a low-power setting
should have never been the plan, hence the bad planning. The vendor, however, was less
than helpful in rectifying the situation, even after he admitted be partially responsible.
The effect was about a 3 week set-back, which cost us the coolness factor of
demonstrating our finished product at a much longer range than we actually did.

Other snags encountered were all little things. They are listed below with short

explanations:

e Tutorial donation — we took it for granted that a shop (any shop) in town would
show us how to install a remote starter. Everyone, without fail, cited legal reasons
why they didn’t want to be liable for us should something go wrong.

e Little parts & big shipping costs — numerous times we found ourselves needing
something simple like a power connector or a DB9 gender changer. These parts
are less than a dollar, but shipping is usually $8-$9. Great planning could have
eliminated some of this.

e C# and the COM port — there is no inherent library in C# for COM port
communication. Thanks again to Justin at Aciss Systems, Inc. for posting his

serial library in the DevShed forums.

Acknowledgments.
e Endless help in writing code for microcontrollers was received from the

discussion boards at www.metrowerks.com

http://www.metrowerks/

Appendix A — Security Overview

Introduction.

Obviously, I would not be smart to divulge exactly how to hack the RVI system. This
document is instead meant to explain the general theory behind the security that has been
implemented in the RVI prototype.

Random Numbers.

Like the commercially available remote start/keyless entry systems, the RVI system uses
pseudo-random numbers (PRNSs). The algorithm employed can generate huge strings of
PRNSs in the 0 to 255 range without generating sequences. The algorithm is seeded, and
each vehicle receiver has its own unsigned 32-bit seed, allowing over 4 billion receivers.

Packets.

Basically two things need to get transmitted: (1) the command that tells receiver what to
do, and (2) some sort of authorization based on the unique PRN sequence for that
particular receiver. The possibilities here range from the very simple (sending the next
PRN in the sequence along with a one byte command) to the more complex (a huge
packet with encrypted commands and PRN subsequences). The RVI implementation is
explained in the following section.

Implementation.

This is a close example of the actual system, but not the exact implementation (in the
spirit of security). A packet will consist of a one byte command, two one byte
authentication numbers, and 5 truly random numbers.

[Go | c | Ao |Gl |[G2] A1]| G3 | G4 |
a. . . Example Packet -

e The command byte is self explanatory.

e The two authentication numbers are a subsequence of the PRN sequence unique to
that receiver. The user database, as well as the receiver, stores an offset number that
indexes into the PRN sequence. The receiver will accept the next 64 possible two-
number sequences to allow up to 63 failed transmissions. The PRN sequence has an
odd number of elements to further eliminate patterns.

e The 5 random garbage numbers are there to make pattern recognition even more
difficult. Unless you KNOW they’re garbage, you must treat them like the other 3
useful bytes.

Calculations.

Suppose a PRN sequence is 2,047 numbers long. Because the number of elements is odd
and we are taking the subsequences two at a time, it would take 4,094 transmissions
before the pattern started over. Assuming someone used their RVI three times a day, and
a bad guy was able to intercept every single transmission, it would still be 3 % years*

10

before a pattern could begin to be recognizable. And that is provided he knew to
disregard the garbage in the packet.

4094 transmissions _1364.7days 1364.7 days

3transmissions/ day 365days/ year

~ 3.74 years

If a bad guy found a way to transmit packets to the vehicle receiver, each byte can have
256 distinct values. Given 8 bytes in a packet, that would yield 256° (or 1.84467x10"),
possible combinations. One of those is the command to unlock the doors and one of them
is the command to start the engine. At 76kbps (9500 bytes/sec.), it would take
1.94176x10" seconds to send all possible commands. This translates to:

1 min « 1hour y 1day y lyear
60s 60min 24hours 365days
a.k.a. “Not very effective”

1.9417 x10%° s x

=6.15729x10" years

11

Appendix B — WebUI Source Code

Start member.aspx

<%@ Page language="'c#" Codebehind="member.aspx.cs"
AutoEventWireup=""false" Inherits="RVIweb._Member" %>

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>

<HEAD>

<title>RVI Project</title>

<meta name="GENERATOR" Content="Microsoft Visual Studio _NET 7.1">
<meta name="'CODE_LANGUAGE" Content="C#'">

<meta name='"vs_defaultClientScript" content="JavaScript'>

<meta name='vs_targetSchema"
content="http://schemas.microsoft.com/intellisense/ie5">

</HEAD>

<body>

<form id=""Forml' method="post" runat='server'>

<map id="headmap' name="‘headmap'>

<area shape="RECT" coords="467,115,589,127" href="http://www.utah._edu"
target=""_blank"

alt="U of U">

</map>

<div align="center'><img src="/Images/heading.jpg" border="0"
usemap=""#headmap''></div>

