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A simplified graphics pipeline
* Note that pipe widths vary
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The Graphics Pipeline

Key abstraction of real-time graphics
Hardware used to look like this
Distinct chips/boards per stage

Fixed data flow through pipeline

Beyond Programmable Shading: In Actior
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Kurt Akeley. RealityEngine Graphics. In Proc. SIGGRAPH "93. ACM Press, 1993,
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Montrym, Baum, Dignam, & Migdal

InfiniteReality- A real-time graphics system.

In Proc. SIGGRAPH '97. ACM Press, 1997

Remains a useful abstraction

Hardware used to look like this

Beyond Programmable Shading: In Action
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The Graphics Pipeline

Vertex

- Vertex, pixel processing became
programmable

Beyond Programmable Shading: In Action

Vertex

!

Geometry
Hardware used to look like this

- Vertex, pixel processing became

programmable
Pixel

1 - New stages added
Test & Blend
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The Graphics Pipeline

Vertex
+ :‘[’j]l==hhl + Bli): ’
Tessellation ’
. 2 « Hardware used to look like this
Geometry

- Vertex, pixel processing became
programmable

Pixel
¥
Test & Blend

@ GPU architecture increasingly centers
) around shader execution

Beyond Programmable Shading: In Action

- New stages added

Modern GPUs: Unified Design

Discrete Design Unified Design

Vertex shaders, pixel shaders, etc. become threads
running different programs on a flexible core
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GeForce 8: Modern GPU Architecturg_
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Why unify?

Vertex Shader

Pixel Shader

Vertex Shader

Pixel Shader

© NVIDIA Corparation 2007

Why unify?

Unified Shader

Unified Shader
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Heavy Geometry
Workload Perf = 4

Heavy Pixel
Workload Perf = 8
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NVIDIA

Heavy Geometry
Workload Perf = 11

Heavy Pixel
Workload Perf = 11
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.WUProgrammable Shader Pipeline
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Nt ) Simple Vertex Shader

UNIVERSITY
OF UTAH

/ input from application

attribute vec4 vPosition;
void m ain(VOid) \ must link to variable in application

{

gl_Position = vPosition;

built in variable

21 Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

<

U  Vertex Execution Model

UNIVERSITY
OF UTAH

Vertex data
Shader Program

gl.drawArrays

Vertex

22 Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015
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& Simple Fragment Program
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precision mediump float;
void main(void)
{
gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}

23 Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

<

. Fragment Execution Model

UNIVERSITY
OF UTAH

Shader Program

Fragment Fragment
Color

24 Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015
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U The Programmer’s Interface

UNIVERSITY
OF UTAH

* Programmer sees the graphics system through
a software interface: the Application
Programmer Interface (API)

Application Graphics
e - hgpag ~—#= Hardware :
_|_, —_—
CRT
J
O API Contents

UMNIVERSITY
OF UTAH

* Functions that specify what we need to form
an image (openGL state)
— Objects
— Viewer
— Light Source(s)
— Materials
e Other information
— Input from devices such as mouse and keyboard
— Capabilities of system

9/28/2015
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D Object Specification

UNIVERSITY
OF UTAH

* Most APIs support a limited set of primitives
including
— Points (0D object)
— Line segments (1D objects)
— Polygons (2D objects)

— Some curves and surfaces
* Quadrics
* Parametric polynomials

 All are defined through locations in space or
vertices

o Example (old style)
Immediate Mode

OF UTAH

type of object

/ location of vertex

glBegin(GL_POLYGON)
glVertex3f(0.0, O.
glVertex3f(0.0, 1.
glVertex3f(0.0, O.
glEnd( );

T~

end of object definition

0, 0.0
0, 0.0
0, 1.0

o/ o/ \/

9/28/2015
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o Example (GPU based)
UNIVERSITY ve rteX a rrayS

OF UTAH

e Put geometric data in an array

var points = [

vec3(0.0, 0.0, 0.0),
vec3(0.0, 1.0, 0.0),
vec3(0.0, 0.0, 1.0),

I;

* Send array to GPU
e Tell GPU to render as triangle

a

i - ) WebGLPrimitives

UNIVERSITY
OF UTAH

GL_POINTS /\ £
GL LINES GL_LINE_STRIP

A : GL_LINE_LOOP
GL_TRIANGLES ‘

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

9/28/2015
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U Camera Specification

