a
'I'Hiu
UNIVERSITY
OFUTAH
Introduction to WebGL
a
- Traditional Graphics Pipeline (Fixed Function OpenGL)
UNIVERSITY
OFUTAH

Per Vertex
Pol . o A
ol P
Evaluator [Primitive
Assembly

|

Display N Per Fragment
List Rasterization [—>| Operations

Application

Frame
Buffer

Vertices
(30) T
Texture
Memory
CPU Pixel
Operations
An Introduction to the O GL
n Introduction to the Open 2 January 2008

Shading Language

9/28/2015

<
u Traditional Graphics Pipeline
THE
UNIVERSITY
OFUTAH
Per Vertex
Pol ial Operati
Evaluator Primitive
Assembly
. . Displ;
App|lC3t|C > L::‘p g Rasterization |—>| z:;::?:: nt —>| ;La;;:
Vertices
@0) 1
Texture
Memory
Pixel
CPU Operations

An Introduction to the OpenGL

Shading Language 3 January 2008
<

u Traditional Graphics Pipeline
THE
UNIVERSITY
OFUTAH
Graphics State
| (
Application = Transform Rasterizer
Vertices Xformed,
(3D) Lit
Vertices (Color, Depth)
(2D)
CPU Render-to-texture

A simplified graphics pipeline
* Note that pipe widths vary

* Many caches, FIFOs, and so on not shown

An Introduction to the OpenGL 2
Shading Language

January 2008

9/28/2015

9/28/2015

The Graphics Pipeline

Key abstraction of real-time graphics
Hardware used to look like this
Distinct chips/boards per stage

Fixed data flow through pipeline

Beyond Programmable Shading: In Actior

System Bus —

Command geometry
.

Processor board

Geometry
Engines

A é %éé é% é %

raster memory board raster memory board

$ I

video

 —

Test & Blend

display generator board

Kurt Akeley. RealityEngine Graphics. In Proc. SIGGRAPH "93. ACM Press, 1993,

Geometry Distributor

i I Gomatry Geomatry Goometry Seomally
i | Engine Engine Engine Engine

i Geomatry-Raster FIFD)

VertexBus ™]

Image
Englines

Montrym, Baum, Dignam, & Migdal

InfiniteReality- A real-time graphics system.

In Proc. SIGGRAPH '97. ACM Press, 1997

Remains a useful abstraction

Hardware used to look like this

Beyond Programmable Shading: In Action

9/28/2015

The Graphics Pipeline

Vertex

- Vertex, pixel processing became
programmable

Beyond Programmable Shading: In Action

Vertex

!

Geometry
Hardware used to look like this

- Vertex, pixel processing became

programmable
Pixel

1 - New stages added
Test & Blend

gmet

Beyond Programmable Shading: In Action

9/28/2015

9/28/2015

The Graphics Pipeline

Vertex
+ :‘[’j]l==hhl + Bli): ’
Tessellation ’
. 2 « Hardware used to look like this
Geometry

- Vertex, pixel processing became
programmable

Pixel
¥
Test & Blend

@ GPU architecture increasingly centers
) around shader execution

Beyond Programmable Shading: In Action

- New stages added

Modern GPUs: Unified Design

Discrete Design Unified Design

Vertex shaders, pixel shaders, etc. become threads
running different programs on a flexible core

9/28/2015

GeForce 8: Modern GPU Architecturg_

Host

Input Assembler Setup & Rasterize

Vertex Thread Issue Geom Thread Issue Pixel Thread Issue

Thread Processor

Lz
lm lmeb me

GeForce GTX 200 Architecture 7,

Thread Scheduler

By BIRIE B1RERE IR BN

IDDIN)IHI'IH b.lblblblblbll)b)ﬂbl’l)l)lll bblbblb\blbll blHPINbelb
|

EE\EIEEI AR 1 Y EE\EIEEIEI'”

1Db|Hblb]Hbl DDWHD]HH}DI bbb!blblb]blbl I"]DD]NH})I HHDMNP']F

Why unify?

Vertex Shader

Pixel Shader

Vertex Shader

Pixel Shader

© NVIDIA Corparation 2007

Why unify?