<div align="center'><img src="/Images/horiz_divider.jpg"
border="0"></div>

<table width="600" align=""center" cellpadding="5" cellspacing="0">
<tr>

<td valign=""top" width=""130"">

<img src="/Images/button_home. jpg"
border="0">

<asp:ImageButton ImageUrl="_/Images/button_logout. jpg" Runat="'server"
id="logoutButton'></asp: ImageButton>

<img src="/Images/button_details.jpg"
border="0">

<img src="/lImages/button_contact. jpg"
border="0">

</td>

<td valign=""top'>

<asp:Label Runat='"server" id="Labell'></asp:Label>

<hr width="400" color="#ff0000" align=""left">

Engine commands:

<asp:ImageButton ImageUrl="_/lImages/button_start.jpg" Runat="'server"
ID="'startButton''></asp: ImageButton>

<asp:ImageButton ImageUrl="_/Images/button kill.jpg"” Runat="'server"
ID="ki Il lButton'></asp: ImageButton>

Lock Commands:

<asp:ImageButton ImageUrl="_/Images/button_unlock.jpg" Runat="server"
I1D=""unlockButton'></asp: ImageButton>

12

<asp:ImageButton ImageUrl="_/Images/button_lock.jpg" Runat="server"
ID=""lockButton''></asp: ImageButton>

<asp:ImageButton ImageUrl="_/Images/button_pop-jpg"” Runat="server"
ID=""trunkButton'></asp: ImageButton>

</td>

</tr></table></form></body></HTML>

Start member.aspx.cs

using System;

using System.Collections;

using System.ComponentModel;
using System.Data;

using System.Data.OleDb;

using System.Drawing;

using System.Web;

using System.Web.SessionState;
using System._Web.Ul;

using System.Web.Ul _WebControls;
using System.Web.Ul_HtmlControls;

namespace RVIlweb

{
/// <summary>
/// Summary description for Member.
/// </summary>
public class Member : System._Web.Ul_Page
{
protected System.Web._Ul _WebControls. ImageButton
ImageButtonl;
protected System.Web.Ul .WebControls. ImageButton
Imagebutton3;
protected System.Web._Ul .WebControls. ImageButton
Imagebutton4;

protected System.Web.Ul .WebControls.Label Labell;

protected System.Web.Ul .WebControls. ImageButton
startButton;

protected System.Web._Ul _WebControls. ImageButton killButton;

protected System.Web._Ul .WebControls. ImageButton
unlockButton;

protected System.Web.UI .WebControls. ImageButton lockButton;

protected System.Web._Ul .WebControls. ImageButton
logoutButton;

protected System.Web._Ul .WebControls. ImageButton
trunkButton;

private void Page Load(object sender, System._EventArgs e)

{
// Put user code to initialize the page here
//Response.CacheControl = ""no-cache';
//Response .AddHeader (*'Pragma’, ‘‘no-cache');
//Response_Expires = -1;
this.Labell.Text = ""';

13

if(crypt(Session[crypt("isAuth'™)].ToString()) ==
{
}

else

"false'™)

Response.Redirect('authenticate.aspx');

OleDbDataReader dr =
DBhelpers.getRecord("'SELECT * FROM Clients Where UserName=""" +
crypt(Request.Cookies.Get(""USERNAME™) .Value) + ""');

if(dr '= null && dr.HasRows)

{

// Get only record
dr.Read();

this.Labell.Text += "<font size=\"+3\"
face=\"Arial\'">" + dr.GetString(dr.GetOrdinal (""FirstName')) + " " +
dr._GetString(dr.GetOrdinal (‘'LastName')) + "";

this.Labell.Text += "
";

this.Labell.Text += "'" + dr.GetString(dr.GetOrdinal ("Email'")) + "
";

// Closing the dataReader object also
closes the connection
dr.Close();

}

#region Web Form Designer generated code
override protected void Onlnit(EventArgs e)
{
//
// CODEGEN: This call is required by the ASP._NET Web
Form Designer.
//
InitializeComponent();
base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

private void InitializeComponent()

{

this.logoutButton.Click += new

System_Web .Ul . ImageClickEventHandler(this. logoutButton_Click);
this.startButton.Click += new

System.Web.Ul . ImageClickEventHandler(this.startButton Click);
this.killButton.Click += new

System.Web.UI . ImageClickEventHandler(this._killButton_Click);
this.unlockButton.Click += new

System_Web .Ul . ImageClickEventHandler(this.unlockButton_Click);
this.lockButton.Click += new

System.Web.UI . ImageClickEventHandler(this. lockButton Click);