UNIVERSITY
OF UTAH

» Six degrees of freedom
— Position of center of lens

— Orientation

* Lens

* Film size X |
* Orientation of film plane

a

W Coordinate Systems

UNIVERSITY
OF UTAH

* The units in points are determined by the

application and are called model or problem
coordinates

* Viewing specifications usually are in world
coordinates

* Eventually pixels will be produced in window
coordinates

* WebGL also uses some internal representations that
usually are not visible to the application but are
important in the shaders

* Most important is clip coordinates

9/28/2015
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B Coordinate Systems and Shaders

UNIVERSITY
OF UTAH

* Vertex shader must output in clip coordinates

* Input to fragment shader from rasterizer is in
window coordinates

» Application can provide vertex data in any
coordinate system but shader must eventually
produce gl _Position in clip coordinates

» Simple example uses clip coordinates

a

i - ) WebGL Camera

UMNIVERSITY
OF UTAH

* WebGL places a camera at the origin in object
space pointing in the negative z direction
* The default viewing volume

fright, tog, far)

¥

is a box centered at the

origin with sides of
length 2

(left, bottom, near)

9/28/2015
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D Orthographic Viewing

UNIVERSITY
OF UTAH

In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

z=0

/ | | ~Viewing rectangle

L 4
/ (x,y,0)
S / 7=0
/ z

(x,¥,2)

a

D Viewports

UNIVERSITY
OF UTAH

* Do not have use the entire window for the
image: gl .viewport(x,y,w,h)

* Values in pixels (window coordinates)

O -Viewport

x W~ \~Graphics window

(&

O - = . 0]

Clipping window

9/28/2015
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B Transformations and Viewing

UNIVERSITY
OF UTAH

* In WebGL, we usually carry out projection using a
projection matrix (transformation) before rasterization

* Transformation functions are also used for changes in
coordinate systems

* Pre 3.1 OpenGL had a set of transformation functions
which have been deprecated

* Three choices in WebGL
— Application code
— GLSL functions
— MV.js

a

U Lights and Materials

UMNIVERSITY
OF UTAH

e Types of lights
— Point sources vs distributed sources
— Spot lights
— Near and far sources
— Color properties
* Material properties
— Absorption: color properties

— Scattering
* Diffuse
* Specular

9/28/2015
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& OpenGL Architecture
Application L, c;ir:r?;hri:s - Drivers :— Mouse
G (AP [ ]
—r Ili Display
& Software Organization

GLEW -
OpenGL / + \ Graphics
application

Driver
program
Ry e 2 2w Xlib, Xt ——
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) It used to be easy

LJN]VF:RSITY
OF UTAH
#include <GL/glut.
void mydisplay(){
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_QUAD;
glVertex2f(-0.5, -0.5);
glVertex2f(-0,5, 0,5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);
glEnd()
}
int main(int argc, char** argv){
glutCreateWindow("simple");
glutDisplayFunc(mydisplay);
glutMainLoop();

a

D What happened?

UMNIVERSITY
OF UTAH

* Most OpenGL functions deprecated
— immediate vs retained mode
— make use of GPU
* Makes heavy use of state variable default
values that no longer exist
— Viewing
— Colors
— Window parameters

* However, processing loop is the same

9/28/2015
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D Execution in Browser
UNIVERSITY
OF UTAH
URL
Browser Web
-—— Server
HTML Web Page
I8
files JS Engine
CPU/GPU
Framchutter
Canvas
a
D Event Loop
UNIVERSITY

OF UTAH

 Remember that the sample program specifies
a render function which is a event listener or
callback function

— Every program should have a render callback

— For a static application we need only execute the
render function once
— In a dynamic application, the render function can

call itself recursively but each redrawing of the
display must be triggered by an event

9/28/2015
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& Lack of Object Orientation

UNIVERSITY
OF UTAH

» All versions of OpenGL are not object

oriented so that there are multiple functions

for a given logical function

* Example: sending values to shaders
—gl.uniform3f
—gl.uniform2i
—gl.uniform3dv

* Underlying storage mode is the same

a

U0 WebGL function format

UMNIVERSITY
OF UTAH

function name . .
dimension

gl.uniform3f(x,y,z)

7 AN

X,y,z are variables
belongs to WebGL canvas v

gl.uniform3fv(p)

\ p is an array

9/28/2015
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i - ) WebGL constants

UMNIVERSITY
OF UTAH

* Most constants are defined in the canvas object
— In desktop OpenGL, they were in #include files such as
gl.h
* Examples
— desktop OpenGL
* glEnable(GL_DEPTH_TEST);
— WebGL
* gl.enable(gl .DEPTH_TEST)
—gl.clear(gl.COLOR_BUFFER_BIT)

a

i Vertex Shader Applications

UNIVERSITY
OF UTAH

* Moving vertices
— Morphing
— Wave motion
— Fractals
* Lighting
— More realistic models
— Cartoon shaders