Unified Shader

Unified Shader

9/28/2015

o

nvibiAa

Heavy Geometry
Workload Perf = 4

Heavy Pixel
Workload Perf = 8

<3

NVIDIA

Heavy Geometry
Workload Perf = 11

Heavy Pixel
Workload Perf = 11

9/28/2015

Dynamie Load Be ey — Borpany o e . S
rwipiA

&

Balanced use
of

5. =G5 = P§

Unified Shader

<3
.0 Fixed Functionality Pipeline
RSITY
"AH
Triangles/Lines/Points
it Transform A .
Vertex
Buffer
Objects

i Alpha Depth !
B

An Introduction to the OpenGL
n Introduction to the Open 18 January 2008
Shading Language

.WUProgrammable Shader Pipeline

Primitive Vertex Primitive
Processing Shader Assembly

Rasterizer

Vertex
Buffer
Objects
Fragment
Shader

Depth ;
Stendil Dither

An Introduction to the OpenGL

Shading Language 13 January 2008
<
4
¢) Programmer’s Model
UMNIVERSITY Attributes
OFUTAH (m * vecd)

NE
Shader

Vertex Uniforms
(p * vecd)

Primitive
Assembly
& Rasterize
A
Varyings
(n *vecd) A
4L |
= NN
Fragment Uniformg
(q *vecd)
AN
Per-Sample A
Operations H N
TSR
An Introduction to the OpenGL 20 January 2008

Shading Language

9/28/2015

10

<

Nt) Simple Vertex Shader

UNIVERSITY
OF UTAH

/ input from application

attribute vec4 vPosition;
void m ain(VOid) \ must link to variable in application

{

gl_Position = vPosition;

built in variable

21 Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

<

U Vertex Execution Model

UNIVERSITY
OF UTAH

Vertex data
Shader Program

gl.drawArrays

Vertex

22 Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

9/28/2015

11

<

& Simple Fragment Program

UNIVERSITY
OF UTAH

precision mediump float;
void main(void)
{
gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}

23 Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

<

. Fragment Execution Model

UNIVERSITY
OF UTAH

Shader Program

Fragment Fragment
Color

24 Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

9/28/2015

12

°

U The Programmer’s Interface

UNIVERSITY
OF UTAH

* Programmer sees the graphics system through
a software interface: the Application
Programmer Interface (API)

Application Graphics
e - hgpag ~—#= Hardware :
|, —_—
CRT
J
O API Contents

UMNIVERSITY
OF UTAH

* Functions that specify what we need to form
an image (openGL state)
— Objects
— Viewer
— Light Source(s)
— Materials
e Other information
— Input from devices such as mouse and keyboard
— Capabilities of system

9/28/2015

13

a

D Object Specification

UNIVERSITY
OF UTAH

* Most APIs support a limited set of primitives
including
— Points (0D object)
— Line segments (1D objects)
— Polygons (2D objects)

— Some curves and surfaces
* Quadrics
* Parametric polynomials

 All are defined through locations in space or
vertices

o Example (old style)
Immediate Mode

OF UTAH

type of object

/ location of vertex

glBegin(GL_POLYGON)
glVertex3f(0.0, O.
glVertex3f(0.0, 1.
glVertex3f(0.0, O.
glEnd();

T~

end of object definition

0, 0.0
0, 0.0
0, 1.0

o/ o/ \/

9/28/2015

14

a

o Example (GPU based)
UNIVERSITY ve rteX a rrayS

OF UTAH

e Put geometric data in an array

var points = [

vec3(0.0, 0.0, 0.0),
vec3(0.0, 1.0, 0.0),
vec3(0.0, 0.0, 1.0),

I;

* Send array to GPU
e Tell GPU to render as triangle

a

i -) WebGLPrimitives

UNIVERSITY
OF UTAH

GL_POINTS /\ £
GL LINES GL_LINE_STRIP

A : GL_LINE_LOOP
GL_TRIANGLES ‘

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

9/28/2015

15

a

U Camera Specification

UNIVERSITY
OF UTAH

» Six degrees of freedom
— Position of center of lens

— Orientation

* Lens

* Film size X |
* Orientation of film plane

a

W Coordinate Systems

UNIVERSITY
OF UTAH

* The units in points are determined by the

application and are called model or problem
coordinates

* Viewing specifications usually are in world
coordinates

* Eventually pixels will be produced in window
coordinates

* WebGL also uses some internal representations that
usually are not visible to the application but are
important in the shaders

* Most important is clip coordinates

9/28/2015

16

a

B Coordinate Systems and Shaders

UNIVERSITY
OF UTAH

* Vertex shader must output in clip coordinates

* Input to fragment shader from rasterizer is in
window coordinates

» Application can provide vertex data in any
coordinate system but shader must eventually
produce gl _Position in clip coordinates