14

this.trunkButton.Click += new
System.Web.UI . ImageClickEventHandler(this.trunkButton Click);
this.Load += new System.EventHandler(this.Page_ Load);

}

#endregion

private void startButton_Click(object sender,
System.Web.UI . ImageClickEventArgs e)

{
}

private void killButton_Click(object sender,
System_Web_Ul . ImageClickEventArgs e)

{
}

private void unlockButton Click(object sender,
System.Web.Ul . ImageClickEventArgs e)

{
}

private void lockButton Click(object sender,
System.Web.Ul . ImageClickEventArgs e)

{
}

private void trunkButton Click(object sender,
System.Web.Ul . ImageClickEventArgs e)

this._buttonsHelper("S");

this.buttonsHelper("K");

this._buttonsHelper(*U");

this._buttonsHelper(“L");

this._buttonsHelper("T");
b

private void logoutButton Click(object sender,
System.Web.UI . ImageClickEventArgs e)

{
Session[crypt("isAuth'™)] = crypt(‘'false™);
Response.Cookies.Get(""USERNAME') .Value = "';
Response.Redirect('index.htm™);

}

private void buttonsHelper(char cmd)

{

OleDbDataReader dr = DBhelpers.getRecord(*'SELECT *
FROM Clients Where UserName="'" +
crypt(Request.Cookies.Get(""USERNAME™) .Value) + ""');

if(dr.HasRows && dr = null)

{
dr.Read();
}
else
{
return;

15

}

PRNG p = new PRNG((uint)dr.GetInt32(0));

int offset = dr.GetInt32(dr.GetOrdinal ("'Offset'));
byte[] temp = p.get255();

Random r = new Random();

CommPort cl = new CommPort();
cl.setBaudAndOpen(9600) ;

byte[] toSend = {(byte)cmd, (byte)r.Next(256),
temp[offset], temp[(offset+1)%255], (byte)r._Next(256)};

cl._Write(toSend);
cl.Close(Q);

dr.Close();
offset = (offset+2)%255;
//this_Labell._Text =

DBhelpers.updateOffset(offset,
crypt(Request.Cookies.Get(""USERNAME'™) .Value));
}

private string crypt(string str)
{

}

return Crypt.swapCrypt(str);

}
Start DBhelpers.cs

using System;
using System.Data;
using System.Data.OleDb;

namespace RVIlweb

{

/// <summary>

/// Summary description for DBhelpers.
/// </summary>

public class DBhelpers

{
private static string CONN_STRING =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:/Inetpub/Data/RVI.mdb";

public DBhelpers()
//

// TODO: Add constructor logic here
//

}

public static OleDbDataReader getRecord(string sqlQuery)

OleDbConnection Connection = new OleDbConnection();

16

try

// Open a connection to the database
Connection.ConnectionString = CONN_STRING;
Connection.Open();

// Create an OleDb command,

OleDbCommand command = new OleDbCommand();
command.Connection = Connection;
command.CommandText = sqlQuery;

// Execute and return the rows in the data
reader object

OleDbDataReader dataReader;

dataReader =
command . ExecuteReader (CommandBehavior.CloseConnection);

return dataReader;

catch(Exception ex)

{
Console.WriteLine(ex.Message + '"\n"");
Console._WriteLine(ex.StackTrace);
return null;

}

}

public static void updateOffset(int offset, string
username)

OleDbConnection Connection = new OleDbConnection();

try

{
// Open a connection to the database
Connection.ConnectionString = CONN_STRING;
Connection.Open();

// Create an OleDb command,

OleDbCommand command = new OleDbCommand();

command.Connection = Connection;

command.CommandText = "UPDATE Clients SET
Offset="" + offset +"" WHERE UserName="" + username + """;

// Execute and return the rows iIn the data
reader object

command . ExecuteNonQuery();

Connection.Close();

//return ""None';

catch(Exception ex)

//return (ex.Message + '"'
" +
ex.StackTrace);

}

17

}
Start PRNG.cs

using System;
namespace RVIiweb
{
/// <summary>
/// Summary description for PRNG.
/// </summary>
class PRNG

{
private uint SEED;

/* uncomment parameters of choice */

private uint a = 1588635695, m = 4294967291, q = 2, r =
1117695901 ;

// static unsigned int a = 1223106847, m = 4294967291U, q =
3, r = 625646750;

// static unsigned int a = 279470273, m = 4294967291U, q
15, r = 102913196;

// static unsigned int a = 1583458089, m = 2147483647, q

1, r = 564025558;
// static unsigned int a = 784588716, m = 2147483647, q =
2, r = 578306215;

// static unsigned int a = 16807, m = 2147483647, q =
127773, r = 2836;

// static unsigned int a = 950706376, m = 2147483647, q
2, r = 246070895;

public PRNG(uint s)
SEED = s;
}
public byte random()
{
double temp;