9/28/2015
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THE
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Fragment Shader Applications

Per fragment lighting calculations

per vertex lighting per fragment lighting

THE
UNIVERSITY
oF UTAH

Fragment Shader Applications

Texture mapping

smooth shading environment bump mapping
mapping

9/28/2015
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- ) Writing Shaders

UNIVERSITY
OF UTAH

* First programmable shaders were
programmed in an assembly-like manner

* OpenGL extensions added functions for vertex
and fragment shaders

» Cg (C for graphics) C-like language for
programming shaders
— Works with both OpenGL and DirectX
— Interface to OpenGL complex

* OpenGL Shading Language (GLSL)

a

" ) WebGL and GLSL

UMNIVERSITY
OF UTAH

* WebGL requires shaders and is based less on a
state machine model than a data flow model

* Most state variables, attributes and related
pre 3.1 OpenGL functions have been
deprecated

* Lots of action happens in shaders
* Job of application is to get data to GPU

52 Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

9/28/2015
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D Polygon Issues

UNIVERSITY
OF UTAH

* WebGL will only display triangles

— Simple: edges cannot cross

— Convex: All points on line segment between two points in a
polygon are also in the polygon

— Flat: all vertices are in the same plane

* Application program must tessellate a polygon into
triangles (triangulation)

* OpenGL 4.1 contains a tessellator but not WebGL

-

nonsimple polygon nonconvex polygon

a

W Polygon Testing

UNIVERSITY
OF UTAH

* Conceptually simple to test for simplicity and
convexity

* Time consuming

 Earlier versions assumed both and left testing
to the application

* Present version only renders triangles

* Need algorithm to triangulate an arbitrary
polygon

9/28/2015
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i - ) WebGLPrimitives

UMNIVERSITY
OF UTAH

GL_POINTS ///<\\ Sé
GL LINES GL_LINE_STRIP

A GL_LINE_LOOP

GL_TRIANGLES -

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

a

. Good and Bad Triangles

UNIVERSITY
OF UTAH

* Long thin triangles render poorly

* Equilateral triangles render well
* Maximize minimum angle
* Delaunay triangulation for unstructured points

9/28/2015
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a

W8 Triangularization
* Convex polygon d
b

e Start with abc, remove b, then acd, ....

a

W Non-convex (concave)

UNIVERSITY
oF UTAH

9/28/2015
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i " ) Recursive Division

UNIVERSITY
OF UTAH

* Find leftmost vertex and split

¥idl
Vi
Vit
i - ) Attributes

UNIVERSITY
OF UTAH

» Attributes determine the appearance of objects
— Color (points, lines, polygons)
— Size and width (points, lines)
— Stipple pattern (lines, polygons)
— Polygon mode
* Display as filled: solid color or stipple pattern
* Display edges
* Display vertices
* Only a few (gl_PointSize) are supported by
WebGL functions

9/28/2015
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i - ) RGB color

UNIVERSITY
OF UTAH

* Each color component is stored separately in the frame
buffer
* Usually 8 bits per component in buffer

* Color values can range from 0.0 (none) to 1.0 (all) using
floats or over the range from 0 to 255 using unsigned

bytes

a

i - ) Indexed Color

UMNIVERSITY
OF UTAH

* Colors are indices into tables of RGB values

* Requires less memory
— indices usually 8 bits
— not as important now

* Memory inexpensive
* Need more colors for shading

Color | Red
= - lockup table
Color- Green
& lockup table i ﬁ
[ Color Blue
Frame buffer lockup table | ™

9/28/2015
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" ) Smooth Color

UNIVERSITY
OF UTAH

* Default is smooth shading

— Rasterizer interpolates vertex colors across visible
polygons

* Alternative is flat shading
— Color of first vertex
determines fill color
— Handle in shader

a

- ) Setting Colors

UMNIVERSITY
OF UTAH

* Colors are ultimately set in the fragment
shader but can be determined in either shader
or in the application

* Application color: pass to vertex shader as a
uniform variable or as a vertex attribute

* Vertex shader color: pass to fragment shader
as varying variable

* Fragment color: can alter via shader code

9/28/2015
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a

. A OpenGL Simple Program

UNIVERSITY
OF UTAH

Generate a square on a solid background

a

" ) WebGL

UNIVERSITY
OF UTAH

* Five steps

— Describe page (HTML file)
* request WebGL Canvas
* read in necessary files

— Define shaders (HTML file)

* could be done with a separate file (browser dependent)