» Simple example uses clip coordinates

a

i -) WebGL Camera

UMNIVERSITY
OF UTAH

* WebGL places a camera at the origin in object
space pointing in the negative z direction
* The default viewing volume

fright, tog, far)

¥

is a box centered at the

origin with sides of
length 2

(left, bottom, near)

9/28/2015

17

a

D Orthographic Viewing

UNIVERSITY
OF UTAH

In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

z=0

/ | | ~Viewing rectangle

L 4
/ (x,y,0)
S / 7=0
/ z

(x,¥,2)

a

D Viewports

UNIVERSITY
OF UTAH

* Do not have use the entire window for the
image: gl .viewport(x,y,w,h)

* Values in pixels (window coordinates)

O -Viewport

x W~ \~Graphics window

(&

O - = . 0]

Clipping window

9/28/2015

18

a

B Transformations and Viewing

UNIVERSITY
OF UTAH

* In WebGL, we usually carry out projection using a
projection matrix (transformation) before rasterization

* Transformation functions are also used for changes in
coordinate systems

* Pre 3.1 OpenGL had a set of transformation functions
which have been deprecated

* Three choices in WebGL
— Application code
— GLSL functions
— MV.js

a

U Lights and Materials

UMNIVERSITY
OF UTAH

e Types of lights
— Point sources vs distributed sources
— Spot lights
— Near and far sources
— Color properties
* Material properties
— Absorption: color properties

— Scattering
* Diffuse
* Specular

9/28/2015

19

& OpenGL Architecture
Application L, c;ir:r?;hri:s - Drivers :— Mouse
G (AP []
—r Ili Display
& Software Organization

GLEW -
OpenGL / + \ Graphics
application

Driver
program
Ry e 2 2w Xlib, Xt ——

9/28/2015

20

a

) It used to be easy

LJN]VF:RSITY
OF UTAH
#include <GL/glut.
void mydisplay(){
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_QUAD;
glVertex2f(-0.5, -0.5);
glVertex2f(-0,5, 0,5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);
glEnd()
}
int main(int argc, char** argv){
glutCreateWindow("simple");
glutDisplayFunc(mydisplay);
glutMainLoop();

a

D What happened?

UMNIVERSITY
OF UTAH

* Most OpenGL functions deprecated
— immediate vs retained mode
— make use of GPU
* Makes heavy use of state variable default
values that no longer exist
— Viewing
— Colors
— Window parameters

* However, processing loop is the same

9/28/2015

21

a

D Execution in Browser
UNIVERSITY
OF UTAH
URL
Browser Web
-—— Server
HTML Web Page
I8
files JS Engine
CPU/GPU
Framchutter
Canvas
a
D Event Loop
UNIVERSITY

OF UTAH

 Remember that the sample program specifies
a render function which is a event listener or
callback function

— Every program should have a render callback

— For a static application we need only execute the
render function once
— In a dynamic application, the render function can

call itself recursively but each redrawing of the
display must be triggered by an event

9/28/2015

22

a

& Lack of Object Orientation

UNIVERSITY
OF UTAH

» All versions of OpenGL are not object

oriented so that there are multiple functions

for a given logical function

* Example: sending values to shaders
—gl.uniform3f
—gl.uniform2i
—gl.uniform3dv

* Underlying storage mode is the same

a

U0 WebGL function format

UMNIVERSITY
OF UTAH

function name . .
dimension

gl.uniform3f(x,y,z)

7 AN

X,y,z are variables
belongs to WebGL canvas v

gl.uniform3fv(p)

\ p is an array

9/28/2015

23

a

i -) WebGL constants

UMNIVERSITY
OF UTAH

* Most constants are defined in the canvas object
— In desktop OpenGL, they were in #include files such as
gl.h
* Examples
— desktop OpenGL
* glEnable(GL_DEPTH_TEST);
— WebGL
* gl.enable(gl .DEPTH_TEST)
—gl.clear(gl.COLOR_BUFFER_BIT)

a

i Vertex Shader Applications

UNIVERSITY
OF UTAH

* Moving vertices
— Morphing
— Wave motion
— Fractals
* Lighting
— More realistic models
— Cartoon shaders