SEED
temp

a*(SEED % q) - r*(SEED 7/ q);
((double)SEED / (double)m);

return (byte) ((double)temp * ((double)(256)));
}
public byte[] get255Q)
{

byte[] result = new byte[255];

for(int 1 = 0; 1 < 255; i++)
{

}

return result;

result[i] = this.random();

18

Start Forml.cs

using
using
using
using
using
using
using
using

System;
System.Drawing;
System.Collections;
System.ComponentModel ;
System.Windows.Forms;
System.Data;
System.Data.OleDb;
System.Threading;

Appendix C — PhoneUI Source Code

namespace RVI_PhoneUl

{

public class Forml : System.Windows.Forms.Form

{

intern
public
public
public
public
public
public
public
privat
privat

privat
privat

enum M

{

¥

al System.Windows.Forms.TextBox Txtlog;
System.Windows.Forms.ToolTip ToolTipl;
System.Windows.Forms.Button BnClose;
System.Windows.Forms.Button BnOpen;
System._Windows.Forms.ListBox LtLines;
System.Windows.Forms.TextBox EdAutoAnswerRingCount;
System.Windows.Forms.Label Labell;
System.Windows.Forms.Label Label3;

e AXTAPIEXLib.AXTAPIEXCtl mTAPIEX;

e System.ComponentModel . IContainer components;

e string clientNumber;

e string clientPassword;
ode

WELCOME = O,

PASSWORD,

AUTHENT ICATED,

GOODBYE

public Form1(Q)

{

//

// Required for Windows Form Designer support
//

InitializeComponent();

//
// TODO: Add any constructor code after

InitializeComponent call

}

protec

//

ted override void Dispose(bool disposing)

if(disposing)
{

19

if (components != null)

{
}
}

base.Dispose(disposing);

components._Dispose();

}

#region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

private void InitializeComponent()

{
this.components = new
System.ComponentModel .Container();
System.Resources.ResourceManager resources = new
System.Resources.ResourceManager (typeof(Forml));
this.Txtlog = new System.Windows.Forms.TextBox();
this.ToolTipl = new
System.Windows.Forms.ToolTip(this.components);
this.BnClose = new System.Windows.Forms.Button();
this.BnOpen = new System._Windows.Forms.Button();
this.LtLines = new System.Windows.Forms.ListBox();
this.EdAutoAnswerRingCount = new
System.Windows.Forms.TextBox();
this.Labell = new System_Windows.Forms.Label();
this.Label3 = new System_Windows.Forms.Label();
this.mTAPIEX = new AXTAPIEXLib.AXTAPIEXCtI();

((System.ComponentModel . ISupportinitialize)(this.mTAPIEX)) .Beginl

nitQ;

this.SuspendLayout();

//

// Txtlog

//

this.Txtlog.Location = new System.Drawing.Point(7,
88);

this.Txtlog-Multiline = true;

this.Txtlog.Name = "Txtlog";

this.Txtlog.ScrollBars =
System._Windows.Forms.ScrollBars.Both;

this.Txtlog-Size = new System.Drawing.Size(409, 224);

this.Txtlog-Tablndex = 15;

this.Txtlog.Text = '""';

//

// BnClose

//

this.BnClose.BackColor =
System.Drawing.SystemColors.Control;

this.BnClose.Cursor =
System._Windows.Forms.Cursors.Default;

this.BnClose.Enabled = false;

this._BnClose.ForeColor =
System.Drawing.SystemColors.ControlText;

20

this.BnClose.Location = new System.Drawing.Point(336,
48);

this.BnClose_Name = "BnClose';

this.BnClose.RightToLeft =
System_Windows.Forms.RightToLeft_No;

this.BnClose.Size = new System.Drawing.Size(80, 25);

this.BnClose.Tablndex = 14;

this.BnClose.Text = "Close All';

this.BnClose.Click += new
System_EventHandler(this.BnClose Click);

//

// BnOpen

//

this.BnOpen._BackColor =
System.Drawing.SystemColors.Control;

this.BnOpen.Cursor =
System.Windows.Forms.Cursors.Default;

this.BnOpen.DialogResult =
System._Windows.Forms.DialogResult.Cancel;

this.BnOpen.ForeColor =
System.Drawing.SystemColors.ControlText;

this.BnOpen.Location = new System.Drawing.Point(336,
16);

this.BnOpen_Name = ""BnOpen';

this.BnOpen.RightToLeft =
System.Windows.Forms.RightToLeft.No;

this.BnOpen.Size = new System.Drawing.Size(80, 25);

this.BnOpen.Tablndex = 13;

this.BnOpen.Text = "Open All";

this.BnOpen.Click += new
System.EventHandler(this.BnOpen_Click);