— Compute or specify data (JS file)
— Send data to GPU (JS file)
— Render data (JS file)

9/28/2015
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D square.html

UNIVERSITY
OF UTAH
<IDOCTYPE html>
<html>
<head>
<script id="vertex-shader" type="x-shader/x-vertex">

attribute vec4 vPosition;
void main()
{

gl_Position = vPosition;
}

</script>
<script id="fragment-shader" type="x-shader/x-fragment">

precision mediump float;

void main()
{
gl_FragColor = vec4( 1.0, 1.0, 1.0, 1.0);

} ) Angel and Shreiner: Interactive Computer

</scr|pt> Graphics 7E © Addison-Wesley 2015

o

) Shaders
UNIVERSITY

OFUTAH

* We assign names to the shaders that we can use
in the JS file

* These are trivial pass-through (do nothing)
shaders that which set the two required built-in

variables
— gl_Position
— gl_FragColor

* Note both shaders are full programs
* Note vector type vec2
* Must set precision in fragment shader

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015
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W square.html (cont)

UNIVERSITY
OF UTAH
<script type="text/javascript" src="../Common/webg|-utils.js"></script>
<script type="text/javascript" src="../Common/initShaders.js"></script>
<script type="text/javascript" src="../Common/MV.js"></script>
<script type="text/javascript" src="square.js"></script>
</head>

<body>
<canvas id="gl-canvas" width="512" height="512">
Oops ... your browser doesn't support the HTML5 canvas element

</canvas>
</body>
</html>
Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015
<3
.
O Files
UNIVERSITY
OFUTAH

» . ./Common/webgl-utils.js: Standard
utilities for setting up WebGL context in
Common directory on website

e _./Common/initShaders. js: contains
JS and WebGL code for reading, compiling and
linking the shaders

« . ./Common/MV. js: our matrix-vector
package

» square. Js: the application file

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015
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Nt ) square.js

THE
UNIVERSITY
OF UTAH

var gl;
var points;

window.onload = function init(){
var canvas = document.getElementByld( "gl-canvas" );

gl = WebGLUtils.setupWebGL( canvas );
if (!gl) { alert( "WebGL isn't available" );
}

// Four Vertices

var vertices = [
vec2(-0.5,-0.5),
vec2( -0.5, 0.5),
vec2( 0.5,0.5),
vec2( 0.5, -0.5)

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

i - ) Notes

THE
UNIVERSITY
OF UTAH

» onload: determines where to start
execution when all code is loaded

* canvas gets WebGL context from HTML file
* vertices use vec2 type in MV.js

e JSarray is not the same as a C or Java array
— object with methods
— vertices.length // 4

* Values in clip coordinates

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015
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D square.js (cont)

THE
UNIVERSITY
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// Configure WebGL

gl.viewport( 0, 0, canvas.width, canvas.height );
gl.clearColor( 0.0, 0.0, 0.0, 1.0 );

// Load shaders and initialize attribute buffers

var program = initShaders( gl, "vertex-shader", "fragment-shader" );
gl.useProgram( program );

// Load the data into the GPU

var bufferld = gl.createBuffer();
gl.bindBuffer( gl. ARRAY_BUFFER, bufferld );
gl.bufferData( gl. ARRAY_BUFFER, flatten(vertices), gl.STATIC_DRAW );

// Associate out shader variables with our data buffer

var vPosition = gl.getAttribLocation( program, "vPosition" );
gl.vertexAttribPointer( vPosition, 2, gl.FLOAT, false, 0, 0 );
gl.enableVertexAttribArray( vPosition );

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Notes

THE
UNIVERSITY
OF UTAH

* In1tShaders used to load, compile and
link shaders to form a program object

* Load data onto GPU by creating a vertex
buffer object on the GPU

— Note use of flatten() to convert JS array to an array
of float32’s

* Finally we must connect variable in program
with variable in shader

— need name, type, location in buffer

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015
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" square.js (cont)

UNIVERSITY
OF UTAH
render();

b

function render() {
gl.clear( gl. COLOR_BUFFER_BIT );
gl.drawArrays( gl.TRIANGLE_FAN, O, 4 );

1 2
3
0
Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015
<

& Triangles, Fans or Strips

UMNIVERSITY
OF UTAH

gl.drawArrays( gl. TRIANGLES, 0,6 ); //0,1,2,0,2,3

gl.drawArrays( gl. TRIANGLE_FAN, 0,4); //0,1,2,3

gl.drawArrays( gl. TRIANGLE_STRIP, 0,4 ); //0, 1, 3, 2

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015
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