9/28/2015

24

<

THE
UNIVERSITY
oF UTAH

Fragment Shader Applications

Per fragment lighting calculations

per vertex lighting per fragment lighting

THE
UNIVERSITY
oF UTAH

Fragment Shader Applications

Texture mapping

smooth shading environment bump mapping
mapping

9/28/2015

25

a

-) Writing Shaders

UNIVERSITY
OF UTAH

* First programmable shaders were
programmed in an assembly-like manner

* OpenGL extensions added functions for vertex
and fragment shaders

» Cg (C for graphics) C-like language for
programming shaders
— Works with both OpenGL and DirectX
— Interface to OpenGL complex

* OpenGL Shading Language (GLSL)

a

") WebGL and GLSL

UMNIVERSITY
OF UTAH

* WebGL requires shaders and is based less on a
state machine model than a data flow model

* Most state variables, attributes and related
pre 3.1 OpenGL functions have been
deprecated

* Lots of action happens in shaders
* Job of application is to get data to GPU

52 Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

9/28/2015

26

a

D Polygon Issues

UNIVERSITY
OF UTAH

* WebGL will only display triangles

— Simple: edges cannot cross

— Convex: All points on line segment between two points in a
polygon are also in the polygon

— Flat: all vertices are in the same plane

* Application program must tessellate a polygon into
triangles (triangulation)

* OpenGL 4.1 contains a tessellator but not WebGL

-

nonsimple polygon nonconvex polygon

a

W Polygon Testing

UNIVERSITY
OF UTAH

* Conceptually simple to test for simplicity and
convexity

* Time consuming

 Earlier versions assumed both and left testing
to the application

* Present version only renders triangles

* Need algorithm to triangulate an arbitrary
polygon

9/28/2015

27

a

i -) WebGLPrimitives

UMNIVERSITY
OF UTAH

GL_POINTS ///<\\ Sé
GL LINES GL_LINE_STRIP

A GL_LINE_LOOP

GL_TRIANGLES -

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

a

. Good and Bad Triangles

UNIVERSITY
OF UTAH

* Long thin triangles render poorly

* Equilateral triangles render well
* Maximize minimum angle
* Delaunay triangulation for unstructured points

9/28/2015

28

a

W8 Triangularization
* Convex polygon d
b

e Start with abc, remove b, then acd,

a

W Non-convex (concave)

UNIVERSITY
oF UTAH

9/28/2015

29

a

i ") Recursive Division

UNIVERSITY
OF UTAH

* Find leftmost vertex and split

¥idl
Vi
Vit
i -) Attributes

UNIVERSITY
OF UTAH

» Attributes determine the appearance of objects
— Color (points, lines, polygons)
— Size and width (points, lines)
— Stipple pattern (lines, polygons)
— Polygon mode
* Display as filled: solid color or stipple pattern
* Display edges
* Display vertices
* Only a few (gl_PointSize) are supported by
WebGL functions

9/28/2015

30

a

i -) RGB color

UNIVERSITY
OF UTAH

* Each color component is stored separately in the frame
buffer
* Usually 8 bits per component in buffer

* Color values can range from 0.0 (none) to 1.0 (all) using
floats or over the range from 0 to 255 using unsigned

bytes

a

i -) Indexed Color

UMNIVERSITY
OF UTAH

* Colors are indices into tables of RGB values

* Requires less memory
— indices usually 8 bits
— not as important now

* Memory inexpensive
* Need more colors for shading

Color | Red
= - lockup table
Color- Green
& lockup table i ﬁ
[Color Blue
Frame buffer lockup table | ™

9/28/2015

31

a

") Smooth Color

UNIVERSITY
OF UTAH

* Default is smooth shading

— Rasterizer interpolates vertex colors across visible
polygons

* Alternative is flat shading
— Color of first vertex
determines fill color
— Handle in shader

a

-) Setting Colors

UMNIVERSITY
OF UTAH

* Colors are ultimately set in the fragment
shader but can be determined in either shader
or in the application

* Application color: pass to vertex shader as a
uniform variable or as a vertex attribute

* Vertex shader color: pass to fragment shader
as varying variable

* Fragment color: can alter via shader code

9/28/2015

32

a

. A OpenGL Simple Program

UNIVERSITY
OF UTAH

Generate a square on a solid background

a

") WebGL

UNIVERSITY
OF UTAH

* Five steps

— Describe page (HTML file)
* request WebGL Canvas
* read in necessary files

— Define shaders (HTML file)

* could be done with a separate file (browser dependent)

— Compute or specify data (JS file)
— Send data to GPU (JS file)
— Render data (JS file)