//

// LtLines

//

this.LtLines.BackColor
System.Drawing.SystemColors.Window;

this.LtLines.Cursor =
System._Windows.Forms.Cursors.Default;

this.LtLines.ForeColor
System.Drawing.SystemColors.WindowText;

this.LtLines.Location = new System.Drawing.Point(8,

24);
this._LtLines_Name = "LtLines";
this._LtLines_RightToLeft =
System_Windows.Forms._RightToLeft_No;
this.LtLines.Size = new System.Drawing.Size(320, 17);
this.LtLines.Tablndex = 11;
//
// EdAutoAnswerRingCount
//
this.EdAutoAnswerRingCount.AcceptsReturn = true;
this.EdAutoAnswerRingCount.AutoSize = false;
this.EdAutoAnswerRingCount.BackColor =
System._Drawing.SystemColors_Window;
this._EdAutoAnswerRingCount.Cursor =
System.Windows.Forms.Cursors. IBeam;

21

this.EdAutoAnswerRingCount.ForeColor =
System.Drawing.SystemColors.WindowText;

this.EdAutoAnswerRingCount.Location = new
System.Drawing.-Point(304, 48);

this.EdAutoAnswerRingCount.MaxLength = O;

this.EdAutoAnswerRingCount.Name =
"EdAutoAnswerRingCount';

this._EdAutoAnswerRingCount.RightToLeft =
System._Windows.Forms.RightToLeft.No;

this._EdAutoAnswerRingCount.Size = new
System.Drawing.Size(25, 19);

this.EdAutoAnswerRingCount.Tablndex = 9;

this._EdAutoAnswerRingCount.Text = "'1";

//

// Labell

//

this.Labell._BackColor
System.Drawing.SystemColors.Control;

this.Labell_Cursor =
System._Windows.Forms.Cursors.Default;

this.Labell_ForeColor =
System.Drawing.SystemColors.ControlText;

this.Labell_Location = new System.Drawing.Point(8,
8):

this.Labell_.Name = "Labell';

this.Labell_RightToLeft =
System.Windows.Forms.RightToLeft.No;

this.Labell_Size = new System.Drawing.Size(113, 17);

this.Labell_Tablndex = 12;

this.Labell.Text = "Device"';

//

// Label3

//

this.Label3_BackColor
System.Drawing.SystemColors.Control;

this.Label3._.Cursor =
System.Windows.Forms.Cursors.Default;

this.Label3_ForeColor
System.Drawing.SystemColors.ControlText;

this.Label3.Location = new System.Drawing.Point(168,

48);

this.Label3_Name = "Label3";

this.Label3_RightToLeft =
System._Windows.Forms.RightToLeft.No;

this.Label3.Size = new System.Drawing.Size(136, 17);

this.Label3.Tablndex = 10;

this.Label3.Text = "Auto Answer after Ring";

//

// mTAPIEX

//

this.mTAPIEx.Enabled = true;

this.mTAPIEX.Location = new System.Drawing.Point(8,
48);

this.mTAPIEx.Name = "mTAPIEX";

this.mTAPIEX.OcxState =
((System.Windows.Forms.AxHost.State) (resources.GetObject(""'mTAPIEX.OcxSt

ate)));

22

this.mTAPIEX.Size = new System.Drawing.Size(30, 30);
this.mTAPIEx.Tablndex = 16;
this.mTAPIEX._Visible = false;
this.mTAPIEX.OnDTMFTimeOut += new
AXTAPIEXLib._ITAPIExXEvents_OnDTMFTimeOutEventHandler (this.mTAPIEx_OnDTM
FTimeOut);
this.mTAPIEx.OnDisConnected += new
AXTAPIEXLib. ITAPIExEvents_OnDisConnectedEventHandler(this.mTAPIEX_OnDi
sConnected);
this.mTAPIEx.OnPlayBackComplete += new
AXTAPIEXLib. ITAPIExEvents OnPlayBackCompleteEventHandler(this.mTAPIEX
OnPlayBackComplete);
this.mTAPIEXx.OnDebug += new
AXTAPIEXLib._ ITAPIExEvents OnDebugEventHandler(this.mTAPIEX_OnDebug);
this.mTAPIEX.OnDTMF += new
AXTAPIEXLib. ITAPIExXEvents OnDTMFEventHandler(this.mTAPIEX_OnDTMF);
this.mTAPIEx.OnConnected += new
AXTAPIEXLib._ ITAPIExEvents OnConnectedEventHandler(this.mTAPIEx_OnConne
cted);
this.mTAPIEX.OnRing += new
AXTAPIEXLib. ITAPIExXEvents OnRingEventHandler(this.mTAPIEX_OnRing);
//
// Forml
//
this_AutoScaleBaseSize = new System.Drawing.Size(6,
14);
this.ClientSize = new System.Drawing.Size(424, 333);
this.Controls.Add(this.mTAPIEX);
this.Controls.Add(this.BnClose);
this.Controls._Add(this.BnOpen);
this.Controls.Add(this.LtLines);
this.Controls.Add(this.EdAutoAnswerRingCount);
this.Controls.Add(this.Labell);
this.Controls.Add(this.Label3);
this.Controls.Add(this.Txtlog);
this.Font = new System.Drawing.Font(''Verdana', 8.25F,
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point,
((System.Byte)(0)));
this_.Name = "Forml";
this.Text = "RVI PhoneUl™;
this.Load += new
System.EventHandler(this.Forml Load);

((System.ComponentModel . ISupportinitialize)(this.mTAPIEX)) .EndIni

tO:
this.ResumeLayout(false);

}

#endregion

[STAThread]
static void Main(Q)

Application.Run(new Form1());
}

private void Forml Load(object sender, System.EventArgs e)

23

mTAPIEX. initialize(); //Initialize
//for(int 1=0;i<mTAPIEx.Lines.Count;i++)
/74
//
LtLines. l1tems.Add(mTAPIEx.Lines.l1tem(i).DeviceName);

//}
LtLines. l1tems_Add(mTAPIEx.Lines.1tem(0) .DeviceName);
this.Txtlog.-Text += "Line Caps: ™ +

MTAPIEX.Lines. Item(0).Caps.-Call_Features _Str + '"\r\n";

BnOpen_Click(null, null);
}

private void BnOpen_Click(object sender, System.EventArgs

e)

//for(int 1=0;i<mTAPIEx.Lines.Count;i++)
//
MTAPIEX.Lines. I'tem(i).0Open(TAPIEXLib.LINECALLPRIVILEGE.CALLPRIVIL
EGE_OWNER);

//mTAPIEX.Lines. Item(0).0pen(TAPIEXLib.LINECALLPRIVILEGE.CALLPRIV
ILEGE_OWNER);
MTAPIEX.Lines. Item(0).0pen();
BnOpen.Enabled = false;
BnClose.Enabled = !BnOpen.Enabled;

}

private void BnClose Click(object sender, System.EventArgs

MTAPIEX.CloseAll();
BnOpen.Enabled = true;
BnClose.Enabled = !BnOpen.Enabled;

}

private void mTAPIEx _OnDebug(object sender,
AXTAPIEXLib._ITAPIEXEvents_OnDebugEvent e)

{
this.Txtlog.Text = Txtlog.Text + e.msg +"\r\n";
this.Txtlog.SelectionStart = this.Txtlog.Text.Length;
this.Txtlog-ScrollToCaret();

}

private void mTAPIExX OnRing(object sender,
AXTAPIEXLib. ITAPIExXEvents OnRingEvent e)

{
int idefringcount =
System._Convert.Tolnt32(EdAutoAnswerRingCount.Text);
if(e.ringCount >= idefringcount)

{
}

e.m_Call_Answer();

24

private void mTAPIExX OnDTMFTimeOut(object sender,
AXTAPIEXLib._ITAPIExEvents_OnDTMFTimeOutEvent e€)

{
e.m_Call_.DTMF_TimeOut = 0; //stop DTMF time out
e.m_Call_StopPlayBack();
e.m_Call_PlaybackFile(''timeout.wav');

}

private void mTAPIEx_OnConnected(object sender,
AXTAPIEXLib._ITAPIEXEvents_OnConnectedEvent e)

{
TAPIEXLib.TAPICall ¢ = e.m_Call;
this.clientPassword = "';
this.clientNumber = ""';
c.User_Datal = Mode.WELCOME;
c.PlaybackFile(""C:\\wav\\welcome.wav');
}

private void mTAPIEx OnDTMF(object sender,
AXTAPIEXLib. ITAPIEXEvents OnDTMFEvent e)

{
TAPIEXLib.TAPICall c = e.m_Call;
string temp = c.DigitsReceived;

if((Mode)c.User_Datal != Mode.GOODBYE)
{

c.StopPlayBack(); //Stop the current
menu/prompt

}

switch((Mode)c.User Datal)

case Mode.WELCOME:
if(temp.Length == 10)
{

this.clientNumber = temp;
c.User_Datal = Mode.PASSWORD;

c.PlaybackFile("'C:\\wav\\password.wav');
}

break;

case Mode.PASSWORD:
if(temp.Length == 14)

this.clientPassword =
(C'+temp[10]+temp[11]+temp[12]+temp[13]);

if(this.isAuth())