9/28/2015

33

°

D square.html

UNIVERSITY
OF UTAH
<IDOCTYPE html>
<html>
<head>
<script id="vertex-shader" type="x-shader/x-vertex">

attribute vec4 vPosition;
void main()
{

gl_Position = vPosition;
}

</script>
<script id="fragment-shader" type="x-shader/x-fragment">

precision mediump float;

void main()
{
gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);

}) Angel and Shreiner: Interactive Computer

</scr|pt> Graphics 7E © Addison-Wesley 2015

o

) Shaders
UNIVERSITY

OFUTAH

* We assign names to the shaders that we can use
in the JS file

* These are trivial pass-through (do nothing)
shaders that which set the two required built-in

variables
— gl_Position
— gl_FragColor

* Note both shaders are full programs
* Note vector type vec2
* Must set precision in fragment shader

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

9/28/2015

34

a

W square.html (cont)

UNIVERSITY
OF UTAH
<script type="text/javascript" src="../Common/webg|-utils.js"></script>
<script type="text/javascript" src="../Common/initShaders.js"></script>
<script type="text/javascript" src="../Common/MV.js"></script>
<script type="text/javascript" src="square.js"></script>
</head>

<body>
<canvas id="gl-canvas" width="512" height="512">
Oops ... your browser doesn't support the HTML5 canvas element

</canvas>
</body>
</html>
Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015
<3
.
O Files
UNIVERSITY
OFUTAH

» . ./Common/webgl-utils.js: Standard
utilities for setting up WebGL context in
Common directory on website

e _./Common/initShaders. js: contains
JS and WebGL code for reading, compiling and
linking the shaders

« . ./Common/MV. js: our matrix-vector
package

» square. Js: the application file

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

9/28/2015

35

Nt) square.js

THE
UNIVERSITY
OF UTAH

var gl;
var points;

window.onload = function init(){
var canvas = document.getElementByld("gl-canvas");

gl = WebGLUtils.setupWebGL(canvas);
if (!gl) { alert("WebGL isn't available");
}

// Four Vertices

var vertices = [
vec2(-0.5,-0.5),
vec2(-0.5, 0.5),
vec2(0.5,0.5),
vec2(0.5, -0.5)

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

i -) Notes

THE
UNIVERSITY
OF UTAH

» onload: determines where to start
execution when all code is loaded

* canvas gets WebGL context from HTML file
* vertices use vec2 type in MV.js

e JSarray is not the same as a C or Java array
— object with methods
— vertices.length // 4

* Values in clip coordinates

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

9/28/2015

36

D square.js (cont)

THE
UNIVERSITY
OF UTAH

// Configure WebGL

gl.viewport(0, 0, canvas.width, canvas.height);
gl.clearColor(0.0, 0.0, 0.0, 1.0);

// Load shaders and initialize attribute buffers

var program = initShaders(gl, "vertex-shader", "fragment-shader");
gl.useProgram(program);

// Load the data into the GPU

var bufferld = gl.createBuffer();
gl.bindBuffer(gl. ARRAY_BUFFER, bufferld);
gl.bufferData(gl. ARRAY_BUFFER, flatten(vertices), gl.STATIC_DRAW);

// Associate out shader variables with our data buffer

var vPosition = gl.getAttribLocation(program, "vPosition");
gl.vertexAttribPointer(vPosition, 2, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vPosition);

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Notes

THE
UNIVERSITY
OF UTAH

* In1tShaders used to load, compile and
link shaders to form a program object

* Load data onto GPU by creating a vertex
buffer object on the GPU

— Note use of flatten() to convert JS array to an array
of float32’s

* Finally we must connect variable in program
with variable in shader

— need name, type, location in buffer

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

9/28/2015

37

<

" square.js (cont)

UNIVERSITY
OF UTAH
render();

b

function render() {
gl.clear(gl. COLOR_BUFFER_BIT);
gl.drawArrays(gl.TRIANGLE_FAN, O, 4);

1 2
3
0
Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015
<

& Triangles, Fans or Strips

UMNIVERSITY
OF UTAH

gl.drawArrays(gl. TRIANGLES, 0,6); //0,1,2,0,2,3

gl.drawArrays(gl. TRIANGLE_FAN, 0,4); //0,1,2,3

gl.drawArrays(gl. TRIANGLE_STRIP, 0,4); //0, 1, 3, 2

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

9/28/2015

38