{

c.User_Datal =
Mode .AUTHENT ICATED ;

c.PlaybackFile(*'C:\\wav\\menuTop.wav'");

else //i.e. NOT Authenticated
{

25

c.User_Datal = Mode.GOODBYE;
c.PlaybackFile(*'C:\\wav\\authError._wav'");
}
}
break;

case Mode.AUTHENTICATED:
if(temp[temp.Length-1] == *1%)

sendCommand(*S");

glse if(temp[temp.Length-1] == "2%)
{ sendCommand(*S*);
glse if(temp[temp.Length-1] == "3%)
{ sendCommand(*L");
glse if(temp[temp.Length-1] == "4%)
{ sendCommand(*U");
%Ise if(temp[temp.Length-1] == "5%)

c.User Datal = Mode.GOODBYE;

c.PlaybackFile(*'C:\\wav\\goodbye.wav'") ;
}

break;

case Mode.GOODBYE:
break;

}

private void mTAPIEx_OnPlayBackComplete(object sender,
AXTAPIEXLib._ ITAPIExEvents OnPlayBackCompleteEvent e)

{
string temp = e.m_Call_ActivePlayBackFile;

if(temp == "C:\\wav\\authError.wav'" || temp ==
"C:\\wav\\goodbye.wav'")
e.m_Call.Drop(Q);
}

private void mTAPIEx OnDisConnected(object sender,
AXTAPIEXLib._ITAPIEXEvents_OnDisConnectedEvent e)

e.m _Call.Drop(Q);

rivate bool isAuth()

AT A

26

OleDbDataReader dr = DB.getRecord(*'SELECT * FROM
Clients WHERE Phone=" + this.clientNumber + " AND Pin="" +
this.clientPassword);

if({dr = null)

{
dr.Close();
return true;
}
else
{
return false;
}
}
private bool sendCommand(char cmd)
{

OleDbDataReader dr = DB.getRecord(*'SELECT * FROM
Clients WHERE Phone=" + this.clientNumber);
if({dr = null)

{
dr.Read();
¥
else
{
return false;
b

PRNG p = new PRNG((uint)dr.GetInt32(0));

int offset = dr.GetInt32(dr.GetOrdinal ("'Offset'));
byte[] temp = p.get255();

Random r = new Random();

CommPort cl = new CommPort();
cl.setBaudAndOpen(9600) ;

byte[] toSend = {(byte)cmd, (byte)r.Next(256),
temp[offset], temp[(offset+1)%255], (byte)r._Next(256)};

cl._Write(toSend);
cl.Close(Q);

dr.Close();
offset = (offset+2)%255;
DB.updateOffset(offset, this.clientNumber);

return true;

27

Appendix D — Microcontroller Source Code

#i# Start main.c

#include <hidef.h> /* for Enablelnterrupts macro */
#include <MC9S08GB60.h> /* include peripheral declarations */

#include "INT.h"
#include "rands.inc"

// Function prototypes
void SCI2_init(void);
Bool checkAuth(void);
void delay(int);

// Variables
ulong RXtimeout;
byte buffer[5];
byte bufCount;
byte offset;

// Interrupt Handlers - - -—-——————————————
interrupt Vsci2rx void onSCI2_RX({
iT(SCI2S1_RDRF == 1 && bufCount < 5) {
RXtimeout = 5000;
buffer[bufCount++] = SCI2D;

}

// Main Function -—-—-——————————————
void main(void) {
Enablelnterrupts; //assembly macro

ICGC1_CLKS = 0; // set ICG to SCM mode (4MHz bus, 8Mhz clock)

SOPT_COPE = 0; // disable COP
PTFDD
PTFD

SCl12_initQ);

RXtimeout = O;
bufCount = O;
offset = 254;
for(G;) {

//PTFD_PTFD3 = 0O;

while(RXtimeout > 0) {
if(bufCount == 5) {
// handle received command ------
if(checkAuth(Q)) {
switch((char)buffer[0]) {
case "L":

OxF; // direct channels 3 thru 0 to data-register
0x0; // ch3 thru ch0 =0 (1 = ~-80mV. 0 = ~3V)

PTFD_PTFDO = IPTFD_PTFDO;

delay(2);

28

PTFD_PTFDO = !PTFD_PTFDO;
break;

case "U-":
PTFD_PTFD1 = IPTFD_PTFD1;
delay(10);
PTFD_PTFD1 = !PTFD_PTFD1;
break;

case "S-":
PTFD_PTFD2 = IPTFD_PTFD2;
delay(2);
PTFD_PTFD2 = IPTFD_PTFD2;
delay(2);
PTFD_PTFD2 = IPTFD_PTFD2;
delay(2);
PTFD_PTFD2 = IPTFD_PTFD2;
break;

case "K-":
PTFD_PTFD3 = IPTFD_PTFD3;
delay(2);
PTFD_PTFD3 = !PTFD_PTFDS3;
break;

bufCount = 0;

} else {
RXtimeout--;

by
}// end while loop
bufCount = 0;
//PTFD_PTFD3 = 1;

// Go to sleep
asm(WAIT);

} /77 loop forever
}

// Helper & Init Functions —-———————————— e~
// Checks received data in the buffer for authentication
Bool checkAuth(void) {
int 1;
int end = ((int)offset)+64;
for(i = offset; 1 < end; 1+=2) {
if(authNums[1%255] == buffer[2] && authNums[(i+1)%255] ==
buffer[3]) {
offset = (byte)((i+2) % 255);
return 1;
}
}

return O;

29

//Delay Function
void delay(int half_seconds) {
ulong scale = half_seconds * 10000;
int i;
for(i = 0; 1 < scale; i++) {
//do nothing
__RESET_WATCHDOGQ);
}

return;

}

// Initializes the SCI2 port
void SClI2_init(void) {
SCI2BDH = 0; //
SCI2BDL = 26; // Sets BAUD rate to 4e6/(16 * 26) ~= 9600
SCI2C1 = 0b00001100
’/* LT
I11111]1+- No meaning because parity disabled
(O=even parity)
I11111+-- Parity Disabled
I1111+--- 1dle character bit count starts after

stop bit

I111+---- Address-mark wakeup
IH1+----- 8-bit mode
|1+--——-- No meaning, since LOOPS=0
| +--——--- SCI clocks run in wait mode
Fom Not Looped

*/

SCI12C2 = 0b00101100;

/* LT
1111111+ Send Break (O=normal operation)
I11111+-- Receiver wakeup control (O=normal

operation)

I1111+--- RX enabled
I1l11+---- TX enabled
11+—---- Idle line interrupt disabled
|1+-—-—-- RX interrupt enabled
|+-————-—- TX-complete interrupt dsiabled
S . TX interrupt disabled

*/

SCI2C3 = 0b00000000;

’/* LT
I11111]+- Parity error interrupt disabled
I11111+-- Framing error interrupt disabled
I1111+--- Noise error interrupt disabled
I11]1+---- Overrun interrupt disabled
IH1+———-- 0 --> _no use_
1+------ TXDIR
|+--—---- T8
Fom————— R8

*/

PTCDD_PTCDD1 = O;

PTCPE_PTCPE1 = 1;

30

Start rands.inc

byte authNums[] =

244,

{94, 31, 210, 176, 44, 220, 129, 166, 90, 188, 163, 23, 173, 225,
54, 194,
243, 254, 20, 180, 6, 65, 147, 126, 19, 30, 123, 125, 17, 151,

77, 106, 202, 163,

178,
175,

103,

104, 157, 61, 95, 66, 190, 68, 36, 215, 172, 240, 65, 16, 153,
81, 37, 168,

151, 18, 144, 63, 188, 11, 63, 10, 48, 88, 187, 34, 185, 76, 82,
49, 21, 167,

239, 160, 21, 231, 68, 103, 100, 3, 85, 163, 45, 176, 170, 8, 38,
165, 193,

194, 207, 102, 216, 187, 198, 184, 47, 151, 193, 106, 125, 20,

82, 193, 119, 206,

196,
154,
223,
212,
224,

129,

191, 206, 36, 149, 233, 128, 109, 114, 143, 46, 176, 176, 215,
23, 78, 139,

61, 76, 246, 147, 207, 11, 166, 163, 17, 228, 6, 144, 8, 73, 202,
135, 12, 20,

177, 134, 178, 62, 220, 118, 98, 245, 100, 168, 251, 158, 57,
226, 69, 159,

97, 203, 25, 179, 80, 194, 229, 108, 51, 177, 130, 101, 190, 105,

216, 250,

216, 153, 92, 195, 148, 223, 118, 186, 116, 115, 235, 241, 80,
18, 78, 62,

154, 111, 105, 156, 193, 39, 115, 182, 215, 245, 177, 130, 173,
239, 189, 7,

119, 218, 103, 228, 58, 184, 187, 46, 72, 83, 188, 4, 127, 105,

77, 195, 219, 110,

232, 203, 216, 195, 138, 171, 236, 58, 150, 169, 132, 68, 232,

52, 168, 171, 33,

246, 4, 24, 160, 138, 207, 169, 64, 123};

31

Appendix E — Block Diagrams

Server

Internet

[1S/ASP

Phone Line

TAPIEX

Fig. 1 - Server End

RF =
—)> [T |gnition

Fig. 2 — Vehicle End

32

